Effect of integrated nutrient management on floral and cormal parameters in gladiolus (*Gladiolus hybridus* L.)

R. VASANTHA KUMARI*, D.P. KUMAR, B. ARUNKUMAR AND M. MAHADEVAMMA

Department of Horticulture, University of Agricultural Sciences, G.K.V.K., BENGALURU (KARNATAKA) INDIA (Email : vasanthakumarihortindia@gmail.com)

Abstract : Field investigations were carried out to know the response integrated nutrient management on floral and cormal parameters in gladiolus (*Gladiolus hybridus* 1.) cv. AMERICAN BEAUTY" was carried out at precision farming development centre, Division of Horticulture, Gandhi Krishi Vignana Kendra, UAS, Bangalore during 2007-2008 and 2008-2009. The application of bio-fertilizer along with two levels of NPK with vermicompost have shown significant result in the treatments both in *Kharif* and *Rabi* seasons. The treatment T_{11} (52.31) and (48.49) took minimum days for spike emergence followed by T_{10} , T_9 and T_8 treatments during *Kharif* and *Rabi* seasons, respectively. Less number of days taken for flower bud opening, more number of florets per spike, more durability of spike (days) increased spike length, spike girth, floret length, floret diameter, number of florets opening at a time and total number of spikes/plant, fresh weight of spike was found best in the treatment T_{11} the combination of VAM + *Azospirillum* + *Trichoderma* with 75% RDF and vermicompost had shown significant result followed by T_{10} the combination was 50% RDF + VAM + *Azospirillum* + *Trichoderma* with vermicompost 3 tons/ha, during *Kharif* and *Rabi* seasons, respectively. cormal parameters such as number of corms, number of cormels, cormel weight, was maximum in T_{11} treatment followed by T_{10} in both *Kharif* and *Rabi* seasons.

Key Words : Integrated nutrient management, Spike, Cormal, Gladiolus

View Point Article: Kumari, R. Vasantha, Kumar, D.P., Arunkumar, B. and Mahadevamma, M. (2014). Effect of integrated nutrient management on floral and cormal parameters in gladiolus (*Gladiolus hybridus* L.). *Internat. J. agric. Sci.*, **10** (1): 15-22.

Article History : Received : 22.04.2013; Revised : 04.09.2013; Accepted : 04.10.2013

INTRODUCTION

Gladiolus is an important annual bulbous flower crop which is grown widely in India and also in other countries. It's cultivation in Karnataka is restricted to in and around urban areas. To raise the crop to get healthy, quality spikes with higher productivity, the crop needs good management and improved cultivation practices. Various growth and flowering characters are responsible for getting an economically benefitting flower yield in gladiolus crop. Among them most important ones are number of days taken for spike initiation and number of spikes per plant and first floret to open, spike length, rachis length, and spike weight, number of florets per spike, and vase life of the spikes.

In modern flower production technology a great emphasis is being given for adopting integrated nutrient management practice through organic, inorganic and biofertilizers, which increases the yield and quality by eco friendly management but also maintain soil health, soil fertility, physical properties of soil and mobilization of nutrients. The results obtained in this study are discussed here under.

To ensure maximization of productivity in any crop, optimum nutrient supply is one of the important factors. Nitrogen, phosphorus and potassium are the three major nutrients that play very vital role in influencing vegetative growth, flower yield and quality attributes. However, considering the recent concept for ecofriendly-technology, increased cost and timely non-availability of inorganic fertilizers, discriminate usage of chemicals has led to poor soil fertility and soil health. In recent years use of cost effective and eco friendly biofertilizers and different organic sources in combination with inorganic fertilizers has resulted in increased production in many crops besides improving soil health and fertility levels. Similarly it is essential to evolve integrated nutrient management practices suitable for gladiolus crop.

Among the biofertilizers, *Azospirillum*, VAM (*Vesicular arbuscular mycorryizae*) and *Trichoderma* are important. *Azospirillum* is asymbiotic bacterium it lives in association with the host and fixes atmospheric nitrogen. The symbiotic association between fungi and root system of higher plants named as '*mycorrhiza*". Biofertilizers have a supplementary nutritive role in productivity and by their usage; chemical fertilizers can be reduced to certain extent besides maintaining the soil fertility for a long time.

There is a need to standardize the different agro techniques and nutritional requirement through integrated nutrient management approach for improvement of productivity and spike quality of gladiolus. Field investigation was carried out to study the effect of integrated nutrient management on growth, yield and quality of gladiolus cv. American Beauty under open field conditions.

MATERIAL AND METHODS

The present study was carried out at the Precision Farming Development Centre (PFDC), Division of Horticulture, Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore during 2007-08 and 2008-09. The field experiment consisted of eight treatments, were carried out by following Randomized Complete Block Design with three replications. The main objective of the experiment was to study the effect of integrated nutrient management on floral and cormal parameters on gladiolus.

Treatments details:

 T_1 : Control (RDF + FYM)

 T_2 : 50% RDF + VC (3 tonnes/ha)

 T_{3} : 75% RDF + VC (3 tonnes/ha)

 T_4 : 50% RDF+VC (3 tonnes/ha)+VAM (Glomus mosseae) 10 kg/ha

 T_5 : 75% RDF + VC (3 tonnes/ha) + VAM (Glomus mosseae) 10 kg/ha

 T_6 : 50% RDF + VC (3 tonnes/ha) + Azospirillum brasilense (10kg.ha)

 T_{7} : 75% RDF + VC (3 tonnes/ha) + Azospirillum brasilense (10kg.ha)

 T_8 : 50% RDF + VC (3 tonnes/ha) + Trichoderma harzianum (5 kg/ha)

 T_9 : 75% RDF + VC (3 tonnes/ha) + Trichoderma harzianum (5 kg/ha)

T₁₀: 50% RDF + VC (3 tonnes/ha) + VAM (Glomus mosseae) (10 kg/ha) +Azospirillum brasilense (10 kg/ha) + Trichoderma harzianum (5kg/ha) T₁₁: 75% RDF + VC (3 tonnes/ha) + VAM (Glomus mosseae) (10 kg/ha) + Azospirillum brasilense (10 kg/ha) + Trichoderma harzianum (5kg/ha)

Note: RDF: Recommended dose of fertilizer: 100:60:60 kg NPK/ha

Basal dose -50:60:60 kg NPK /ha Top dressing - 50kg N 40 days after planting. VC: Vermicompost VAM: Vescicular Arbuscular mycorrhizae FYM: Farm Yard Manure.

The crop was raised in open field condition by adopting the recommended package of practices with integrated nutrient management with varied levels of RDF with common levels of bio-fertilizers and vermicompost. The investigations were carried out during *Kharif* and *Rabi* seasons to know their influence on floral and cormal parameters of cut flowers. The entire plot was thoroughly dug to a depth of 45 cm and brought to a fine tilth after removing the weeds and stubbles prior to planting. Farm yard manure (FYM), basal dose of recommended dose of fertilizer, vermicompost and bio-fertilizers were applied and mixed well with the soil as per the treatment specification.

RESULTS AND DISCUSSION

The results obtained from the present investigation as well as relevant discussion have been summarized under following heads :

Floral parameters :

Number of days taken for spike emergence and first flower bud opening in a spike:

The data on number of days taken for spike emergence as influenced by INM treatment during *Kharif* and *Rabi* seasons are presented in Table 1.

During Kharif 2008 the number of days taken for spike emergence differed significantly among the treatments. (Control (RDF+FYM)). The minimum (52.31 days) number of days taken for spike emergence was recorded in treatment T_{11} (75% RDF + VC 3 t/ha + VAM (Glomus mosseae) (10 kg/ha) + Azospirillum brasilense (10 kg/ha) + Trichoderma *harzianum* (5kg/ha) which was at par with treatment T_{10} and T_{0} , whereas, the maximum number of days taken for spike emergence was recorded in T_2 (56.44 days). Similarly during *Rabi*-2009 there was significant difference among the treatments. The minimum number of days taken for spike emergence was recorded in treatment T_{11} (48.49) (75% RDF + VC 3 t/ha + VAM (Glomus mosseae) (10 kg/ha) + Azospirillum brasilense (10 kg/ha) + Trichoderma harzianu (5kg/ha) Azospirillum + Trichoderma. Whereas the maximum number of days taken for spike emergence was observed in treatment T_2 (54.20 days) which was at par with T₁ (53.16 days).

During Kharif-2008 the treatments differed significantly with respect to number of days taken for first flower bud opening in a spike. The minimum (58.74 days) was taken for first flower bud opening was recorded in treatment T_{11} (75% RDF + VC 3 t/ha + VAM (Glomus mosseae) (10 kg/ha) + Azospirillum brasilense (10 kg/ha) + Trichoderma harzianum (5kg/ha). Whereas the maximum number of days (62.19) taken for first flower bud opening was recorded in T_2 Control (RDF + FYM)) followed by T_{11} (61.25). Similarly during Rabi 2009 the number of days taken for first flower bud opening differed significantly. The minimum (54.56 days) number of days taken for first flower bud opening was recorded in treatment $T_{11}(75\% \text{ RDF} + \text{VC})$ 3 t/ha + VAM (Glomus mosseae) (10 kg/ha) + Azospirillum brasilense (10 kg/ha) + Trichoderma harzianum (5kg/ha)), which is at par with treatments T_{10} , T_9 , T_8 , T_7 and T_6 , respectively. Whereas the maximum (61.85 days) number of days taken for first flower bud opening in a spike was recorded in treatment T_{2} (50% RDF + VC 3 t / ha).

The application of bio-fertilizer along with two levels of NPK with vermicompost have shown significant result in the treatments both in *Kharif* and *Rabi* seasons. The treatment T_{11} (52.31) and (48.49) took minimum days for spike emergence followed by T_{10} , T_9 and T_8 treatments during *Kharif* and *Rabi* seasons, respectively. This could be attributed to vigorous growth of the plants due to increased nutrient levels along with bio-fertilizers. These findings are in confirmation with the results of Vasanthi (1994) in jasmine, Chang (1989) in Zinnia and Wen (1991) in gerbera and Mantur (1988) in China aster and Kathiresan (1999) in gladiolus.

Number of florets per spike, spike length (cm) and spike girth (cm):

The data on number of florets per spike as influenced by INM during *Kharif* and *Rabi* seasons are presented in Table 2.

During *Kharif*-2008, the treatments differed significantly with respect to number of florets per spike. The maximum number of florets per spike (12.00) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). Whereas minimum (9.33) number of florets was recorded in T_1 and T_2 , respectively. Similarly during *Rabi*-2009 the treatments differed significantly with respect to number florets per spike was recorded in treatment T_{11} (75% RDF + VC + *VAM* + *Azospirillum* + *Trichoderma*). Where as minimum (13.67) number of florets per spike was recorded in treatment T_{11} (75% RDF + VC + *VAM* + *Azospirillum* + *Trichoderma*). Where as minimum (9.67) minimum number of florets per spike was recorded T_1 and T_2 , respectively.

During *Kharif*-2008 the treatments differed significantly among the treatments with respect to spike length. The maximum spike length (100.26cm) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). While minimum (78.46 cm) spike length was recorded in treatment T_2 (50% RDF + VC) followed by T_3 (78.72 cm). Similarly during *Rabi*-2009 the maximum spike length was recorded in treatment T_{11} (129.79 cm) (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*) followed by T_{10} (119.45cm) (50% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). The minimum spike length (87.46cm) was recorded in T_2 (50% RDF + VC).

During *Kharif* -2008 the treatments differed significantly among the treatments with respect to spike girth. The maximum spike girth (1.07 cm) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azpspirillum* +

 Table 1 : Effect of integrated nutrient management on days taken for spike emergence and first flower bud opening in a spike in gladiolus cv.

 AMERICAN BEAUTY

			Nu	mber of days taken					
Treatments	S	pike emergence		First flower bud opening in a spike					
	Kharif	Rabi	Mean	Kharif	Rabi	Mean			
T_1	55.94	53.16	54.55	61.25	59.17	60.21			
T_2	56.44	54.20	55.32	62.19	61.85	62.02			
T ₃	55.73	52.52	54.13	60.14	59.08	59.61			
T_4	54.94	51.65	53.30	61.15	58.43	59.79			
T ₅	53.92	51.40	52.66	60.10	57.74	58.92			
T ₆	52.68	51.31	52.00	59.85	56.50	58.18			
T ₇	54.03	51.23	52.63	59.12	55.30	57.21			
T ₈	52.99	50.73	51.86	59.02	55.55	57.29			
T ₉	52.70	50.45	51.58	59.70	55.70	57.70			
T ₁₀	52.64	48.94	50.79	58.43	55.58	57.01			
T ₁₁	52.31	48.49	50.40	58.74	54.56	56.65			
S.E.±	0.61	0.44	-	0.33	0.48	-			
C.D. (P=0.05)	1.80	1.30	-	0.97	1.42	-			
F test	*	*	-	*	*	-			

Trichoderma, which was at par with $T_{10}(1.04\text{ cm})$ (50% RDF+ VC+VAM+*Azospirillum*+*Trichoderma*), while minimum spike girth (0.90cm) was recorded in treatment T_2 . Similarly during *Rabi* 2009 the maximum spike girth (1.10 cm) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*), while minimum spike girth (0.93 cm) was recorded in treatment T_2 (50% RDF + VC 3 t / ha). All these parameters per hectare were significantly influenced by two levels of NPK and bio-fertilizers. These beneficial effects could be attributed to the good vegetative and floral yield parameters attributes which in turn resulted in production of more fresh weight of the spike when compared to the other treatments. These findings are in confirmation with the findings of Kathiresan (1999) in gladiolus Yathindra (2009), Kumar *et al.* (2003) in China aster, Gayathri *et al.* (2004) in statice, Belgaonkar *et al.* (1997) in chrysanthemum, Patil *et al.* (2004) in jasmine, Bhalla *et al.* (2007) and Bhatia and Gupta (2007) in carnation.

Floret length (cm), floret diameter (cm) and number of florets opening at a time:

The data on floret length (cm) as influenced by INM during *Kharif* and *Rabi* seasons are presented in Table 3. During *Kharif* 2008 the treatments differed significantly with respect to floret length among the treatments. The maximum floret length (12.51cm) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*).

Treatments	Number of florets per spike			S	pike length (cm	Spike girth (cm)			
Treatments	Kharif	Rabi	Mean	Kharif	Rabi	Mean	Kharif	Rabi	Mean
T_1	9.33	9.67	9.50	79.11	88.32	83.72	0.91	0.94	0.93
T ₂	9.33	9.67	9.50	78.46	87.46	82.96	0.90	0.93	0.92
T ₃	10.00	10.33	10.17	78.72	88.57	83.65	0.93	0.96	0.95
T_4	10.00	10.33	10.17	82.26	89.26	85.76	0.94	0.97	0.96
T ₅	10.33	10.33	10.33	86.65	96.65	91.65	0.95	0.98	0.97
T ₆	10.00	11.10	10.55	85.23	89.23	87.23	0.95	0.97	0.96
T ₇	10.00	11.00	10.50	97.25	103.25	100.25	0.96	0.99	0.98
T ₈	10.33	11.60	10.97	92.48	109.73	101.11	0.97	0.99	0.98
T ₉	10.33	11.63	10.98	98.23	115.41	106.82	0.97	0.98	0.98
T ₁₀	11.67	12.83	12.25	98.59	119.45	109.02	1.04	1.09	1.07
T ₁₁	12.00	13.67	12.84	100.26	129.79	115.03	1.07	1.10	1.09
S.E.±	0.45	0.35	-	0.68	0.75	-	0.02	0.03	-
C.D. (P=0.05)	1.32	1.04	-	2.02	2.13	-	0.07	0.09	-
F test	*	*	-	*	*	-	*	*	-

Table 3 : Effect of integrated nutrient management on floret length, floret diameter and number of florets opening in gladiolus cv. AMERICAN BEAUTY

Tractments	Fl	oret length (cm)	Flor	ret diameter (d	cm)	Number of	Number of florets opening at a time		
Treatments -	Kharif	Rabi	Mean	Kharif	Rabi	Mean	Kharif	Rabi	Mean	
T_1	8.52	8.46	8.49	6.40	6.69	6.55	1.17	1.22	1.20	
T_2	8.32	8.32	8.32	6.39	6.58	6.49	1.10	1.12	1.11	
T ₃	8.36	8.39	8.38	6.67	7.00	6.84	1.13	1.50	1.32	
T_4	9.03	9.15	9.09	6.53	7.01	6.77	1.10	1.43	1.27	
T ₅	9.07	9.15	9.11	6.50	6.71	6.61	1.20	1.32	1.26	
T_6	9.09	9.14	9.12	6.46	6.88	6.67	1.30	1.33	1.32	
T ₇	9.90	9.94	9.92	6.48	7.02	6.75	1.17	1.27	1.22	
T_8	10.04	11.14	10.59	6.55	7.38	6.97	1.23	1.33	1.28	
T ₉	10.90	11.23	11.07	6.69	7.25	6.97	1.23	1.27	1.25	
T ₁₀	12.40	12.46	12.43	6.65	7.40	7.03	1.33	1.44	1.39	
T ₁₁	12.51	12.62	12.57	7.00	7.24	7.12	1.38	1.43	1.41	
S.E.±	0.04	0.16	-	0.20	0.11	-	-	0.07	-	
C.D. (P=0.05)	0.11	0.48	-	0.60	0.34	-	-	0.20	-	
F test	*	*	-	*	*	-	NS	*	-	

NS=Non-significant

Which was followed by T_{10} (12.40 cm) (50% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). The minimum floret length (8.32cm) was recorded in T_2 which was followed by T_3 (8.36 cm) (50% RDF+VC and 75% RDF+VC). Similarly during *Rabi* 2009 the treatments differed significantly with respect to floret length. The maximum floret length (12.62cm) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderm*), which was at par with T_{10} (12.46 cm), while minimum floret length (8.34 cm) was recorded in treatment T_2 and it was at par with T_3 (8.38 cm).

During *Kharif* 2008 the treatments differed significantly among the treatments with respect to floret diameter. The maximum floret diameter (7.00 cm) recorded

in treatment T₁₁ (75% RDF + VC + VAM + Azospirillum + Trichoderma). Whereas minimum floret diameter (6.32cm) was recorded in T₂. During Rabi 2009 the maximum floret diameter (7.40 cm) was recorded in treatment T₁₀, which was at par with T₈. Minimum floret diameter was (6.58 cm) recorded in treatment T₂ (50% RDF + VC 3 t / ha).

During *Kharif* 2008 the treatments did not differed significantly with respect to number of florets opening at a time. The maximum number of florets (1.38) opening at a time was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azpspirillum* + *Trichoderma*. While minimum number florets opening at a time was recorded in treatment T_2 and T_4 , respectively. Similarly during *Rabi* 2009 the maximum

Treatments	Dura	ation of spikes (Da	Fresh weight of spike (g)			
Treatments	Kharif	Rabi	Mean	Kharif	Rabi	Mean
T ₁	7.67	8.20	7.94	85.77	86.08	85.93
T ₂	6.67	7.36	7.02	81.91	83.08	82.50
T ₃	7.33	8.10	7.72	81.96	81.23	81.60
T_4	7.33	8.20	7.77	88.67	90.02	89.35
T ₅	7.67	8.28	7.98	86.22	88.35	87.29
T ₆	7.67	7.95	7.81	86.76	88.14	87.45
T ₇	7.67	7.52	7.60	87.16	90.17	88.67
T ₈	7.67	7.84	7.76	85.49	89.14	87.32
T9	7.67	7.37	7.52	87.06	96.18	91.62
T ₁₀	8.67	8.93	8.80	88.96	88.28	88.62
T ₁₁	8.67	9.57	9.12	88.99	88.19	88.59
F test	NS	*	-	*	*	-
S.E.±	-	0.12	-	1.07	0.41	-
C.D. (P=0.05)	-	0.34	-	3.16	1.22	-

NS=Non-significant

Table 5 : Effect of integrated nutrient management on total number of spikes in Gladiolus cv. American Beauty

				Tota	l number of spi	kes per				
Treatments		Kharif	r		Rabi			Mean		
	Plant	Plot	Ha.	Plant	Plot	Ha.	Plant	Plot	Ha.	
T_1	1.47	41.07	198900	2.26	113.00	384200	1.87	77.04	291550	
T_2	1.27	41.07	198900	1.20	110.00	374000	1.24	75.54	286450	
T ₃	1.17	32.67	197200	2.13	106.50	362100	1.65	69.59	279650	
T_4	1.47	41.07	195500	1.96	98.00	333200	1.72	69.54	264350	
T ₅	1.20	33.60	204000	2.30	115.00	391000	1.75	74.30	297500	
T_6	1.57	43.87	205700	1.93	96.50	328100	1.75	70.19	266900	
T_7	1.50	42.00	205700	2.13	106.50	362100	1.82	74.25	283900	
T ₈	1.27	35.47	205700	1.86	93.00	316200	1.57	64.24	260950	
T ₉	1.53	42.93	207400	2.13	106.50	362100	1.83	74.72	284750	
T_{10}	1.60	44.80	207400	3.06	153.00	520200	2.33	98.90	363800	
T ₁₁	1.63	45.73	207400	3.16	158.00	537200	2.40	101.87	372300	
S.E.±	-	-	-	0.06	0.24	-	-	-	-	
C.D. (P=0.05)	-	-	-	0.20	0.74	-	-	-	-	
F test	NS	NS	NS	*		-	-	-		

NS=Non-significant

number of florets (1.43) opening at a time was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*), which was at par with treatment T_{10} , while minimum (1.12) number of florets opening at a time was recorded in treatments T_{2} (50% RDF + VC 3 t / ha).

These increased attributes is due to application of biofertilizers in combination with NPK levels. Because of balanced nutrition and better availability of nutrients due to fungal and bacterial activity in the root zone. Bio-fertilizers and inorganic fertilizers with vermicompost combination have improved the length and diameter of florets significantly. Increased length and diameter of floret ultimately results in increased size of the floret, which is also an important quality attribute of gladiolus as cut flower. These results clearly show that *Azospirillum*, VAM and *Trichoderma* with vermicompost had significantly improved the length of florets by enhancing the nutrient uptake, especially helped in production of auxin like substances which was translocated to apical region and increased the floret length during *Kharif* and *Rabi* season, respectively.

Duration of spikes (days) and fresh weight of spike (g):

The data on duration of spikes as influenced by INM during *Kharif* and *Rabi* seasons are presented in Table 4.

During *Kharif* 2008 the treatments did not differ significantly with respect to duration of spike among the treatments. The maximum duration of spike (8.67 days) was recorded in treatment T_{10} and T_{11} . Whereas minimum (6.67

Table 6 : Effect of integ	grated nutrient manage	ment on number o	f corms in gladiolus cv	. AMERICAN BEAUTY						
	Total number of corms									
Treatments		Kharif		Rabi						
	Per plant	Per plot	Per hectare	Per plant	Per plot	Per hectare				
T_1	1.21	60.33	205700	1.27	63.50	215900				
T ₂	1.10	55.00	187000	1.19	59.16	202300				
T ₃	1.27	63.33	215900	1.37	68.16	232900				
T_4	1.25	62.33	212500	1.30	60.00	223700				
T ₅	1.36	68.00	231200	1.40	70.00	238000				
T ₆	1.20	65.00	221000	1.24	67.00	227800				
T ₇	1.25	67.33	229500	1.41	70.50	239700				
T ₈	1.20	65.00	221000	1.35	67.16	229500				
T ₉	1.21	65.50	222700	1.34	67.00	227766				
T ₁₀	1.89	88.66	304300	1.99	99.83	338200				
T ₁₁	1.99	99.83	338300	2.11	106.00	360400				
S.E.±	0.06	2.01	1.63	0.06	2.22	8.03				
C.D. (P=0.05)	0.17	5.92	4.81	0.18	6.54	23.69				
F test	*	*	*	*	*	*				

Treatments	Weight of corms per plant (g)			No. o	No. of cormels per plant			Cormel weight per plant (g)		
Treatments	Kharif	Rabi	Mean	Kharif	Rabi	Mean	Kharif	Rabi	Mear	
T_1	48.44	52.24	50.34	17.33	19.00	18.17	30.93	32.30	31.62	
T_2	46.47	49.33	47.90	15.67	18.33	17.00	26.17	29.10	27.68	
T ₃	47.30	48.70	48.00	16.33	18.33	17.33	26.21	29.21	27.7	
Γ_4	49.65	51.88	50.77	17.33	19.33	18.33	31.89	36.36	34.13	
T_5	46.64	53.94	50.29	18.00	20.00	19.00	33.22	35.31	34.2	
Γ_6	49.37	57.12	53.25	17.33	19.67	18.50	32.62	34.69	33.6	
Γ_7	48.46	55.08	51.77	17.67	19.67	18.67	33.57	36.23	34.9	
Γ_8	49.39	52.94	51.17	18.00	20.00	19.00	33.25	37.31	35.28	
Γ ₉	50.09	56.00	53.05	17.67	20.03	18.85	35.21	39.21	37.2	
T_{10}	51.97	58.00	54.99	18.00	21.33	19.67	36.22	40.55	38.39	
T_{11}	54.00	59.35	56.68	21.00	23.00	22.00	36.97	42.27	39.62	
S.E.±	0.40	0.16	-	0.36	0.28		0.04	0.11	-	
C.D. (P=0.05)	1.20	4.80	-	1.07	0.84		0.11	0.34	-	
F test	*	*	-	*	*	-	*	*	-	

Internat. J. agric. Sci. | Jan., 2014 Vol. 10 | Issue 1 | 15-22 Hind Agricultural Research and Training Institute

days) durability of spike was recorded in treatment T_2 (50% RDF + VC 3 t / ha). During *Rabi* – 2009 the treatments differed significantly with respect to duration of spike, 9.57 days was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). Whereas minimum durability of spike (7.36 days) was recorded T_2 (50% RDF + VC 3 t / ha).

During *Kharif* – 2008 the treatments differed significantly with respect to fresh weight of spike. The maximum fresh weight of a spike was recorded in treatment T_{11} (88.99 g), which was at par with T_{10} (88.96 g). Where as minimum fresh weight of spike was (81.91g) was recorded in treatment T_2 (50% RDF + VC), which was at par with T_3 (81.96 g). Similarly during *Rabi* – 2009, the maximum fresh weight of spike was (96.18 g) recorded in treatment T_9 . Whereas minimum fresh weight of spike (83.08) was recorded in treatment T_2 50% RDF + VC 3 t / ha.

Number of corms/plant, weight of corms, number of cormels, cormel weight, was maximum in T_{11} treatment followed by T_{10} in both *Kharif* and *Rabi* seasons. This could be attributed to the friable nature of soil with balanced nutrition for corm and cormel development by the effect of *Azospirillum* +VAM + *Trichoderma* with vermicompost which might have acted synergistically with other soil microorganisms. These results are in accordance with the observations made by Wange *et al.* (1995) in tuberose and in gladiolus Amritage (1973), Bhattacharjee (1994), Shah *et al.* (1984), Misra and Negi (1977), Kathiresan (1999), Baboo and Singh (2006) in gladiolus.

Total number of spikes per plant, plot and heactre:

The data on number of spikes per plant as influenced by INM during *Kharif* and *Rabi* seasons are presented in Table 5. During *Kharif* 2008 the number of spikes per plant did not differed significantly among the treatments. The maximum number of spikes per plant (1.63) was recorded in treatment T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*) Which was at par with T_{10} (1.60). Where as minimum number of spikes (1.17) per plant was recorded in treatment T_3 .

Similarly during *Rabi* – 2009 the maximum number of spikes per plant (3.16) was recorded in treatment T_{11} (75% RDF + VC 3 t/ha + VAM (*Glomus mosseae*) (10 kg/ha) + *Azospirillum brasilense* (10 kg/ha) + *Trichoderma harzianum* (5kg/ha). Whereas minimum number of spikes (1.86) per plant was recorded in T_2 .

Number of corms / plant:

The data on number of corms per plant as influenced by INM during *Kharif* and *Rabi* seasons are presented in Table 6.

During *Kharif* -2008 treatments differed significantly with respect to number of corms per plant. The maximum

number of corms per plant was recorded in treatment T_{11} (75% RDF + VC 3 t/ha + VAM (*Glomus mosseae*) (10 kg/ha) + *Azospirillum brasilense* (10 kg/ha) + *Trichoderma harzianum* (5kg/ha), which was at par with T_{10} (1.89). Similarly during *Rabi* – 2009 treatments differed significantly with respect to number of corms per plant. The maximum number of corms (2.11) per plant was recorded in treatment T_{11} (75% RDF + VC 3 t/ha + VAM (*Glomus mosseae*) (10 kg/ha) + *Azospirillum brasilense* (10 kg/ha) + *Trichoderma harzianum* (5kg/ha), while minimum (1.19) recorded in treatment T_{2} (50% RDF + VC 3 t / ha).

Weight of corms/ plant, number of cormels / plant and cormel weight per plant (g):

The data on weight of corms differed significantly for both *Kharif* and *Rabi* and presented in Table 7. During *Kharif* 2008 maximum weight of cormels (54.00g) was recorded in T_{11} (75% RDF+VC+VAM+*Azospirillum*+*Trichoderma*), while minimum (46.47g) was recorded in treatment T_2 50% RDF + VC 3 t / ha.

During *Kharif* 2008 maximum number of cormels (21.00) was recorded in T_{11} (75% RDF+VC+VAM+ *Azospirillum* + *Trichoderma*). Whereas minimum number of cormels (15.67) was recorded tereatment T_2 (50% RDF + VC). Similarly during *Rabi*- 2009 maximum number of cormels per plant (23.00) was recorded in T_{11} (75% RDF+ VC+VAM+*Azospirillum*+*Trichoderma*). Whereas minimum number of cormels (18.33) was recorded in T_2 (50% RDF + VC) which was at par with T_3 .

During *Kharif*-2008 maximum weight of cormels (36.97g) was recorded in T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). Whereas minimum (26.17g) was recorded in T_2 , which was at par with T_3 (26.21). Similarly during *Rabi* – 2009 maximum cormels weight per plant (42.27g) was recorded in T_{11} (75% RDF + VC + VAM + *Azospirillum* + *Trichoderma*). Minimum was recorded in T_2 (29.10), which was at par with T_3

REFERENCES

Amritage, M.S. (1973). Fertility of gladiolus in Swaziland a preliminary report. *Misc. Rept. Malkernores stanswuaziland*, 19 : 21.

Baboo, Ramesh and Sing, Raman Deep (2006). Response of nitrogen, phosphorus and corm size and lowering and corm production in gladiolus. *J. Orna. Hort.*, **9** (1): 66-68.

Belgaonkar, D.V., Bist, M.A. and Wakde, M.B. (1997). Influence of nitrogen, phosphorus and different spacing on flower quality of chrysanthemum. *J. Soils & Crops*, **7** (1): 90-92.

Bhalla, Rajesh, Shiva Kumar, M.H. and Jain, Ritu (2007). Effect of organic manures and biofertilizers on growth and flowering in standard carnation (*Dianthus carypohyllus* Linn.). *J. Orn. Hort.* **10** (4): 229-234.

Internat. J. agric. Sci. | Jan., 2014 Vol. 10 | Issue 1 | 15-22

Bhatia, Suman and Gupta, Y.C. (2007). Studies on use of biofertilizer in carnation (*Dianthus caryophyllus* Linn.) flower production. J. Orna. Hort., **10** (2): 131-132.

Bhattacharjee, **S.K.**, **Mukharjee**, **T. and Yadav**, **L.P. (1994)**. Standardizatio of agro-techniques in tuberose (*Polianthus tuberosa* L.). *Indian Perfumer*, **38** (4): 144-152.

Chang, S.F. (1989). Single spore culture of VAM fungi and their effect on three flower crops. M.Sc. Thesis, Deptment of Horticulture National Taiwan, Univ. 101 pp.

Gayithri, H.N., Jayaprasad, K.V. and Narayanaswamy, P. (2004). Response of bio-fertilizers and their combined application with different levels of inorganic fertilizers in Statice (*Limonium caspia*). J. Orna. Hort., **7** (1): 70-74.

Kathiresan, C. (1999). Effect of bio-fertilizers with different levels of nitrogen and phosphorus on growth, yield and quality of gladiolus (*Gladiolus grandiflorus* Ness). M.Sc. (Hort.) Thesis, University of Agricultural Sciences, Bangalore, KARNATAKA (INDIA).

Kumar, Prabhat, Raghava, S.P.S. and Misra, R.L. (2003). Effect of biofertilizers on growth and yield of China aster. *J. Orna. Hort.*, 6 (2): 85-88.

Mantur, S.M. (1988). Studies on nitrogen, growth regulators and soil salinity on flower and seed production in china aster (*Callistephus*)

chinensis) cv. Ostrich Plume mixed. Ph.D. Thesis, University of Agricultural Sciences, Dharwad, KARNATAKA (INDIA).

Misra, A.K. and Negi, S.S. (1977). Effect of nitrogen and pinching on main shoot and tuberisation in gladioli. *South Indian J. Hort.*, **25** (2): 88-89.

Patil, S.R., Reddy, B.S. and Prasanth, J.M. (2004). Effect of organic, inorganic and in *stiu* vermiculture on chlorophyll content and flower yield of *Jasminum sambac* Ait. *J. Orn. Hort.*, **7** (3-4) : 164-167.

Shah, A., Lal, S.D. and Seth, J.N. (1984). Effect of different levels of nitrogen and phosphorous on growth, flowering and corm yield of gladiolus cv. 'vinks glory'. *Prof. Work.*, **16**(3-4):305-307.

Wange, S.S., Patil, P.L. and Patil, J.J. (1995). Effect of biofertilizers alone and with nitrogen levels on tuberose cv. Single petal. *J. Soils & Crops*, **5** (2) : 97-99.

Wen, C.C. (1991). Effect of temperature and *Glomus* spp. On growth and cut flower quality of micropropagated *Gerbera jamesonii*. M.Sc. Thesis, Department of Horticulture, National Taiwan University.

Yathidra, H.A. (2009). Effect of plastic mulching and fertigation on growth, yield and flower quality of China aster [*Callistephus chinensis* (L.) Nees]. M.Sc. Thesis, University of Agricultural Sciences, Bangalore, KARNATAKA (INDIA).

