IJPSINTERNATIONAL JOURNAL OF PLANT SCIENCES (C) e ISSN-0976-593X Volume **10** | Issue 1 | January, 2015 | 80-84

DOI: 10.15740/HAS/IJPS/10.1/80-84 Visit us - www.researchjournal.co.in

Research Article

Analysis of combining ability in white seeded genotypes of maize (*Zea mays* L.)

■ P.P. SHARMA, MUKESH VYAS AND S.P. SHARMA

SUMMARY

The present investigation consisted of 45 hybrids alongwith 18 parents and four checks *viz.*, Arawali Makka-1, Mahi Kanchan, Navjot and PEHM-2 a total 67 entries was conduted during *Kharif* 2002 in Randomised Block Design having three replications. The data were recorded on fourteen traits to study general and specific combining ability effects. In general inbred lines L_1 , L_3 , L_{11} and L_{15} were considered good general combiner for yield and yield contributing traits as well as for quality traits. Among the testers, the tester T_2 was considered good general combiner for maturity traits, plant type traits, harvest index and starch content. Majority of the hybrids exhibited significant positive values for yield and yield contributing traits as well as quality traits. Thereby, indicating that for these traits the genes with positive effects were dominent. The variance due to lines was of greater magnitude than that of testers for most of the traits. The ratio of 6^2 sca/ 6^2 gca indicated prependerance of non-additive variance for most of the traits. Parental lines L_1 , L_3 , L_{11} and L_{15} were found to be good general combiners for grain yield per plant as well as for other traits. Hybrid $L_{12} \times T_1$ exhibited maximum significant positive sca effects for grain yield per plant. While the hybrid $L_2 \times T_1$ exhibited highest estimates of significant positive sca effects for grain yield per plant. While the hybrid $L_2 \times T_1$ exhibited highest estimates of significant positive sca effects for grain yield per plant. While the hybrid dentified on the basis of sca effects.

Key Words : Maize (Zea mays L.), Single cross hybrid, Combining ability, Gene effects

How to cite this article : Sharma, P.P., Vyas, Mukesh and Sharma, S.P. (2015). Analysis of combining ability in white seeded genotypes of maize (*Zea mays L.*). *Internat. J. Plant Sci.*, **10** (1): 80-84.

Article chronicle : Received : 01.10.2014; Revised : 03.12.2014; Accepted : 22.12.2014

The breeding strategy for single cross hybrid development in maize (*Zea mays* L.) requires identification of high per se performing vigorous and productive inbred lines combined with good seed quality traits and desirable combining ability effects in cross combination

MEMBERS OF THE RESEARCH FORUM

Author to be contacted :

P.P. SHARMA, Department of Plant Breeding and Genetics, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, UDAIPUR (RAJASTHAN) INDIA

Address of the Co-authors:

MUKESH VYAS AND S.P. SHARMA, Department of Plant Breeding and Genetics, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, UDAIPUR (RAJASTHAN) INDIA to identify single crosses with high heterotic effects. The single cross hybrids are considered most desirable as the breeding and seed production is much easier than the multiparent hybrids.

Selection of parents on the basis of phenotypic performance alone is not a sound procedure since phenotypically superior lines may yield poor recombination. It is therefore, essential that parents should be chosen on the basis of their genetic value. The performance of parent may not necessarily reveal it to be a good or poor combiner. Therefore, gathering information on nature of gene effects and their expression in terms of combining ability is necessary. At the same time, it also elucidates the nature of gene action involved in the inheritance of charaters. The concept of good combining ability refers to the potential of a parental form of producing by its crossing with another parent superior offspring for the breeding process and it is widely used in the breeding of cross pollinated plants.

Information and exact study of combining ability can be useful in regard to selection of breeding methods and selection of lines for hybrid combination. The present study was, therefore, under taken with a view to estimate general and specific combining ability variances and effects in maize for seed yield and quality traits in white grained maize by using line tester x mating design.

MATERIAL AND METHODS

15 inbred lines *i.e.* L_1 (E1 552), L_2 (E1-553), L_3 (E1 554), L_4 (EI-555), L_5 (EI-556), L_6 (E1557), L_7 (E1 503), L_8 (E1 501), L_9 (E1 499), L_{10} (E1 460), L_{11} (E1 461), L_{12} (E1 423), L_{13} (E1 420), L_{14} (E1 558) and L_{15} (E1 559) were crossed with three tester *viz.*, T_1 (EI 457), T_2 (EI 494) and T_3 (CM 400) in line x tester design in *Rabi* season and developed a total of 45 hybrids. 45 hybrids with 18 parents and four checks *viz.*, Arawali makka-1, Mahi Kanchan, Navjot and PEHM-2 thus, experimental material consisted of 67 entries were planted in Randomized Block Design comprising three replications with a single row plot of 5 meter length maintaining crop geometry of 60 x 25 cm. Reommended agronomical practices were followed to raise a healthy crop.

The data were recorded on fourteen traits to magnitude of general and specific combing ability effects at Instructional Farm of Rajasthan College of Agriculture, Udaipur.

RESULTS AND DISCUSSION

The combining ability analysis is a powerful tool to determine good as well as poor combiners for selecting appropriate parents to formulate an efficient breeding programme. The nature of gene action for yield and its component traits have a bearing on the development of an efficient breeding methodology. General combining ability is attributed to addituie, additive x additive, interactions and is fixable in nature while the specific combining ability is attributed to non - additive (*i.e.* dominance, dominance x dominance and additive x dominane interactions) gene action and is non fixable in nature.

The data on 45 crosses were analysed and the total variance was partitioned into coponent *viz.*, variance due to line, testers and line x testers. The data on crosses were further analysed to determine the line x tester (gca) and line x tester (sca) variance components for all traits.

The mean squares due to crosses, line x testers and line x testers were significant for all the traits except due to tester for anther silking interval, ear length, 100 grain weight and grain yield per plant.

The significant mean square for lines x testers indicated significant contribution of lines x testers towards general combinign ability variance components for these traits. The significant mean square for line x testers indicated significant contribution of hybrids for specific combining ability variance components.

The analysis of variance for combining ability indicated that the mean sqares due to lines and testers were significant for all the traits except due to tester for anthesis-silking interval, ear length, 100- grain weight and grain yield per plant, thereby, indicating significant contribution of lines and testers towards gca variance. The mean squares due to line x tester interaction were significant for all the traits indicating significant contribution of line x tester towards sca variance.

Variance due to lines were of higher magnitude than that of testers for days to 50 per cent tasseling, days to 50 per cent silking, anthesis silking interval, plant height, ear length, ear girth, 100 grain weight, grain yield per plant, biological yield per plant, harvest index, starch content and protien content. This indicating that the contribution fo lines for these traits was greater towards 6^2 gca.

Variance due to testers was of higher magnitude than that of lines for days to 50 per cent brown busk and ear height. This indicated that the contribution of tester for these traits was greater towards 6^2 gca.

The ratio of 6²sca/6²gca (the sca, gca variance ratio) was greater than one for all the traits. This indicated that nonadditive component played greater role in the inheritance of these traits (Table 1). These results are in accordance with the findings of EI-Hosary (1990), Hang *et al.* (1991), Jha and Khera (1992), Joshi *et al.* (1998), Joshi *et at.* (2001). However, additive variance for grain yield in maize was also reported by Beck *et al.* (1990), Cosmin *et al.* (1991) and Gama *et al.* (1995). On the other hand, Kumar and Gangashetti (1998), Singh *et al.* (1998), Zelleke *et al.* (2000) and Sinha (2002) reported that both gca and sca variance were important for grain yield in maize.

The estimates of gca effects revealed that good general combiner inbred lines for majority of yield and yield contributing traits were L_1 , L_3 , L_{11} and L_{15} , for protein content inbred lines L_7 , L_{10} , L_{11} and L_{12} , for start content inbred lines L_1 , L_5 , L_7 , L_{10} , L_{11} , L_{14} and L_{15} , for maturity related traits L_2 , L_{11} , L_{13} and L_{14} and for plant type traits L_1 , L_5 , L_{11} and L_{12} . In general the inbred lines L_1 , L_3 , L_{11} and L_{15} have been found good general combiners for yield and yield contributing traits as well as for quality traits (Table 2).

Among the testers, the tester T_2 (HP (B)-33-3) was considered good general combiner for maturity traits, plant type traits, harvest index and starch content and tester T_3 (CM-400) was considered good general combiner for ear girth, biological yield per plant and protein content. The tester T_1 (SLT-32-3) was considered good general combiners for bilogical yield per plant and starch content. High general combining ability (gca) observed were due to additive and additive x additive gene effects (Griffing, 1956 and Sprague, 1966).

A perusal of sca effects revealed that significant positive sca effects for harvest index were recorded in hybrids L_2xT_1 ,

Table 1 : GCA and SCA variances for fourteen traits in maize	A and SCA v	ariances for l	fourteen trait	ts in maize										
Source of variantion	Days to 50% tasseling	Days to 50% silking	ASi	Days to 50% brown husk	Plant height	Ear height	Ear length	Ear girth	100 grian weight	Grain yield per plant	Biologic al yield per plant	Harvest index (HI)	Protein content	Starch content.
$6^{2}L$	0.6836	0.57531	0.028924	0.91411	77.594	26.888	0.28303	0.080177	0.025564	18.379	286.42	1.1113	0-11753	0.74812
6 ² 1	0.37919	0.28466	-0.003527	1.4697	62.735	7.4287	-0.01944	0.020905	-0.13208	-2.7354	4.546	0.54002	0.018036	0.47814
6²Gca	0.13919	0.11355	0.0038507	0.2864	17.851	4.695	0.039251	0.01387	-0.010031	2.3953	42.243	0.21831	0.019019	0.15891
6 ² sca	0.81173	0.75521	0.048148	6.3383	125.36	29.072	0.45991	0.13484	1.8908	32.165	522.84	4.3488	0.90312	5.7705
6 ² SCA/GCA	5.8318	6.650903	12.5037	22.13094	7.022576	6.19212	11.717154	9.721702	-188.4957	13.428381	12.37696	19.920297	47,48515	36.31301
Table 2 : Parents and hybrids possessing good general combining ability and specific combining ability effects for fourteen traits	ents and hvh	brids possessi	ng good gene	eral combining	g ability and	l specific o	combining	ability effec	ts for fourte	en traits				
Sr. No.	Traits		0	Parentasl lines	S	Te	Testers Hy	Hybrids						
	Days to	Days to 50% tasseling	-	L_2, L_{11}, L_{13} and L_{14}	IL,	T_2		14 X T1), (L15)	(L14 X T1), (L15 X T1) and (L2 X T3)	x T ₃)				
2.	Days to	Days to 50% silking		$L_2, L_{\rm II}, L_{\rm I3}$ and $L_{\rm I4}$	ΙL _{it}	T_2		10 X T1), (L14.	$x T_1$), (L ₁₅ X	(L $_{10}$ x T $_1$), (L $_{14}$ x T $_1$), (L $_{15}$ x T $_1$) and (L $_2$ x T $_3$)	(°,			
3.	Anthesis	Anthesis silking interval	val	L ₁₀		ľ	'							
4.	Days to	Days to 50% brown husk	usk	$L_{\rm 1}, L_{\rm 2}, L_{\rm 4}, L_{\rm 11}$ and $L_{\rm 15}$	nd L ₁₅	T_2		$(x T_1), (L_8 x)$	T ₁), (L ₁₄ x T ₁	$(L_6 \ X \ T_1), (L_8 \ X \ T_3), (L_4 \ X \ T_1), (L_5 \ X \ T_2), (L_2 \ X \ T_3), (L_7 \ X \ T_3), (L_9 \ X \ T_3) and (L_{13} \ X \ T_3)$	2 x T ₃), (L ₇)	τ ₃), (L ₉ x T ₃)) and $(L_{13} x T_3)$	
5.	Plant height	ight		$L_{\rm I},L_{\rm 5},L_{\rm 6},L_{\rm 11}$ and $L_{\rm 12}$	$nd L_{12}$	T_2		x T1), (L9 X	T ₁), (L ₉ x T ₂)	$(L_2xT_1),(L_9xT_1),(L_9xT_2),(L_5xT_3),(L_{10}xT_3)$ and $(L_{14}xT_3)$	10 X T3) and (L ₁₄ X T ₃)		
.9	Ear height	ţht		$L_{\rm l}, L_{\rm 5}, L_{\rm 8}, , L_{\rm 1l}, L_{\rm 12}$ and $L_{\rm 13}$	L_{12} and L_{13}	T_2		2 X T1), (L ₈ X), (L ₁₀ X T3) 2	(L ₂ x T ₁), (L ₈ x T ₁), (L ₉ x T ₁) T ₃), (L ₁₀ x T ₃) and (L ₁₄ x T ₃)	$ (L_2 \times T_1), (L_8 \times T_3), (L_9 \times T_1), (L_{11} \times T_1), (L_1 \times T_2), (L_4 \times T_2), (L_{11} \times T_2), (L_{12} \times T_3), (L_{5X} T_3), (L_6 \times T_3), (L_{10} \times T_3) and (L_{14} \times T_3) $	L ₁ x T ₂), (L ₄	x T ₂), (L ₁₁ x ¹	2), (L ₁₂ X T ₂),	(L ₅ xT ₃), (L
7.	Ear length	ţţ		$L_{\rm l}$ and $L_{\rm l2}$		ľ	(L _c	(L_6xT_1) and $(L_{13}xT_3)$	L ₁₃ X T ₃)					
8.	Ear girth	_		$L_{\rm 3}, L_{\rm 11}, L_{\rm 13}$ and $L_{\rm 15}$	$1L_{15}$	Т,		$(L_3 \mathbf{x} \mathbf{T}_1)$ and $(L_2 \mathbf{x} \mathbf{T}_3)$	L ₂ X T ₃)					
9.	100-grai	100-grain weight		L_2, L_4 and L_5			Ĺ	$(x T_1), (L_8 x)$	T ₂), (L ₁₂ x T ₂	(L ₅ x T ₁), (L ₈ x T ₂), (L ₁₂ x T ₂) and (L ₁₀ x T ₃)				
10.	Grain yi	Grain yield per plant		L_3, L_{14} and L_{15}	2	•	(L ₁	12 x T1), (L4 x	τ ₂), (L ₂ x T ₃	$(L_{12} x T_1)$, $(L_4 x T_2)$, $(L_2 x T_3)$ and $(L_{10} x T_3)$	()			
11.	Biologic	Biological yield per plant	lant	L ₁ ,L ₃ ,L ₇ ,L ₁₀ ,L ₁₁ ,L ₁₄ and L ₁₅	LI, LIH and L		T ₁ , T ₃ (L ₁	11 x T1), (L12)	x T ₁), (L ₁₅ x	$(L_{11} \times T_1), (L_{12} \times T_1), (L_{15} \times T_1), (L_2 \times T_2), (L_4 \times T_2), (L_8 \times T_2), (L_{13} \times T_2), (L_2 \times T_3) and (L_7 \times T_3) (L_{12} \times T_3), (L_{12} \times T_3), (L_{13} \times$	(L ₄ x T ₂), (L ₈	sx T ₂), (L ₁₃ x [¬]	[2), (L2 x T3) ai	ыd (L ₇ х Т ₃)
12.	Harvest index	index		L_3, L_4 and L_6		$T_2,$		$(x T_1), (L_2 x)$	T ₁), (L ₁₃ x T ₁	$(L_1 x T_1)$, $(L_2 x T_1)$, $(L_{13} x T_1)$ and $(L_{12} x T_3)$	0			
13.	Protein content	content		L_7, L_{10}, L_{11} and L_{12}	$1L_{12}$	Т ₃ ,		$(x T_1), (L_5 x)$	T ₁), (L ₉ x T ₁)	$(L_3 X T_1), (L_5 X T_1), (L_9 X T_1), (L_1 X T_2), (L_{12} X T_2), (L_{14} X T_2), (L_{15} X T_2), (L_6 X T_3) \text{ and } (L_{13} X T_3), (L_{15} X T_3), (L_$	12 x T2), (L14	x T ₂), (L ₁₅ x T	²), (L ₆ x T ₃) ar	d (L ₁₃ x T ₃)
14.	Starch content	ontent		L ₁ ,L ₅ ,L ₇ ,L ₁₀ ,I	5,L7,L10,L11,L14 and L15		T ₁ , T ₂ (L ₂ x ¹	73), (L ₈ X T ₁), (L ₈ X T ₃), (L ₁₀ X T ₃)	T ₁), (L ₁₂ X T ₁ 3), (L ₁₁ X T ₃),	(L ₂ X T ₁), (L ₈ X T ₁), (L ₁₂ X T ₁), (L ₁₃ X T ₁), (L ₁ X T ₂), (L ₄ X T ₂), (L ₆ X T ₂), (L ₁₁ X T ₂), (L ₁₄ X T ₂), (L ₃ X T ₃), (L ₁₀ X T ₁₀)), (L ₁₀ X T ₁₀), (L ₁₀ X T ₁₀)), (L ₁₀ X T ₁₀), (L ₁₀ X T ₁₀)), (L ₁₀ X T ₁₀))), (L ₁₀ X T ₁₀))))))))))))))))))))))))))))))))))))	L ₁ X T ₂), (L ₄ !(L ₁₅ X T ₃)	x T ₂), (L ₆ x T ₃), (L ₁₁ x T ₂), (L ₁₄ X T ₂), ()

Internat. J. Plant Sci., 10 (1) Jan., 2015 : 80-84 **82** Hind Agricultural Research and Training Institute

ANALYSIS OF COMBINING ABILITY IN WHITE SEEDED GENOTYPES OF MAIZE

P.P. SHARMA, MUKESH VYAS AND S.P. SHARMA

Sr. No.	Hybrid/pedigree	SCA/GCA effects	Economic heterosis (%) over the best check 'mahi Kanchan'	Harvest index (%)
1.	L ₂ x T ₁ (pop 49-117-2#1-1-2 x SLT 32-3)	4.85	8.50	41.05
2.	L ₁₂ x T ₃ (HP(A)-42-1-1 x CM400)	3.60	-	39.42
3.	L ₁₃ x T ₁ (HP(A)-67-2-1-1 x SLT 32-3)	2.92	-	39.49
4.	L ₁ x T ₁ (Shweta 74-1-2#1-2-1 x SLT 32-3)	2.60	-	37.69
5.	L ₁ (Shweta 74-1-2#1-2-1)	-1.43	-	30.94
6.	L ₂ (pop 49-117-2#1-1-2)	-0.32	-	29.04
7.	L ₁₂ (HP(A)-42-1-1)	-0.74	-	29.31
8.	L ₁₃ (HP(A)-67-2-1-1)	0.06	-	35.70
9.	T ₁ (SLT32-3)	-0.57	-	32.03
10.	T ₃ (CM 400)	1.09	-	31.34
11.	Mahi Kanchan	-	-	37.83

and * indicate significance of values at P=0.05 and 0.01, respectively

Table 4 : First five best hybrids identified on the basis of sca effets for starch content

Sr. No.	Hybrids / parents	SCA/GCA effects	Economic heterosis (%) over the best check 'Mahi Kanchan'	Per se performan Starch content	Grain yield
				(%)	per plant (g)
1.	L ₂ x T ₁ (pop 49-117-2#1-1-2 x SLT 32-3)	3.23**	-	63.33	63.33
2.	L ₁₂ x T ₃ (HP(A)-42-1-1 x SLT 32-3)	3.23**	-	65.60	94.33
3.	L ₈ x T ₁ (X ₂ W-3179-1-2-1 x SLT 32-3)	3.01**	-	65.77	78.33
4.	L ₁₄ x T ₂ (pop-30-29-1-3#1-2-1 x HP(B)33-3)	2.72**	2.41**	66.78	98.33
5.	L ₃ x T ₃ (Hyd (W)3105-2#1 x CM400)	2.50**	-	62.58	91.67
6.	L ₂ (pop 49-117-2#1-1-2)	-2.68**	-	61.50	82.33
7.	L ₃ (pop 49-117-2#1-1-2)	-1.39**	-	64.52	77.00
8.	L ₈ (pop 49-117-2#1-1-2)	-0.03	-	54.79	73.33
9.	L ₁₂ (pop 49-117-2#1-1-2)	-0.42	-	64.61	81.67
10.	L ₁₄ (pop 49-117-2#1-1-2)	0.77**	-	64.33	66.67
11.	T ₁ (SLT32-3)	0.27**	-	60.20	37.67
12.	T ₂ (HP(B) 33-3)	0.77**	-	61.27	57.67
13.	T ₃ (CM 400)	-1.04**	-	60.40	55.00
14.	Mahi Kanchan		-	64.31	78.33

* and ** indicate significance of values at P=0.05 and 0.01, respectively

Sr. No.	Hybrids/pedigree	SCA/GCA effects	Grain yield per plant (g)
1.	L ₁₂ x T ₃ (HP(A)-42-1-1 x SLT 32-3)	10.74**	94.33
2.	L ₂ x T ₃ (pop 49-117-2#1-1-2 x CM400)	7.27*	85.00
3.	L ₄ x T ₂ (pop-30-186-1-1#1-1-1 x HP(B)33-3)	7.21*	90.00
4.	L ₁₀ x T ₃ (SLT-28-1 x CM 400)	7.16*	93.33
5.	L ₂ (pop 49-117-2#1-1-2)	-7.27*	82.33
6.	L ₄ (pop 30-186-1-1#1-1-1)	-2.16	69.00
7.	L ₁₀ (SLT-28-1)	1.17	75.33
8.	L ₁₂ (HP(A)-42-1-1)	-1.27	81.67
9.	T ₁ (SLT32-3)	-0.07	37.67
10.	T ₂ (HP(B) 33-3)	0.01	57.67
11.	T ₃ (CM 400)	0.06	55.00

Best Check- PEHM-2 (85.00) * and ** indicate significance of values at P=0.05 and 0.01, respectively

> **83** Hind Agricultural Research and Training Institute Internat. J. Plant Sci., 10 (1) Jan., 2015: 80-84

 $L_{12} x T_3, L_{13} x T_1 and L_1 x T_1$. Hybrid $L_2 x T_1$ (Pop 49-117-2# 1-1-2 x SLT-32-3) exhibited maximum significant positive sca effect for harvest index alongwith economic heterosis (8.50) also showed significant positive sca effects for starh content. (Table 3).

Five best hybrid exhibiting highest significant positive sca effect for starch content were L_2xT_1 , $L_{12}xT_1$, L_8xT_1 , $L_{14}xT_2$ and L_3xT_3 (Table 4). However, hybrid L_2xT_1 and $L_{12}xT_1$ exhibited maximum significant positive sca effect for starch content.

Out of 45 hybrids, four best hybrids exhibiting significant positive sca effect for grain yield per plant were *viz.*, $L_{12}xT_1$, L_2xT_3 , L_4xT_2 and $L_{10}xT_3$ (Table 5). However, higher significant positive sca effect for grain yield per plant was exhibited by the hybrid $L_{12}xT_1$ (HP-(A) 42-1-1 x SLT 32-3_ also showed significant positive sca effect for biological yield per plant and starch cotnent. Hybrid L_2xT_3 exhibited significant positive sca effect along with significant positive sca effect for ear girth and biological yield per plant. Hybrid L_4xT_2 showed significant positive sca effect along with significant positive sca effect for biological yield per plant and startch content. Hybrid $L_{10}xT_3$ exhibited significant positive sca effect along with significant positive sca effect for 100 grain weight and starh content.

Similar finding for identification of superior parental lines, testers and hybrids based on gca and sca effects for grain yield and its componetn trait in maize were reported by Vasal *et al.* (1992) Wang *et al.* (1994), Gama *et al.* (1995) and Sain *et al.* (1997).

REFERENCES

- Beck, D.L., Vasal, S.K. and Crossa, J. (1990). Heterosis and combining ability of CIMMYT tropical early and intermediate maturity maize (*Zea mays L.*). *Germplasm Maydica*, **35** (3): 279-285.
- Cosmin, O., Bica, M. and Bagin, C. (1991). Study of combining ability in some inbred of maize. Problem de Genetica Teoretica Si Aplicata, 23 (3&4): 105-122.

- EI Hosary, A.A. (1990). Study of combining ability in some top crosses in maize. *Egyptian J. Agron.*, **10** (1&2): 39-47.
- Gama, E.E.G., Hallauer, A.R., Ferrao, R.G. and Burbosa, D.M. (1995). Heterosis in maize single crosses derived from a yellow "Tuxpeno" variety in Bazil. *Revista Brasilleilera de Genetica*, **18**(1):81-85.
- Griffing, B. (1956). Concepts of general and specific combining ability in relation to diallel crossing system Aust. J. Bol. Sci., 9:463-493.
- Hang, GC., Vasal, S.K., Beck, D.Z. and Elias, E. (1991). Combining ability of inbred lines derived from CIMMYT maize (Zea mays L.). Germplasm Maydica, 36 (1): 57-68.
- Jha, M. and Khera, S. (1992). Inheritance of combining ability of maize (Zea mays L.). Indian J. Genet., 53 (2):126-130.
- Kumar, A. and Gangashetti, M.G. (1998). Gene effects in some metric traits of maize (*Zea mays L.*). Annl. Agric. Biol. Res., 3 (2): 139-143.
- Sain Dass., Ahuja, V.P. and Singh, Mohinder (1997). Combining ability for yield in maize. *Indian J. Genet.*, **57**(1): 98-100.
- Singh, A.K., Dixit, P.K. and Singh, H.G. (1998). Combining ability analysis for yield and its attributes in maize (*Zea mays* L.). *Indian J. Agric. Res.*, **13**: 27-30.
- Sprague, G.F. (1966). Quantitative genetics in plant improvement. In : K.J. Frey (Ed.) Plant breeding. The Lowa State Univ. Press. Ames. IOWA.
- Vasal, S.K., Srinivasan, G., Cross, J. and Beck, D.L. (1992). Heterosis and combining ability of CIMMYT subtropical and temperate early maturing maize of germplasm. *Crop Sci.*, **32** (4): 884-890.
- Wang, L.M., Shi, P.Q., Lil, R.D. and Bai, L. (1994). Studies on combining ability of high lysine maize. *Acta Agronomica*, 20 (4): 446-452.
- Zelleke, H. (2000). Combining ability for grain yield and other agronomic characters in inbred lines of maize (*Zea mays* L.). *Indian J. Genet.*, **60**(1):63-70.

$$\begin{array}{c} 10^{th} \\ \star \star \star \star \text{ of Excellence } \star \star \star \star \end{array}$$