

International Journal of Agricultural Sciences Volume 17 | AAEBSSD | 2021 | 215-221

■ ISSN : 0973-130X

CP DOI:10.15740/HAS/IJAS/17-AAEBSSD/215-221 3-130X Visit us : www.researchjournal.co.in

RESEARCH PAPER

Response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (*Typic ustropept*) in cauvery New Delta Zone

S. Suganya Department of Soil Science and Agricultural Chemistry, TNAU Information and Training Centre, Chennai (T.N.) India

Abstract : In Tamil Nadu, one of the most important agro-climatic zone dictating the total rice production is by Cauvery Delta zone. In Cauvery Delta zone the area under rice cultivation has been reduced drastically and this situation forms the base for a paradigm shift from rice cultivation to alternate crops that requires less amount of irrigation water. Suitable alternate cropping pattern plays an important role in improving the purchasing power of farmer with the help of inclusion of commercial crops in rice based cropping system. Chilli is an important spice cum vegetable crop cultivated extensively in India. This project is indented to study the fertigation system in one of promising alternate crops in chillies in rice ecosystem. By keeping all these points in view, the present investigation was undertaken to study the response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (Typic Ustropept) in cauvery new delta zone. Field experiment was conducted at Soil and Water Management Research Institute, Kattuthottam, Thanjavur financially supported by Department of Science and Technology under SERB programme with a budget outlay of Rs. 13.0 lakhs for three years during 2012-2015 in strip plot design with four replications. The results revealed that Sub surface drip fertigation at 10 cm depth recorded the maximum plant height, number of branches, number of flowers and number of fruits at B, irrigation regime (IW/CPE = 0.75). Total green chillies yield was higher under sub surface drip fertigation @ 10 cm depth at IW/CPE=1 (15.59 t ha⁻¹) followed by surface drip fertigation at IW/CPE = $0.75 (13.50 \text{ t ha}^{-1})$ and sub surface drip fertigation (a) 10 cm depth at IW/CPE = $0.75 (11.17 \text{ th} \text{a}^{-1})$. Thus, introduction of chillies as an alternate crop under sub surface drip fertigation @ 10 cm depth technology during January under Broad bed furrow method of cultivation paves the way for improving the social security to the rice farmers.

Key Words : Chilli, Sub surface drip fertigation, Madukkur soil series, Cauvery New Delta Zone

View Point Article : Suganya, S. (2021). Response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (*Typic ustropept*) in cauvery New Delta Zone. *Internat. J. agric. Sci.*, **17** (AAEBSSD) : 215-221, **DOI:10.15740/HAS/IJAS/17-AAEBSSD/215-221.** Copyright@2021: Hind Agri-Horticultural Society.

Article History : Received : 27.07.2021; Revised : 30.07.2021; Accepted : 01.08.2021

INTRODUCTION

In Tamil Nadu Rice is primarily grown under submerged condition in river command areas. One of

the most important agro climatic zones dictating the total rice production of the state is by Cauvery Delta zone. In Cauvery Delta zone rice is being cultivated to an extent of 4.5 lakh ha as per the latest statistics available. This area has been reduced from 6 to 8 lakh ha over a period of 10 to 15 years as a direct consequence of declining water availability in river cauvery in conjunction with water dispute between the states of Tamil Nadu and Karnataka. This situation forms the base for a paradigm shift from rice cultivation to alternate crops that requires less amount of irrigation water. In addition to the yield, Sustainability alternate cropping pattern plays an important role in improving the purchasing power of farmer with the help of inclusion of commercial crops in rice based cropping system. Chilli (Capsicum annuum L.) is an important spice cum vegetable crop cultivated extensively in India. India contributes one fourth of world's population of chilli. In India, chilli is mainly grown in Andhra Pradesh, Karnataka, Tamil Nadu and Orissa. In recent years, apart from export of dry chilli, value added products viz., the chilli powder and also the oleoresin are exported. Even for a garden land crop there is no guarantee that irrigation water in conjunction with rainfall is sufficient enough to innovative method of irrigation which improves productivity of crops with limited availability of water, providing the social security forthe resource poor rice farmers.

Most of the water use in India is for irrigation amounting to 94 per cent of total withdrawal. With increasing population, urbanization and contagious depletion of natural resources, there has to be a paradignm shift in farmers's perception from production to productivity and profitability (Utpal Das et al., 2017). However, by 2025 A.D., when industrial and urban demand increases, the proportion of water use for irrigation reduces to 83 per cent of the total withdrawal. According to National Commission on Agriculture, the utilization of water for purposes other than irrigation is expected to raise to 27 per cent of available fresh water and only 73 per cent of fresh water will be available for irrigation. Therefore, sources of water are to be used efficiently. Limited supply of water necessitates a shift in the production objectives from attainment of potential yield per unit of land to potential yield per unit of water. Among different methods of irrigation, drip method results in maximum water and nutrient use efficiency. In recent years, there is declining trend in annual rainfall. Limited sources of irrigation water from wells and tanks can be advantageously used through drip irrigation to enhance water use efficiency in broadly spaced crops like chilli. The yield and quality are the important factors to be considered which can be achieved only through optimum nutrients application. Chilli being a long duration crop, it responds to split application of nutrients.

This project is indented to study the fertigation system in one of promising alternate crops in chillies in rice ecosystem. Chillies are widely grown as vegetable cum commercial crops which requires 650 -750 mm of water under conventional method of irrigation. Research has shown that drip irrigation has the ability to reduce the water requirement to the tune of 40 -50 % without much of yield loss.

It is hypothesized that drip fertigation provides balanced nutrition to crops on daily basis that commensurate with nutrient and moisture demand of the crop. This Fertigation system assists in nourishing the crop sufficiently with moisture and nutrient that facilitates the crop to yield normally with the limited amount of irrigation water. The factors associated with moisture and nutrient dynamics under fertigation and conventional system was extensively studied to gain insight into the mechanism associated with higher water use efficiency and yield of chilli. By keeping all these points in view, the present investigation was undertaken to study the response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (*Typic Ustropept*) in cauvery new delta zone.

MATERIAL AND METHODS

The experiment was conducted at Soil and Water Management Research Institute,Kattuthottam, Thanjavur financially supported by Department of Science and Technology under SERB programme with a budget outlay of Rs. 13.0 lakhs for three years during 2012-2015. The treatment details are as follows.

Design		: Strip Plot Design
Horizontal strip plot	(A)	: Drip
	A1	: Surface
	A2	: Sub surface @ 10 cm
		depth
	A3	: Sub surface @ 20 cm
		depth
Vertical strip plot	(B)	: Irrigation regimes
	B1	: IW/CPE = 1
	B2	: IW/CPE = 0.75
	B3	: IW/CPE = 0.5
Replication		: Four

- The recommended dose of fertilizer for chilli is 120:80:80 kg N, P_2O_5 and K_2O . Out of which, 75% of the recommended dose of P_2O_5 will be applied basally

Response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (Typic ustropept) in cauvery New Delta Zone

Table A :	Methods employed for the analysis	of soil samples	
Sr. No.	Properties	Methods	References
1.	pН	Potentiometry method	Jackson(1973)
2.	Electrical Conductivity (d Sm ⁻¹)	Conductometry method	Jackson(1973)
3.	Organic carbon (%)	Chromic acid wet digestion	Walkley and Black (1934)
4.	Available nitrogen (kg/ha)	Alkaline permanganate method	Subbaiah and Asija (1956)
5.	Available phosphorus (kg/ha)	0.5 M sodium bicarbonate (pH 8.5) Olsen's method	Olsen et al. (1954)
6.	Available potassium (kg/ha)	Flame photometer method	Stanford and English (1949)
7.	Soil moisture (%)	Gravimetric method	Jackson(1973)

and the remaining will be applied through drip with water soluble fertilizers. The entire N and K_2O was applied through drip system with water soluble fertilizers.

- Drip fertigation schedule was given once in three days as per the TNAU Crop Production Guide (TNAU CPG-Horticulture, 2013) recommendation.

Initial soil sample was collected and analysed for their physico-chemical properties. The soil is sandy clay loam in texture. The experimental soil had pH 6.2, EC 0.18dS m⁻¹, organic carbon 0.30 %, available nitrogen, phosphorus and potassium were 160 kg ha⁻¹, 35 kg ha⁻¹ and 120 kg ha⁻¹, respectively. The methods employed for the analysis of soil samples are as follows in Table A.

Field experiments were conducted during 2013-15. Nursery was raised with Sierra chilly hybrid at SWMRI and transplanting was done with 35 days old Sierra old seedlings at SWMRI, Thanjavur. Drip irrigation is given based on the potential evaporation as per the technical programme. Fertigation is given as per the fertigation schedule prescribed in CPG-Horticulture 2013. Observations on growth and yield parameters *viz.*, plant height, number of branches per plant, number of flowers per plant and number of fruit per plant were recorded on 45, 90 and 135 days after transplanting(DAT). Total green chillies yield was recorded.

RESULTS AND DISCUSSION

The data on plant growth and yield parameters are presented in Table 1 to 5. The results revealed that among the drip systems sub surface drip fertigation @ 10 cm depth (A2) recorded the maximum plant height 47.5, 94.4 and 97.5 cm at 45, 90 and 135 DAT. The plant height was maximum in IW/CPE ratio of 1 (B1) followed by B3 (IW/CPE=0.5). Among the treatment combinations sub surface drip fertigation @ 10 cm depth with IW/ CPE=1 (A2B1) recorded the maximum plant height followed by A3B1 at 45, 90 and 135 DAT (Table 1).

More number of branches was recorded under surface drip fertigation at 45 DAT whereas, sub surface drip fertigation @ 10 cm depth (A2) recorded the less number of branches at 90 and 135 DAT. Among the irrigation regimes more number of branches was recorded under IW/CPE ratio of 1 (B1) followed by B3 (IW/ CPE=0.5) at 45, 90 and 135 DAT. Among the treatment combinations sub surface drip fertigation @ 10 cm depth with IW/CPE=1 (A2B1) recorded the more number of branches followed by A3B1 at 45, 90 and 135 DAT (Table 2).

It has been found that among the drip systems sub surface drip fertigation @ 10 cm depth (A2) recorded the more number of flowers and fruits at 45, 90 and 135 DAT. More number of flowers were present in IW/CPE

Table 1 : Pla	nt height	t (cm) as int	fluenced by di	fferent treatn	nents unde	r drip fer	tigation in c	hillies				
			45 DAT		90 DAT				135 DAT			
	B1	B2	B3	Mean	B1	B2	B3	Mean	B1	B2	B3	Mean
Al	47.4	46.2	44.3	46.0	92.4	82.9	88.8	88.0	95.9	86.0	92.4	91.4
A2	49.1	46.2	47.1	47.5	97.0	94.6	91.5	94.4	100.2	96.0	96.2	97.5
A3	48.8	40.3	46.3	45.1	94.8	88.9	91.4	91.7	99.2	90.2	96.7	95.4
Mean	48.4	44.2	45.9		94.7	88.8	90.6		98.4	90.7	95.1	
	А	В	A at B	B at A	А	В	A at B	B at A	А	В	A at B	B at A
SEd	0.02	0.03	0.05	0.05	4.53	2.70	5.93	4.68	3.59	2.81	5.35	4.86
CD P=0.05)	0.05	0.06	0.10	0.11	NS	NS	NS	NS	NS	5.90	NS	NS

Internat. J. agric. Sci. | Jan., 2021 | Vol. 17 | Issue 1 |215-221

ratio of 1 (B2) followed by B3 (IW/CPE=0.5). Among the treatment combinations sub surface drip fertigation @ 10 cm depth with IW/CPE=0.75 (A2B2)recorded more number of flowers followed by A3B1 at 45, 90 and 135 DAT (Table 3). A similar trend was followed in number of fruits (Table 4).

Green chillies were harvested in five times and results revealed that sub surface drip fertigation @ 20 cm depth at IW/CPE=1 recorded the highest yield (3502 kg ha⁻¹) followed by sub surface drip fertigation @ 10 cm depth at IW/CPE=0.75 (3129 kg ha⁻¹). The lowest yield was recorded under surface drip fertigation @ IW/ CPE = 0.5 (480 kg ha⁻¹ in first picking. The same trend was followed in 2nd, 3rd, 4th and 5th picking (Table 5a). Total green chillies yield (Table 5b) was higher under sub surface drip fertigation @ 10 cm depth at IW/CPE=1 (15559 kg ha⁻¹) followed by sub surface drip fertigation @ 10 cm depth at IW/CPE=0.75 (11170 kg ha⁻¹).

Plant growth and fruit yields were directly related to the amount of water applied. Average fruit weight, number and size of peppers were markedly increased by irrigation (O'Dell, 1983 and Pratt, 1983). Yield differences due to irrigation were attributed to increase number of fruits per plant, fruit size, wall thickness and reduced number of non – marketable fruits. Haynes and Herring (1981) reported that the percentage of flower retention and fruit set were highest with irrigation at 560 mb.

Table 2 : No. of	f branches	Table 2 : No. of branches as influenced by different treatments under drip fertigation in chillies												
		45	DAT		90 DAT				135 DAT					
	B1	B2	B3	Mean	B1	B2	B3	Mean	B1	B2	B3	Mean		
Al	17.7	17.3	17.0	17.3	18.6	20.7	28.6	22.6	22.6	22.9	31.6	25.7		
A2	18.3	16.6	14.5	16.5	27.4	27.0	29.3	27.9	29.5	29.8	34.1	31.1		
A3	18.2	12.8	16.0	15.7	23.5	22.5	22.7	22.9	27.9	24.6	25.4	26.0		
Mean	18.1	15.6	15.8		23.2	23.4	26.9		26.7	25.8	30.4			
	А	В	A at B	B at A	А	В	A at B	B at A	А	В	A at B	B at A		
SEd	1.20	2.05	3.13	3.54	1.15	1.09	4.50	3.98	1.85	2.01	3.39	3.48		
CD (P=0.05)	NS	NS	NS	NS	2.48	2.30	NS	NS	4.52	4.22	NS	NS		

		45	DAT		90 DAT				135 DAT			
	B1	B2	B3	Mean	B1	B2	B3	Mean	B1	B2	B3	Mean
A1	18.5	20.9	18.6	19.3	32.8	34.0	36.9	34.6	33.3	39.7	32.9	35.3
A2	16.0	22.2	26.7	21.6	35.9	36.4	36.1	36.1	36.9	34.2	38.0	36.4
A3	15.4	17.9	23.3	18.9	31.9	35.3	34.3	33.8	34.4	35.5	35.8	35.2
Mean	16.6	20.3	22.9		33.5	35.2	35.8		34.9	36.5	35.6	
	А	В	A at B	B at A	А	В	A at B	B at A	А	В	A at B	B at A
SEd	1.57	2.28	3.58	3.94	4.53	1.98	5.93	4.68	1.70	2.27	3.64	3.94
CD(P=0.05)	NS	4.78	NS	NS	NS	3.98	NS	NS	NS	4.75	NS	NS

		45	DAT		s under drip fertigation in chillies 90 DAT				135 DAT			
	B1	B2	B3	Mean	B1	B2	B3	Mean	B1	B2	B3	Mean
Al	17.6	17.5	17.4	17.5	38.6	42.5	45.1	42.1	42.1	42.4	40.3	41.6
A2	20.0	19.5	20.9	20.1	45.2	43.1	43.2	43.8	42.0	39.9	46.9	42.9
A3	18.5	14.7	19.3	17.5	40.1	49.9	44.1	44.7	38.9	48.6	43.1	43.5
Mean	18.7	17.2	19.2		41.3	45.2	44.1		41.0	43.6	43.4	
	А	В	A at B	B at A	А	В	A at B	B at A	А	В	A at B	B at A
SEd	1.25	1.13	4.08	2.14	1.20	2.01	3.13	3.54	0.98	1.10	5.84	4.20
CD (P=0.05)	2.84	2.05	NS	NS	2.46	4.05	NS	NS	2.01	2.20	NS	NS

Internat. J. agric. Sci. | Jan., 2021 | Vol. 17 | Issue 1 |215-221

In chilli plant, produce was greatest at the highest irrigation level (Hassan *et al.*, 1984). Photosynthetic rate decreased to below 50% of maximum when available soil water capacity was less than 50 per cent (Zira, 1984). Tedeschi and Zerbi (1984) showed that total and marketable yields per plant were linearly related to actual evapo-transpiration and that yield dependent on number of fruits per plant and mean fruit weight rather than on the number of flowers which was less important because abscission of flowers and young fruits was always high.

Klickvenga and Siddiq (1985) opined that chilli was sensitive to both water deficit and surplus, providing too much water results in anaerobic condition within root zone. While insufficient water inhibits leaf expansion and photosynthetic capacity. Pulekar *et al.* (1993) reported that different levels of irrigation had the significant effect on cost benefit ratio of banana. The highest benefit cost ratio (2.28:1) was recorded with irrigation at 25 mm CPE from November to May.

Hedge (1989) reported that irrigation at different soil moisture regimes had significant influence on dry matter production in bell pepper during all the three years of study. Pulekar *et al.* (1990) reported that irrigation scheduled at 36 mm CPE increased the chilli yield significantly over 12 and 60 mm CPE. Investigations carried out at Madurai indicated that irrigation at 0.75

		IH	arvest			II Harvest				III Harvest			
	B1	B2	B3	Mean	B1	B2	B3	Mean	B1	B2	B3	Mean	
Al	2151	3129	1031	2104	2409	3333	1316	2353	2756	3716	1769	2747	
A2	3502	2258	1573	2444	3813	2622	1956	2797	4320	3022	23 56	3 2 3 3	
A3	1547	1324	480	1117	1902	1644	782	1443	2240	2080	1227	1 849	
Mean	2400	2237	1028		2708	2533	1351		3105	2939	1784		
	А	В	A at B	B at A	А	В	A at B	B at A	А	В	A at B	B at A	
SEd	105	78	153	136	106	76	151	132	108	77	152	132	
CD (P=0.05)	259	164	347	285	258	159	342	277	263	161	347	278	
				IV Harv	rest				V	Harvest			
		B1	B	2	В3	Mean		B1	B2	B3		Mean	
A1		1953	258	89	1098	1880		534	734	455		574	
A2		3213	275	52	1876	2614		711	516	818		682	
A3		1345	109	95	762	1067		578	373	613		521	
Mean		2170	214	45	1245			608	541	629			
		А	В		A at B	B at A		А	В	A at B]	Bat A	
SEd		118	54		141	93		123	128	219		222	
CD (P=0.05)		289	11		329	195		300	269	484		4	

Table	e 5b : Total green chillies yield (l	kg ha ⁻¹) as influenced	by different treatments u	nder drip fer	tigation	
		B1	B2		B3	Mean
A1		9803	13501		5669	9658
A2		1 5559	11170		8579	11769
A3		7612	6516		3864	5997
Mean	1	1 0991	10396		6037	
		А	В		A at B	B at A
SEd		138	68		154	124
CD (P=	=0.05)	289	112		331	253
41	: Surface			B1	: IW/CPE = 1	
42	: Sub surface @ 10 cm depth			B2	: IW/CPE = 0.75	
43	: Sub surface @ 20 cm depth			B3	: IW/CPE = 0.5	

Internat. J. agric. Sci. | Jan., 2021 | Vol. 17 | Issue 1 |215-221 [219] Hind Agricultural Research and Training Institute

Plate 1 : Overall view of the field experiment

IW/CPE ratio resulted in maximum growth and yield attributes (Shibhila Mary and Balakrishnan, 1990). Similar trend of yield increase was noticed by Doyle *et al.* (1994).

Scheduling of irrigation at IW/CPE ratio at frequent intervals resulted in significantly higher yields (Gulati *et al.*, 1995; Café Filho and Duniway, 1995). Further, irrigation scheduled at 0.9 IW/CPE ratio registered 37, 30 and 10 per cent increased dry chilli yield over 0.45, 0.60 and 0.75 IW/CPE ratios, respectively (Subramanian *et al.*, 1998).

Drip irrigation providing only 250 m3 to 1000 m2 resulted in a high yield (400 kg/1000 m2) of capsicum (Palevitch *et al.*, 1979). Sivanappan (1979) indicated that irrigation requirements depend on season, weather factors, soil type, type of irrigation and worked out the irrigation requirement of chilli crop to be 100 cm and 402 cm in Tamil Nadu under furrow and drip irrigation, respectively.

Ramesh (1986) had conducted an experiment during rabi 1985 at Main Research Station, Hebbal, Bangalore to study the drip and furrow methods of irrigation at different levels (0.3 and 0.6 Epan) in green chilli. Higher levels of irrigation recorded more or less same plant height, number of primary branches per plant compared to lower level of irrigation. Higher level of irrigation (0.6 Epan) recorded significantly higher yield of green chilli over lower levels of irrigation.

Summary and Conclusion:

- Sub surface drip fertigation at 10 cm depth recorded the maximum plant height, number of branches, number of flowers and number of fruits at B, irrigation regime (IW/CPE = 0.75).

- Total green chillies yield was higher under sub surface drip fertigation (a) 10 cm depth at IW/CPE=1 (15.59 t ha⁻¹) followed by surface drip fertigation at IW/ CPE = 0.75 (13.50 t ha⁻¹) and sub surface drip fertigation (a) 10 cm depth at IW/CPE = 0.75 (11.17 t ha⁻¹).

Thus, introduction of chillies as an alternate crop under sub surface drip fertigation @ 10 cm depth technology during January under Broad bed furrow method of cultivation paves the way for improving the social security to the rice farmers.

Acknowledgement :

The author gratefully acknowledges the financial support received from the Department of Science and Technology, Government of India under Science and Engineering Research Board (DST-SERB) scheme. Technical support and encouragement extended by Dr. T. Senguttuvan and Dr. Ravi for the execution of this project at Soil and Water Management Research Institute is also acknowledged.

REFERENCES

Café Filho, A. C. and Duniway, J. M. (1995). Effects of furrow irrigation schedules and host genotypes on phytophthora root rot of pepper. *Plant Disease*, **79**(1): 39-43.

Doyle, A., Smittle, W., Lamar Dickens and James, R. (1994). Irrigation regimes affect yield and water use by bell pepper. *Journal of American Society of Horticultural Sciences*, **119**(5): 936-939. Response of chilli to drip irrigation on sandy clay loam soil under Madukkur soil series (Typic ustropept) in cauvery New Delta Zone

Gulati, J. M. L., Mishra, M. M., Paul, J. C. and Sahu, G. S. (1995). Production potential of chilli under levels of irrigation and nitrogen. *Indian Journal of Agronomy*, **40**(1): 145-146.

Hassan, A.H., Agina, E.A., Saleh, M. M. and El-Wahba, H. (1984). Effect of water regime on the growth and chemical composition of Capsicum annum. *Horticulture Abstract*, **55(6)**: 457.

Haynes, R. and Herring, S., (1981). Performance of drip irrigated bell peppers. *Irrigation and Drainage Abstracts*, 8(2): 970.

Hedge, D. M. (1989). Effect of method and volume of irrigation on yield and water use of sweet pepper. *Indian Journal of Horticulture*, **46**(2): 225-229.

Jackson, M.L. (1973). *Soil chemical analysis*. Oxford IBH Publishing Co., Mumbai.

Klickvenga, M. and Siddiq, H. (1985). Soil water and water use of trickle irrigated chilli pepper. *Irrigation and Drainage Abstracts*, 11: 1437.

O'Dell, C. (1983). Trickle did the trick. *American Vegetable Grower*, **31**(4): 56.

Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L. (1954). Estimation of available phosphorus in soils by exractions with sodium bicarbonate. U.S.D.A. Circular No.939, U.S. Govt. Printing Office, Washington, D.C.

Palevitch, D., Geran, G., Menagem, E., Kalmar, D. and Galili, J. (1979). A preliminary study in growing paprika by drip irrigation. *Horticultural Abstracts*, **49**(12): 806.

Pratt, A. J. (1983). Ane Peppers a problem. *American Vegetable Grower*, **31**(4): 22-24.

Pulekar, C. S., Salvi, B. R., Jadhav, S. M. and Patil, B. P. (1993). Water use and Productivity of Banana as influenced by Irrigation schedule and grass mulch in Lateritic soil of Konkan. *J. Water Mgmt.* 1: 39-42.

Ramesh, S. (1986). A study on drip and furrow methods of irrigation in green chilli (*Capsicum annum* L.) under different planting patterns and plant densities. M. Sc. (Ag.) Thesis, University of Agricultural Sciences, Bangalore.

Shibhila Mary, S. and Balakrishnan, R. (1990). Studies on the effect of irrigation, nitrogen and potassium on growth and yield of chilli. *Indian Journal of Horticulture*, **47**(1): 413-416.

Sivanappan, R. K. (1979). Drip irrigation in vegetable crops. *Punjab Horticultural Sciences*, 19(1/2): 83-85.

Stanford, P. and English, W.L. (1949). Use of the flame photometer in rapid soil tests of potassium and calcium. *J. Environ. Qual.*, 21: 635-642.

Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for the estimation of available nitrogen in soils. *Curr. Sci.*, 25: 259-260.

Subramanian, P., Krishnaswamy, S. and Mark Devasagyam (1998). Influence of irrigation methods and regimes on the growth and yield of chilli. *South Indian Horticulture*, 46(1&2): 99-101.

Tedeschi, P. and Zerbi, G. (1984). Flowering and fruiting courses and yield of sweet pepper plants grown in lysimeter with relation to different water regime. *Horticultural Abstracts*, 55: 275.

Utpal Das, Bhattacharyya, R. K. and Pathak, Purnima (2017). A Review of works done regarding Precision farming in Banana. *Bull. Env. Pharmacol. Life Sci.*, **6** (Special Issue 2): 354-360.

Walkley, A. and Black. C.A. (1934). An examination of the different method for determining soil organic matter and a proposed modification of the chromic acid titration method. *Soil Sci.*, **37**: 29-38.

Zira, L. (1984). On physiological process of sugarbeet and red pepper under controlled conditions of increasing water efficiency. *Horticultural Abstracts*, **54**: 351-353.

