INTERNATIONAL JOURNAL OF PLANT PROTECTION VOLUME 10 | ISSUE 2 | OCTOBER, 2017 | 420-428

RESEARCH PAPER

DOI: 10.15740/HAS/IJPP/10.2/420-428

Spatial variability of mungbean yellow mosaic virus (MYMV) in North Eastern Karnataka

■ MEGHASHREE METI¹, MALLIKARJUN KENGANAL¹*, GURURAJ SUNKAD¹,

D.S. ASWATHANARAYANA¹ AND U. K. SHANWAD²

¹Department of Plant Pathology, University of Agricultural Sciences, RAICHUR (KARNATAKA) INDIA ²Department of Agronomy, University of Agricultural Sciences, RAICHUR (KARNATAKA) INDIA

ARITCLE INFO

Received	: 26.07.2017
Revised	: 09.09.2017
Accepted	: 21.09.2017

KEY WORDS:

MYMV, Mungbean, *Kharif*, PDI (% disease incidence), Survey, NEK, GPS

***Corresponding author:** Email : mallikarjun_nss@rediffmail. com

INTRODUCTION

ABSTRACT:

Mungbean a protein rich legume has high demand but, supply is hindered due to poor production and productivity due to mungbean yellow mosaic virus (MYMV) disease. The North Eastern Karnataka being the pulse bowl of the state annually suffers from MYMV incidence. In order to control this whitefly transmitted virus, knowledge and information about its distribution across the region is essential to formulate the strategies of management. In the present study a roving survey was undertaken to know the incidence and present status of MYMV in mungbean among the six districts of North Eastern Karnataka (NEK) region viz., Bellary, Bidar, Koppal, Kalaburgi, Raichur and Yadgir during Kharif 2016, when the crop was at 30 to 45 days old. The GPS position and MYMV incidence in each location were recorded and used to develop GIS map to know the spatial distribution of MYMV in different talukas of six districts. The results showed varied incidence of MYMV across many locations. Highest disease incidence was recorded at Koppal district with 33.33 per cent followed by Bellary (21.45 %), Raichur (19.70%), Kalaburgi (17.44%) and Yadgir (15.76%) districts. The least disease incidence was noticed at Bidar district (5.66%). Higher MYMV incidence in Koppal was mainly due to favourable weather for multiplication and survival of whitefly population which spreads the virus. The virus inoculum in summer crop and weed hosts were found acting as source of inoculum. Findings of the study revealed that higher incidence in Koppal would provide suitable disease pressure for screening of genotypes developed against the MYMV infection and also develop management strategies in each district based on the disease incidences recorded.

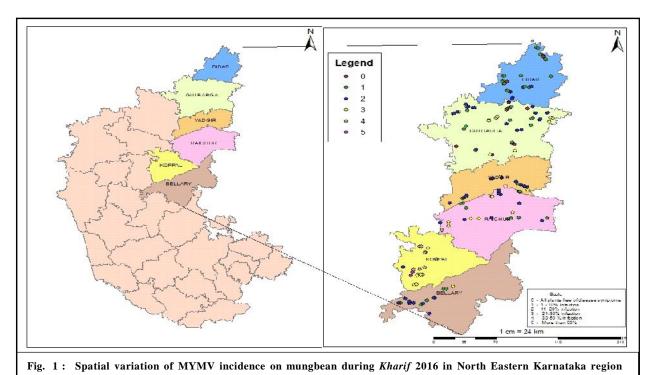
How to view point the article : Meti, Meghashree, Kenganal, Mallikarjun, Sunkad, Gururaj, Aswathanarayana, D.S. and Shanwad, U.K. (2017). Spatial variability of mungbean yellow mosaic virus (MYMV) in North Eastern Karnataka. *Internat. J. Plant Protec.*, **10**(2): 420-428, **DOI** : **10.15740/HAS/IJPP/10.2/420-428**.

Mungbean [Vigna radiata (L.) Wilczek] also known

as greengram is one of the thirteenth food legumes grown in India and third most important pulse crop after

chickpea and pigeonpea. The crop is native to the Indian subcontinent and cultivated in other South East Asian countries (Singh, 1991). There is huge demand for mungbean as a source of dietary protein especially in Asia and other parts of world. India is major consumer and producer of this legume spread across 34.4 lakh ha with the production of 15 lakh tones and productivity of 407 kg ha⁻¹. However, supply is hardly meeting the demand. Annul imports from Myanmar, Burma and African nations is adding to huge exchange losses and increased domestic prices. To resolve crises, increasing area under mungbean is difficult but increasing the production by overcoming constraints is need of the hour. Next to drought, yellow mosaic disease caused by mungbean yellow mosaic virus (MYMV) is the major limiting factor in production and productivity of mungbean across India and in other parts of the world. Its cultivation in Karnataka (India) state occupies an area of 5.28 lakh ha production of 1.08 lakh tones and productivity of 205 kg ha⁻¹. North Eastern Karnataka is major contributor (70%) but, the poor productivity due to yellow mosaic disease has been discouraging the farmers who are keen to grow this short duration drought tolerant legume as catch crop, relay crop, inter crop, crop rotation and often fodder crop also during Kharif, Rabi and summer seasons. Apart from mungbean, MYMV also infects soybean, mothbean, cowpea, urdbean and few other leguminous hosts (Dhingra and Chenulu, 1985 and Qazi et al., 2007). Crops infected at early stages suffer more with severe symptoms of mosaic, complete yellowing and puckering (Salam, 2011). The virus also causes irregular green and yellow patches in older leaves and yellowing of younger leaves (Nene, 1973). The virus is transmitted by whitefly (Bemisia tabaci Genn.) in a persistent, circulative manner (Rosen et al., 2015). In order to increase the grain yield and gross returns of mungbean, indentifying the spatial distribution of MYMV disease is essential, which helps in formulating suitable management practices.

MATERIAL AND METHODS


The present investigation on spatial distribution of mungbean yellow mosaic virus (MYMV) was conducted by undertaking a roving survey of North Eastern Karnataka during *Kharif* 2016 covering six districts *viz.*, Koppal, Raichur, Bellary, Kalburgi, Yadgir and Bidar. Survey was carried out in major talukas of each district, in each taluka five villages and in each village two plots were surveyed for MYMV incidence. The disease incidence at each plot visited was measured, recorded and scored based on the score chart of Bashir (2005). During the survey other alternate crop hosts and weed hosts of MYMV and symptoms expressed by them were also noted. The global position of each location (longitude and latitude) was noted at each plot visited, using Trimble Juno SB series pathfinder GPS (Global positing system) equipment. Further, GPS readings were used to plot spatial variation map of MYMV incidence in each district using ArcGIS version 10.4 software. The per cent disease incidence during the survey was calculated based on the following formula:

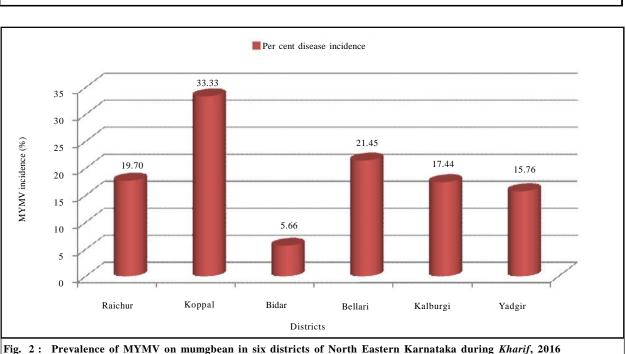

Per cent disease incidence (PDI) N Number of plants infected Total number of plants observed x100

Table A : Disease score chart based on the incidence (%)										
Disease severity	Incidence (%)									
0	All plants free of disease symptoms									
1	1 - 10% Infection									
2	11 -20% infection									
3	21-30% infection									
4	30-50 % infection									
5	More than 50%									

RESULTS AND DISCUSSION

The survey conducted across twenty talukas of six districts of NEK region revealed the ubiquitous presence of MYMV on mungbean in the region (Table 1). Overall MYMV incidence ranged from 5.66 to 33.33 per cent across different places visited (Fig. 2). The disease incidence recorded during the survey along with GPS readings when potted to draw the map showed variability in spatial distribution of MYMV in different talukas. Disease incidence varied from location to location, but higher incidence was noticed across many locations (Fig. 1). The maximum average incidence at district level was found in Koppal (33.33%) district (Table 2) followed by Bellary (21.45%) district. Minimum average incidence was observed in Bidar (5.66%) district with. During survey, some of the crop and weed hosts of MYMV like cowpea, blackgram, Croton spp., Euphorbia geniculata, Amaranthus spp., Ageratum conyzoides, pigeonpea and mesta, were noticed in and around the mungbean plots and also nearby bunds showing mosaic,

mottling, yellowing, vein clearing and vein thickening etc. (Table 3). These acts as alternate hosts for the survival of the virus during the off season (Varma *et al.*, 1992; Usharani *et al.*, 2004 and Malathi *et al.*, 2005) transmitted by whiteflies. Survey showed the highest

incidence of MYMV in Koppal district which could be termed as hot spot for MYMV irrespective of cultivars sown. Higher temperatures during May and April also favour the vector buildup (Murugesan and Chelliah, 1977) and whiteflies population has positive correlation with

Latitude Longitude PDI (%) Severity scale	17.498103 76.442831 21	17.504857 76.450341 18	17.522997 76.501957 24	17.526005 76.489769 14	17.590041 76.602417 15	17.585296 76.594434 17	17.615855 76.573117 22	17.625314 76.573835 20	17.578398 76.652174 14	17.580208 76.667698 11	17.415629 77.357789 15	17.427667 77.366114 19	17.506757 77.313875 22	17.504659 77.318762 20	17.507590 77.432962 14	17.510816 77.448040 17	17.395458 77.458224 22	17.393734 77.460012 25	17,439540 77,493364 28	17.445864 77.471460 24	16.563414 77.122913 15	16.590458 77.104694 10	16.590554 77.104776 20	16.590588 77.104779 15	16.595587 77.102798 20	16.595596 77.102799 20	16.595610 77.102680 15	16.595617 77.102689 18	17.004520 77.095755 20	17 DD4571 77 D05757 73
ka Village	Modeo V	MUBIIA N	11400	Juga		Honnalli	- - E	Telekuni	Munahalli	Mumanau	Sulanath	inadame	Toilowur	1 ajtaput	Latahann			Somanan	CULTURE STATEMENT	Cnikkalingadanili	Wandruch	Naukuuty	11 - T	Manugalii		Konganda	III	Hattikuni		Bankalaga
Taluka					pue	I∀								I	lotbi	uid)								I.	ndei	Chit				
District														İ	prug	lale2	I													
scale	3	7	0	1	1	2	1	0	-	-	I	1	1	1	-	0	1	1	1	1	-	Т	0	0	0	0	1	0	1	¢
(%)	7	4	0	2	2	9	5	0	9	8	9	7	8	4	č	0	3	9	6	3	e	ŝ	0	2	0	0	5	2	5	0
Longitude	77.327871	77.326927	77.352633	77.344651	77.375494	77.372275	77.396053	77.401203	77.427654	77.423878	77.013034	77.018356	76.982676	76.985766	77.011944	77.015570	76.969946	76.965226	76.976277	76.983701	76.594108	76.594109	77.005286	77.005287	77.021853	77.045692	77.060049	77.060053	77.090704	10-000
Latitude	18.377201	18.381518	C/06/581	18.371459	18.278213	18.287097	18.266430	18.260684	18.213556	18.224074	17.808530	17.802565	17.892713	17.900799	17 923483	17.927076	17.938438	17.929252	18.001998	18.000794	17.541887	17.541893	17.553518	17.553520	17.570495	17.581830	17.591916	17.591920	17.090704	
Village	Нокгала		Savargaon		Ekamba		Ganeshpur		Boral		Tadola		Yedlapur		Dhannur K		Balkunda		Devanal		Madakatti		Dannur		Muchalamba		Halagota		Badjawalga	
					nead	n₩								ueA	akal	ABSE	В								alki	ųΒ				
Taluka Village																														

423 Internat. J. Flant Protec., 10(2) Oct, 2017 ; 420-428 HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

Guntapur		Khanapur		Janvad (KVK)		Bhangur		Salebeernalli		Hallikhed - B		Dubbalgundi		Rajeshwar		Hallikhed K Wadi		Dongergaon		Itagi		Nellakuduri		Ulavatti		Ballhunasi		Marammanahalli	
				/K)				lli		В		di				K Wadi												ahali	
18.003600	18.004321	17.565149	17.565151	17.590590	17.995589	17.435979	17.431318	17.341098	17.431368	17.849700	17.861465	17.850517	17.855583	17.787026	17.797242	17.713612	17.697423	17.654217	17.647510	14.957565	14.960126	14.971848	14.973165	15.010862	15.012272	15.049759	15.049847	15.168140	15 168015
77.163464	77.163459	77.231850	77.231862	77.285943	77.480618	77.281976	77.273926	77.262388	77.273851	77.250518	77.275924	77.184600	77.205199	77.051562	77.032508	77.071679	77.067473	77.031485	77.033631	76.102424	76.104666	76.124815	76.126531	76.169420	76.167703	76.247785	76.243949	76.341206	02/03/2 2/
12	5	2	0	15	8	2	3	ю	5	8	12	11	9	14	18	12	15	10	13	18	23	20	17	12	20	Π	16	10	0
-	_	_	0	_	1	-	-	-	-	1	-		-	1		1	-	_	-	-	_	_	64	-	-	. -	54		-
				เฐาะ	rəl								Ļ	թրութ	∘lε¥									unus	BN gni J				
Kurikota	MULINOIS	Voltan	Nallocitu	13 Performan		- 1- E - V	Andola	111	narwai	1.6-1-1-1-1	мавкиед		Dandoun		Awarad B	F	1 ajsuitarpur	H	I CIUBAII		VIIICEIIBau	Childhoromu			by Kuppiguada		Naradkal		Hunkunti
17.295631	17.295639	17.333183	17.365197	17.412117	17.063840	16.948781	16.955596	17.016217	17.024219	17.100057	17.100927	17.121067	17.121068	17.440560	17.454823	17.413927	17.403794	17.282595	17.277964	15.061068	15.101905	15.044932	15.101328	15.647045	15.647051	15.024516	15.024520	15.565052	15 565055
76555475	76.555512	76.580632	77.010095	77.040916	76.473587	76855275	76.830170	76.677605	76.686231	77.062850	77.062736	77.064111	77.064111	76.896517	76.905878	76.818680	76.819980	77.164621	77.119260	76392904	76.711680	76305447	76.631429	71305315	71305310	76274361	76274366	76263978	02029696
10	10	10	12	10	0	17	21	24	18	14	11	15	10	25	22	25	22	20	18	25	28	15	21	10	15	30	32	40	45

Internat. J. Plant Protec., **10**(2) Oct., 2017 : 420-428 HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

	ilsgabat aniv.nH										-		pdd	Ko]			-		-			ŗ		sny			-		-			R	ân	dləY				
Uttangi		Sogi		Dasarahalli		Mudenur		Thippapur		Hiresindogi		Budihal		Wadaganal		Dadegal		Betageri		Ankalimat		Byalihal		Nerehenchi		Hirebannigol		Mandalamari		Bandi		Tumurguddi		Malaksamudra		Vangera		-
14.583113	14.982130	14.583167	14.976160	15.039415	15.037094	14.994898	14.993903	14.978647	14.979104	15 201802	15.201802	15.170011	15.170019	15.355568	15.342904	15.353724	15.357138	15.219444	15 22 9383	15.565006	15.565007	15.454055	15.454067	15.711859	15.712685	15.730221	15.729891	15.652728	15.645953	15.431673	15.431675	15.424784	15.424788	15.424746	15.424755	15.390660	15.390670	2004 40 21
76.011040	76.028974	76.011319	75.985715	75.936963	75.948379	75.988721	75.981767	75.889087	75.872762	76 440 194	76.440200	75.055415	75.055417	76.073363	76.064651	76.120899	76.103594	76.036698	76.057641	76.264014	76.264019	76.143099	76.143.099	76.180.043	76.178241	76.090934	76.107028	76.152049	76.142318	76.090320	76.090330	76.030143	76.030148	76.030044	76.030047	76.014382	76.014388	101100 12
35	23	30	37	23	26	32	28	18	ដ	20	25	18	20	26	22	8	30	25	27	10	15	45	4	35	29	36	32	41	46	20	35	50	46	30	32	50	23	05
2	2	0	2	1	2	2	2	1	2	ť	2	1	2	2	2	3	6	2	ŝ	1	2	3	c		w Ya	Э	4	4	4	б	3	4	3	3	3	3	c	,
				mya	9 9 1 8 1 9 1 9 1 9 1 9 10 10 10 10 10 10 10 10 10 10 10 10 10	l							L	nde	գրդ	S							n.	ndru	oqs									tigt	DeY			
Memory on the	Matchilla callp		AUUT	Mathee	INIALIAL	Intholidiani		Timethered	mmmddri	D 4.	Kasmapur	Cudanuti	Cuauguru	Indologi	LIUIUCKAI	II. and some	LIUS KOLO	Klammer	Manpu	Consided		Discontin	Duarmapur	Datadhall:	Dellaunau	Chanatla	Cirebena	Gaiarbat	Udjat NUL	Uottiondue	riatuguaur	Bornun	nmiimaa	T-101.12			Kamasamudra	
16.115559	16.115341	16.110129	16.110150	16.085076	16.085078	16.105793	16.105982	16.095649	16.186077	16 629364	16.636539	16.656627	16.644662	16.395230	16.395476	16.403471	16.403478	16.410188	16.410178	16.485654	16.521744	16.530414	16.530459	16.532536	16.532541	16.552919	16.312502	16.563392	16.301426	16.372589	16.372589	16.384917	16.384922	16.410178	16.410208	16.460298	16.455944	16 462044
77.132638	76.846296	77.052017	77.519337	76.564452	76.564453	77.428873	77.428893	77.012864	77.068383	76841403	76.859792	76.943011	76.952517	76.571252	76.571568	76.581555	76.581556	76.584285	76.584207	77.224075	77.221087	77.194054	77.194056	77.192590	77.192593	77.155642	76.402772	77.122970	76.523389	76.542378	76.542382	76.554686	76.554690	76.584207	76.584495	77.143977	77.145022	
×	12	7	12	10	20	21	10	10	23	12	15	21	19	50	20	8	8	12	11	25	17	10	15	40	10	18	12	20	10	10	8	18	12	11	8	20	10	31

 Internat. J. Plant Protec., 10(2) Oct., 2017 : 420-428

 HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

maximum temperature (Khan *et al.*, 2012). Interestingly, Koppal district has the highest area under mungbean followed by Bidar and Kalaburgi districts. After summer, mungbean is the first crop sown in *Kharif* season during last week of May to first week of June and it will be the only crop host available for survival of whiteflies and thus virus gets transmitted to mungbean from weed and alternate hosts.

Higher incidence in Koppal district followed by Bellary was also due to availability of inoculum from alternate crop hosts such as cowpea and blackgram grown during summer. Weeds like *Croton Sparciflora*, *cucurbit* spp. and *Euphorbia geniculata* which were previously confirmed and reported as alternative hosts of MYMV by Borah and Dasgupta (2012) also acts as alternate source of MYMV for transmission by whiteflies. In back waters of Tunga Bhadra reservoir, blackgram, cowpea and mungbean are cultivated during summer under irrigated conditions, these crops also get infested and inoculum gets transmitted to next succeeding *Kharif* sown mungbean under rain fed situations. During offseason, whiteflies were found to survive on weed hosts and other legume crops. Higher magnitude of disease might be also due to cultivation of local land races, susceptible varieties with poor awareness of plant protection measures among the growers. None of the

		listricts of North Eastern Karnataka regio	
District	Taluka	Taluka mean incidence (%)	District mean incidence (%)
Bellary	Hagari bommanahalli	15.50	21.45
Denary	Huvina Hadagali	27.40	21.40
	Aurad	4.00	
	Basavakalyan	4.90	
Bidar	Bhalki	2.00	5.66
	Bidar	5.50	
	Humnabad	11.90	
	Koppal	24.40	
Koppal	Kustagi	33.20	33.33
	Yelburga	42.40	
	Aland	17.60	
	Chincholli	20.60	
Kalaburgi	Chittapur	17.60	17.44
	Jevargi	13.20	
	Kalaburgi	18.20	
Raichur	Lingasugur	26.10	10.70
Kaicnuf	Raichur	13.30	19.70
	Shahapur	17.60	
Yadgir	Shorapur	17.70	15.76
	Yadgir	12.00	

Table 3: Common crop	and weeds species with symptoms of	MYMV observed during the survey	
Crops	Symptoms observed	Weed hosts	Symptoms observed
Pigeonpea	М, Ү	Croton sparciflora	M, Y, Vc
Mesta	M, Mt	Wild cucurbit spp.	M, Y
Cowpea	M, Y, P,Vt, Vc	Amaranthus spp	M, Mt
Blackgram	M, Mt, Y, Vt, Vc	Euphorbia geniculata spp.	Mt
		Ageratum conyzoides	М, Ү
		Acalypha indica	М, Ү

M: Mosaic, Mt: Mottling, Y: Yellowing, P: Puckering, Vt: Vein thickening, Vc: Vein clearing

Internat. J. Plant Protec., **10**(2) Oct., 2017 : 420-428 HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE farmers were found practicing seed treatment of insecticides against the whitefly vector which is often recommended.

Lower incidence of MYMV during the survey was noticed in Bidar district (5.66%) followed by Yadgir (15.76%) and Kalaburgi (17.44%), it was mainly due to unfavorable weather factors like lower temperature and higher rainfall which are detrimental to whitefly development and multiplication. Gupta et al. (2009) also reported a negative correlation between whitefly and rainfall in their survey studies. Bidar district has the cooler temperature and higher rainfall during Kharif than any other districts which is detrimental to vector perpetuation and restricted spread of MYMV. Previous surveys carried have also concluded variable incidence of yellow mosaic. Singh et al., 1979 reported the MYMV incidence ranging from 70 to 100 per cent in different mungbean growing areas of Hariyana. Salam et al. (2011) reported higher incidence of MYMV in different districts of Karnataka viz., Bidar (22.64%) and Kalaburgi (17.6%) districts followed by Haveri (9.52%), Dharwad (7.05%) and Gadag (2.61%). Panduranga et al. (2012) reported MYMV in Warangal district of Andra Pradesh during vegetative stage (49.6%) and flowering (57.70%) stages, while in Khammam district, 42.20 per cent and 50.62 per cent, respectively. In our study, majority of incidence was noticed in vegetative stage followed by flowering stage. Manjunath et al. (2013) also reported 31.49 to 100 per cent incidence of MYMV in Southern Karnataka and diverse spread was due to varying climatic conditions. Higher incidence of MYMV disease in NEK districts could be correlated to higher temperature and dry climate prevailing in these districts favors vector population and its migration behaviour (Singh and Gurha, 1994 and Nath and Saikia, 1995).

Koppal, Bellary and Raichur districts being in semi arid region have favourable climatic conditions especially dry weather before and during the initial crop season congenial for whitefly perpetuation and spread of MYMV. Identical rainfall pattern, cropping systems, close proximity of districts and large area under mungbean in these districts were also responsible for higher disease incidence. Other crops such as cotton, sunflower, mungbean and blackgram which are cultivated in one or the other season also acts as alternate hosts for whitefly and few of them to MYMV also. Bt cotton cultivation in Koppal begins in February under irrigated conditions, hence whiteflies gets their most preferred host before mungbean is sown. Koppal district hosts many seed companies engaged in seed production of vegetables and field crops such as tomato, chilli, capsicum, bell pepper, okra, cucurbits, Bt cotton, sunflower, hybrid maize and other flower crops. All these crops cultivated in either one of the season throughout the year may also provide shelter for continuous multiplication of whiteflies and survival of MYMV in alternate crops or weed species.

Conclusion:

The study concludes that management of MYMV could be done depending upon the incidence level, the spatial distribution helps in making suitable decision such as preventive measures, control measures, spray schedules, precautionary measures and other relevant practice directed towards lowering the MYMV incidence and enhancing the production and productivity of mungbean.

REFERENCES

Ahmad, M. and Harwood, R. F. (1973). Studies on a whiteflytransmitted yellow mosaic of urdbean (*Phaseolus mungo*). *Pl. Dis.*, 57: 800-802.

Bashir, M. (2005). *Studies on viral disease of major pulse crops and identification of resistant sources.* Tech. Ann. Rep. (April 2004 to June 2005) of ALP., 76 pp.

Borah, B. and Dasgupta, I. (2012). Begomovirus research in India: A critical appraisal and the way ahead. *J. Biosci.*, **37** (4): 791-806.

Chenulu, V. V. and Verma, A. (1988). Virus and virus-like diseases of pulse crops commonly grown in India. In: Baldev, B., Ramanujam, S., Jain, H. K. (Eds.), Pulse Crops. Oxford and IBH, New Delhi, pp. 338-370.

Dhingra, K. L. and Chenulu, V. V. (1985). Effect of yellow mosaic on yield and nodulation of soybean. *Indian Phytopathol.*, 38: 248-251.

Honda, Y., Iwaki, M. and Saito, Y. (1983). Mechanical transmission, purification and some properties of whiteflyborne mungbean yellow mosaic virus in Thiland. *Pl. Dis.*, 67: 801-804.

Hull, R. (2004). *Mathew's plant virology*. 4th Ed. Elsevier Publishers, India, pp.180-182.

Jeske, H. (2009). Gemini viruses. Curr Top Microbiol. Immunol., 331: 185-226.

Jones, D.R. (2003). Plant viruses transmitted by whiteflies.

⁴²⁷ Internat. J. Plant Protec., **10**(2) Oct., 2017 : 420-428

⁴²¹ HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

European J. Pl. Pathol., 4 (1): 195-219.

Khan, M. A., Rashid, A. and Mateen, A. (2012). Incidence of mungbean yellow mosaic virus, its epidemiology and management through Mycotal, Imidachloprid and Tracer. *Agric. & Bio. J. N. America*, **3** (11): 476-480.

Malathi, V. G., Surendranath, B., Naghma, A. and Roy, A. (2005). Adaptation to new hosts shown by the cloned components of mungbean yellow mosaic India virus causing cowpea golden mosaic in northern India. *Can. J. Plant Pathol.*, 27: 439-447.

Malik, B. A. and Bashir, M. (1992). Major diseases of food legume crops of Islamic countries. In: Jamil, F. F., Naqvi, S.H.M. (Eds.), Proceedings of COMSTECH-NAIB International Workshop of Agroclimatology Pests and Disease and Their Control. pp. 25-38.

Manjunath, B., Jayaram, N., Muniyappa, V. and Prameela, H. A. (2013). Status of yellow mosaic virus and whitefly *Bemesia tabaci* biotypes on mungbean in Southern Karnataka. Department of Plant Pathology. Bangalore. *Leg. Res.*, **36** (1): 62-66.

Mansoor, S., Briddon, R.W., Zafar, Y. and Stanley, J. (2003). Gemini virus disease complexes: an emerging threat. *Trends Plant Sci.*, 8:128-134.

Murugesan, S. and Chelliah, S. (1977). Influence of sowing time on the incidence of the vector *Bemisia tabaci* (Genn.) and the yellow mosaic disease of greengram. *Madras Agril. J.*, **64** (2): 128-130.

Nath, P. D. and Saikia, A. K. (1995). Effect of time of sowing on the incidence of mungbean yellow mosaic virus disease and whitefly (*Bemisia tabaci* Genn.) population in green gram. *Anns. Agric. Res.*, 16 (4): 483-484.

Nene, Y. L. (1973). Viral diseases of some warm weather pulse

crops in India; Plant Dis. Rep., 57: 463-467.

Panduranga, G. S., Reddy, P. K. and Rajashekar, H. (2012). Survey for incidence of mungbean yellow mosaic virus (MYMV) in mungbean [*Vigna radiata* (L.) Wilczek]. *Environ.* & *Ecol.*, **30** (3): 1030-1033.

Qazi, J., Ilyas, M., Manseor, S. and Briddan, R.W. (2007). Legume yellow mosaic virus: genetically isolated begomovirus mole. *Plant Patholo.*, **8** (4) : 343-348.

Rosen, R., Kanakala, S., Kliot, A., Pakkianathan, B.C., Farich, B.A. and Ghanim, M. (2015). Persistant, circulative transmission of begomoviruses by whitefly vectors. *Curr. Opn Virol.*, **15**: 1-8.

Salam, S.A., Patil, M. S. and Byadgi, A.S. (2011). Satus of mungbean yellow mosaic virus disease incidence on greengram. *Karnataka J. Agric. Sci.*, **24** (2): 247-248.

Singh, D.P. (1991). *Genetics and breeding of pulse crops.* Kalyani Publ, Ludhiana, India, pp. 6-11.

Singh, R.A. and Gurha, S.N. (1994). Influence of cropping seasons on the incidence of yellow mosaic disease in mungbean genotypes. *Indian J. Pulse Res.*, **7** (12): 206-208.

Usharani, K. S., Surendranath, B., Haq, Q. M. R. and Malathi V. G. (2004). Yellow mosaic virus infecting soybean in Northern India is distinct from the species infecting soybean in southern and western India. *Curr. Sci.*, **86**:845-850.

Varma, A., Dhar, A. K. and Mandal, B. (1992). MYMV transmission and control in India. In: Green SK, Kim D, editors. Mungbean yellow mosaic disease. Taipei: Asian Vegetable Research and Development Centre; p. 8-27.

WEBLIOGRAPHY

Anonymos (2016). *www. Indiastat. com.* (2015-2016) Ministry of Agriculture and Farmers welfare, Govt. of India.

