
International Journal of Agricultural Sciences
Volume 11 | Issue 2 | June, 2015 | 330-336  e ISSN–0976–5670

A  CASE  STUDY

INTRODUCTION
Rapid advances in genome research in the past have

resulted in generation of large set of data for DNA and
protein sequences from different prokaryotic and
eukaryotic genomes. Massive information is being
generated in terms of genome sequences in different
organisms which will help in understanding basic and
applied research in biology. DNA is made up of four
nitrogenous bases known as adenine (A), guanine (G),
thymine (T) and cytosine (C). Pattern matching is an

important and active area of research with its varied
large number of applications.

The field of bioinformatics has many applications
in the modern world including agriculture and
comparative biology. As the size of the data grows it
becomes more difficult for users to retrieve necessary
information from the sequences. Hence, more efficient
and robust methods are needed for fast pattern matching
techniques. Let sequence S = {s1, s2,....,sn} be the set
of string and sequence P = {p1, p2,....,pm} be the set of

Abstract : Rapid advances in genome research in the past have resulted in generation of large set of data for DNA and protein
sequences from different prokaryotic and eukaryotic genomes. DNA is made up of four nitrogenous bases known as adenine (A),
guanine (G), thymine (T) and cytosine (C). Pattern matching technique generally divides into two categories i.e. single pattern
matching and multiple pattern matching. When it is required to find all occurrences of the pattern in the given string, it is known
as single pattern matching. When more than one pattern are matched against the given string simultaneously, it is known as
multiple pattern matching. The study of pattern matching is one of the applications in the field of bioinformatics. Many algorithms
are available in literature for pattern matching. The purpose of pattern matching algorithm is to reduce the number of character
comparisons. Hence, in this paper an algorithm Multiple Pattern Matching using Least Count of Pattern (MPMLCP) has been
proposed for multiple pattern matching. The proposed algorithm has been compared with the available algorithm and it has been
shown that the number of comparisons reduces over the available algorithms. SAS 9.3 software package has been used for
calculating the number of comparisons.

Key Words : Pattern matching, Least count, Pre-processing, Algorithm, SAS software

View Point Article : Jambhulkar, Nitiprasad Namdeorao and Bose, Lotan Kumar (2015). New algorithm for multiple pattern matching using
least count of pattern. Internat. J. agric. Sci., 11 (2) : 330-336.

Article History : Received : 01.04.2015; Accepted : 16.05.2015

* Author for correspondence
1Crop Improvement Division, Central Rice Research Institute, CUTTACK (ODISHA) INDIA

New algorithm for multiple pattern matching using least
count of pattern

NITIPRASAD NAMDEORAO JAMBHULKAR* AND LOTAN KUMAR BOSE1

Division of Social Sciences, Central Rice Research Institute, CUTTACK (ODISHA) INDIA
(Email : nitiprasad1@gmail.com)

DOI:10.15740/HAS/IJAS/11.2/330-336

Visit us : www.researchjournal.co.in

mailto:nitiprasad1@gmail.com)
http://www.researchjournal.co.in


Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 331

pattern. Both the sequences are comprised of set of four
fixed alphabet character called ={A, C, G, T}. Now
our aim is to find out all occurrences of pattern P in
string S.

Pattern matching technique generally divides into
two categories i.e., single pattern matching and multiple
pattern matching. When it is required to find all
occurrences of the pattern in the given string, it is known
as single pattern matching. When more than one pattern
are matched against the given string simultaneously, it is
known as multiple pattern matching. Pattern matching
techniques sometimes divided into exact string matching
algorithm and inexact/approximate string matching
algorithm. Exact pattern matching algorithm will find that
whether the probability lead to either successful or
unsuccessful search. It will find all the occurrences of
patter P of length m in string S of length n. the examples
of exact string matching algorithms are Boyer and Moore
algorithm (1977) and Kunth-Morris-Pratt algorithm
(1977). Inexact/approximate pattern matching is
sometimes referred to as approximate string matching
or matching with k mismatches/differences. The
examples of inexact pattern matching are Needleman
and Wunch algorithm (1970) and Smith and Waterman
algorithm (1981).

String matching deals with the problem of finding
all occurrences of a character of patterns in a string.
Some of the exact string matching algorithms are Boyer
and Moore algorithm (1977), Knuth-Morris-Pratt
algorithm (1977). In Brute-force algorithm the first
character of the pattern P is compared with the first
character of the string S. If it matches, then pattern P
and string S are matched character by character until a
mismatch is found or the end of the pattern P is detected.
If mismatch is found, the pattern P is shifted one character
to the right and the process continues. The complexity
of the algorithm is O(mn). The Boyer and Moore
algorithm (1977) applies larger shift increment for each
mismatch detection. The main difference the naïve
algorithm had is the matching of pattern P in string S is
done from right to left i.e., after aligning P and string S
the last character of P will matches to the first of T. If a
mismatch is detected, say C in S is not in P then P is
shifted right so that C is aligning with their right most
occurrence of C in P. The worst case complexity of this
algorithm is O(m+n) and the average case complexity
is O(n/m). The Kunth-Morris-Pratt algorithm (1977) is
based on the finite state machine automation. The pattern

P is pre-processed to create a finite state machine M
that accepts the transition. The finite state machine is
usually represented as the transition table. The
complexity of the algorithm for the average and the worst
case is O(m+n). The Aho-Corasick algorithm (Aho and
Corasick, 1975) is an extension of the Kunth-Morris-
Pratt algorithm (1977). Horspool (1980) used the bad
character shift with right most character. The time
complexity of the algorithm is O(mn). Ukkonen (1985)
proposed automation method for finding approximate
patterns in strings. Zhu and Takaoka (1987) proposed
using a combination of the Kunth-Morris-Pratt algorithm
(1977) and RK methods in an algorithm developed for
two dimensional cases. Sunday (1990) designed an
algorithm quick search which scans the character of the
window in any order and computes its shift with the
occurrence shift of the character T immediately after
the right end of the window. Wu and Manber (1992)
proposed the algorithm for fast text searching allowing
errors. Raita (1992) designed an algorithm in which the
order of character comparisons has been changed to
attain maximum efficiency. First the right most character
of the pattern and the window are compared and on a
match the left most character of the pattern and the
window are compared. If they match it compares the
middle character of both the pattern and the window.
Second if they match it compares the characters from
the second to the penultimate (n-1) position of the pattern
and the window. The Naïve string matching algorithm
finds the entire valid shifts by comparing each character
of the pattern to text character, if the whole pattern is
match to the text than it has a valid shift otherwise in
case of mismatch it shift the pattern by one character
and again compare the each character of the pattern to
the text in this manner it finds entire valid shift of the
pattern in the text. Berry and Ravindran (1999) calculates
the shift value based on the bad character shift for two
consecutive text characters in the text immediately to
the right of the window. The time complexity of the
algorithm is O(nm). Kurtz (1996) proposed another way
to reduce the space requirements of almost O(mn). Ziad
et al. (2007) proposed Multiple Skip Multiple Pattern
Matching Algorithm (MSMPMA). This algorithm scans
the input file to find all occurrences of the pattern based
upon the skip technique. By using this index as the starting
point of matching, it compares the file contents from the
defined point with the pattern contents, and finds the
skip value depending upon the match numbers (ranges

NITIPRASAD NAMDEORAO JAMBHULKAR AND LOTAN KUMAR BOSE

330-336



Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 332

from 1 to m-1). Rami and Jehad (2009) proposed an
algorithm which searches the whole text string for the
first character of the pattern and maintains an occurrence
list by storing the index of the corresponding character.
It uses an array equal to size of the string S for
maintaining occurrence list. Time and space complexity
of preprocessing is O(n). An Index based Forward
Backward Multiple Pattern Matching Algorithm
(IFBMPMA) was proposed by Bhukya and Somayajulu
(2010a). Here, the elements in the given patterns are
matched one by one in the forward and backward until a
mismatch occurs or a complete pattern matches. In Index
Based Forward backward Multiple Pattern Matching
Algorithm (IFBMPMA), the elements in the given
patterns are matched one by one in the forward and
backward until a mismatch occurs or a complete pattern
matches. (Bhukya and Somayajulu, 2010a and b). The
Deviki-Paul algorithm for multiple pattern matching
requires a pre-processing of the given input text to
prepare a table of the occurrences of the 256 member
ASCII character set (Paul,  2011).  Bhukya and
Somayajulu (2011) proposed an Even Odd Multiple
Pattern Matching (EOMPM) algorithm. In this method,
the elements in the pattern are matched one by one first
at the even places and then at the odd places until a
mismatch occurs or a complete pattern matches. Some
other work on multi-pattern string matching are also
available (Aho and Corasick 1975; Commentz-Walter
1979 and Wu and Manber, 1994).

In many cases most of the algorithms operate in
two stages. Pre-processing stage and searching phase.
The pre-processing phase collects the full information
and is used to optimize the number of comparisons.
Whereas searching phase finds the pattern by the
information collected in pre-processing phase. The
purpose of pattern matching algorithm is to reduce the
number of character comparisons. Hence, in this paper
a new algorithm has been proposed for multiple pattern
matching method based on the least count of pattern.

MATERIAL  AND  METHODS
A new algorithm known as multiple pattern matching

using least count of pattern (MPMLCP) has been
proposed. The algorithm is as follows :

Let S be the DNA sequence and P be the pattern
composed of characters A, C, G and T. The string S be
of length n and pattern P having length m where m < n.
First we calculate the position and number of counts of

the characters A, C, G and T in the string and pattern.
Let sa, sc, sg and st  be the row vector of the positions of
characters A, C, G and T, respectively of string S.

ntngncna S andS ,S ,S be the count value of the characters A,
C, G and T, respectively. pa, pc, pg and Pt be the row
vector of the position of characters A, C, G and T,

respectively of pattern P. nnnn tgca p andp ,p ,p be the count
value of the characters A, C, G and T, respectively of
pattern P. Now compare ntngncna S andS ,S ,S  for calculating
minimum value. The character corresponding to minimum
value is used to align the sequence. Suppose ngS  is
minimum then the corresponding character G is used
for aligning purpose. Align the string S with first character
G in the sequence with first character G in the pattern
P.

Next compare the values of ntpngp,ncp,nap and
and arrange them in ascending order. The order in which
it assigns be the matching pattern of the characters A,
C, G and T. Suppose ntpngpnapncp <<<  then after
aligning the string and pattern, first compare character
C of pattern with the corresponding character of string.
If all the characters C in the pattern matches then
compare character A of the pattern with that of string.
If it matches then compare character G and then T.
Suppose at any time, the respective character of string
and pattern does not matches, then move to the next
position of G in the string. Again start matching the
characters C, A, G, T of the pattern and string. Repeat
this process till it reaches the last position of G of the
string. For all the analysis SAS 9.3 software has been
used and the program is written in SAS iml. This method
has been illustrated with an example given below :

Example :
Let S=ATCGTCTACAATCTGTCTATCGCCTAACT be

the string of 29 characters and P=CTGTCTATCG be the
pattern of 10 characters. The method has been divided
into two phases i.e. pre-processing phase and searching
phase. In the pre-processing phase we will locate and
count the position of different characters A, C, G and T
and in the searching phase the pattern will be searched.

Pre-processing phase :
The position of A, C, G and T has been counted

starting from first position to nth (29th ) position for string
and mth (10th) position for pattern. The position of different

NEW MULTIPLE PATTERN MATCHING ALGORITHM

330-336



Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 333

characters A, C, G and T of string S and pattern P has
been given in Table 1 and 2, respectively. The character
A, C, G and T appears in 7, 9, 3 and 10 times, respectively
in string S. Here the minimum value is 3 so we will select
the character G for sequence alignment. The character
A, C, G and T appears in the pattern in 1, 3, 2 and 4
times, respectively.

Searching phase :
The least count of string is G, so pattern will be

aligned by position of G. The first position of G is at
fourth position; hence the position of G in pattern will be
aligned with the position of G in the string as given below:

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG
The least count of pattern is A, so the matching will

start with character A.
 ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG
Character A of pattern matches with the character

of string. Then the next least value of pattern is G. Hence,
matching will be done with character G of the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG
Here, the second character is also matching. Now,

we match with next character G of pattern.
ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG
Here, the characters of string and pattern are not

matching. Hence, we move to next character G which
is at position 15 of the string and align it with the character
G of the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

Least count of pattern is A so it is matching in string
and pattern. Next least value of pattern is G.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The G is matching in both string and pattern, then
move to next G character of the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

Third character G is matching. Next least value of
the pattern is 3 of C, hence, start matching with first C
in the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The character C of string and pattern is matching,
then move to next character C.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The character C is matching, then move to next
character.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The character C of pattern matching with character
of string. The next character is T. Start matching with
first character T of the pattern with that of string.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The first character T of pattern and string is
matches. Then move to next T character of the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The second T character matches, then move to next
T character.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The character T matches, then move to next T
character.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The character T of pattern matches with the
character of string and there are no more characters in
the pattern. Hence, the pattern P is matched at position
15th of the string. Now, move to next position of G which
is at position 22nd in the string and align it with the position
of G in the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

Again start with least count of pattern i.e. A.
ATCGTCTACAATCTGTCTATCGCCTAACT

CTGTCTATCG
The character A in the pattern matches with the

character in the string. The next least value of the pattern
is 2 of G. Then match the first character of G in the
pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The first G of pattern matches with the character
of string, then move to next G of the pattern.

ATCGTCTACAATCTGTCTATCGCCTAACT
CTGTCTATCG

The characters in the pattern and string are not
matching, hence we move to the next character G in the
string. But, there are no more character G in the string
so we stop here. Only one occurrence of pattern is found
in the string.

NITIPRASAD NAMDEORAO JAMBHULKAR AND LOTAN KUMAR BOSE

330-336



Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 334

RESULTS  AND  DISCUSSION
In this section the DNA sequence has been taken

from Ziad et al. (2007). The DNA sequence S be of size
n = 1024. Let S be the following DNA sequence:

AGAACGCAGAGACAAGGTTCTCAT TGTG
TCTCGCAATAGTGTTACCAACTCGGGTGCCTATT
GGCCTCCAAAAAAGGCTGTTCAACGCTCCAAG
CTCGTGACCTCGTCACTACGACGGCGAGTAAGAAC
GCCGAGAAGGTAAGGGAACTAATGACGCGTGG
T G A AT C C TAT G G G T T A G G AT C G T G T C TA C
C C C A A AT T C T T A ATA A A A A A C C TA G G A C C
CCCTTCGACCTAGACTATCGTATTATGGACAAGC

Table 1 : Positions of A, C, G and T of the string S 
Characters  Position in the string Count value 

A 1, 8, 10, 11, 19, 26, 27 7 
C 3, 6, 9, 13, 17, 21, 23, 24, 28 9 
G 4, 15, 22 3 
T 2, 5, 7, 12, 14, 16, 18, 20, 25, 29 10 
 

Table 2 : Positions of A, C, G and T of the pattern P 
Characters  Position in the pattern Count value 

A 7 1 
C 1, 5, 9 3 
G 3, 10 2 
T 2, 4, 6, 8 4 
 

Table 3 : Number of occurrences, number of comparison and CPC of proposed MPMLCP algorithm 
Sr. No. Pattern (P’s) Number of character Number of occurrence Number of comparison CPC 

1. A 1 259 259 0.25 
2. AG 2 53 494 0.48 
3. CAT 3 11 542 0.53 
4. AACG 4 5 574 0.56 
5. AAGAA 5 2 581 0.57 
6. AAAAAA 6 3 647 0.63 
7. AGAACGC 7 2 345 0.34 
8. AAAAAAGG 8 1 583 0.57 
9. GCTCATTAG 9 1 354 0.35 
10. CCTTTTCCGG 10 1 324 0.32 
11. TTTTGCCGTGT 11 1 571 0.56 
12. TTCTTAATAAAA 12 1 598 0.58 
13. GGGACCAAAAAAT 13 1 414 0.40 
14. TTTTGCCGTGTTGA 14 1 368 0.36 
15. CCTCCAAAAAAGGCT 15 1 347 0.34 
16. GGCTGTTCAACGCTCC 16 1 336 0.33 
17. TTTTCGATTGCTCATTA 17 1 348 0.34 
18. GGGATTTGGCTATACTCC 18 1 337 0.33 
19. GGCCTTGTCTAAAGGTATG 19 1 576 0.56 
20. CCTGAGCGCGTCCTCCGTAC 20 1 341 0.33 
 

T TTAACTGT CGTACTGT GGAGGCTT CAAAAC
G G A G G G A C C A A A A A AT T T G C T T C T A G C
G T C A AT G A A A A G A A G T C G G G T G T A T G
C C C C A AT T C C T T G C T G C C C G G A C G G C C
AGGCTTATGTACAATCCACGCGGTACTACATCTTGTC
TCTTATGTAGGGTTCAGTTCTT CGCGCAATCA
TAG C G GTA C T T C ATA AT G G GA C A CA A C GA A
T C G C G G C C G G ATAT C A C AT C T G C T C C T G T G
ATGGAATTGCTGAATGCGCAGGTGTGAATACTG
C G G C T C C A T T C G T T T T G C C G T G T T G A
T CGGGAAT GCACCTCGGGGACTGTT CGATAC
G A C C T G G G A T T T G G C T A T A C T C C
AT T C C T C G C G A G T T T T C G AT T G C T C AT TA G

NEW MULTIPLE PATTERN MATCHING ALGORITHM

330-336



Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 335

G C T T T G C G G TA A G TA A G T T C T G G C C A C C C
ACTTCGAGAAGTGAATGGCTGGCTCCTGAGCG
CGTCCTCCGTACAATGAAGACCGGTCTCGCGC
TAAATTTCCCCCAGCTTGTACAATAGTCCAGT
TTATTATCAAAGATGCGACAAATAAATTGATCA
GCATAATCGAAGATTGCGGAGCATAAGTTTGGA
A A A C T G G G A G G T T G C C A G A A A A C T C C G C G
CCTACT TTCGTCAGGATGATTAAGAGTATCGA
G G C C C C G C C G T C A AT A C C G AT G T T C T T C
G A G C G A AT A A G T A C T G C T AT T T T G C A G
A C C C T T T G C C A G G C C T T G T C T A A A G G T
AT GT TACT TAATAT T GACAATACAT GCGTAT G
GCCTTTTCCGGTTAACTCCCTG.

For different pattern size which has been chosen
randomly for experimental analysis from the DNA
sequence the number of occurrence and the number of
comparisons is given in Table 3. The first column in the
Table 3 is serial number, second column refers to pattern,
third column refers to number of columns in pattern,
fourth column shows number of occurrence of the pattern
in the string, fifth column shows the number of
comparisons and sixth column shows the number of
comparisons per character (CPC) which is equal to
(number of comparisons/file size). CPC can be used as
a measurement factor. This factor affects complexity
time. Then it decreases, the complexity also decreases.

The proposed algorithm multiple pattern matching
using least count of pattern (MPMLCP) has been
compared with Brute-force, Naïve string, Tri-match,
Multiple Skip Multiple Pattern Matching Algorithm
(MSMPMA), Index based Forward Backward Multiple
Pattern Matching (IFBPMP) and Even Odd Multiple
Pattern Matching (EOMPM) algorithms.  The
comparison of the randomly selected patterns of different
size has been given in Table 4. The table shows that the
proposed algorithm multiple pattern matching using least
count of pattern (MPMLCP) reduces the number of
comparisons over other methods. The number of
occurrences for different pattern size is same for all
methods but the number of comparisons and CPC ratio
are different for different algorithms.

Conclusion :
In this paper an algorithm for multiple pattern

matching known as Multiple Pattern Matching using
Least Count of Pattern (PMPLCP) has been proposed.
In this algorithm, the aligning of the string S and pattern
P has been done using least count of string and the
matching has been done using least count of the pattern.
The proposed algorithm reduces the number of

NITIPRASAD NAMDEORAO JAMBHULKAR AND LOTAN KUMAR BOSE

330-336



Hind Agricultural Research and Training InstituteInternat. J. agric. Sci. | June, 2015 | Vol. 11 | Issue 2 | 336

comparisons and CPC ratio as compared to the other
algorithms (Table 4). SAS 9.3 software package has been
used and programme has been written in SAS iml
package for different stages of the method and analysis
of the results.

REFERENCES
Aho, A.V. and Corasick, M.J. (1975). Efficient string matching:
an aid to bibliographic Search. Communications of the ACM,
18 (6) : 333 340.

Berry, T. and Ravindran, S. (1999). A fast string matching
algorithm and experimental results. In: Proceedings of the
Prague Stringology Club Workshop ’99, Liverpool John
Moores University, 16-28pp.

Bhukya, R. and Somayajulu, D.V.L.N. (2010a). An index based
forward backward multiple pattern matching algorithm. World
Acad. Sci. Engg. & Technol., 4 (6) : 17-25.

Bhukya, R. and Somayajulu, D.V.L.N. (2010b). An Index Based
Forward Backward Multiple Pattern Matching Algorithm.
World Academy of Science and Technology, June 2010, pp.
347-355.

Bhukya, R. and Somayajulu, D.V.L.N. (2011). An even odd
multiple pattern matching algorithm. Internat. J. Engg. Sci. &
Technol., 3 (3) : 2118-2126.

Boyer, R.S. and Moore, J.S. (1977). A fast string searching
algorithm. Communi. ACM, 20 (10) : 762-772.

Commentz-Walter, B. (1979). A string matching algorithm
fast on the average. Proceeding of ICALP, 118-132pp.

Horspool, R.N. (1980). Practical fast searching in strings.
Software Practice Exp., 10 (6) : 501-506.

Kunth, D., Morris, J. and Pratt, V. (1977). Fast pattern
matching in strings. SIAM J. Comput., 6 (1) : 323-350.

Kurtz, S. (1996). Approximate string searching under
weighted edit distance. In proceedings of the 3rd South

American workshop on string processing. Carleton Univ.
Press, 156-170pp.

Needleman, S.B. and Wunch, C.D. (1970). A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. J. Molecular Biol., 48 (3) : 443-453.

Pendlimarri, Devaki, Petlu, Paul, Bharath Bhushan and
Satrasala, Ramesh Babu (2011). Novel devaki-Paul algorithm
for multiple pattern matching. Internat. J. Computer
Applications (0975-8887), 13 (3) : 37-42.

Raita, T. (1992). Tuning the Boyer-Moore-Horspool string-
searching algorithm. Software-Practice Exp., 22(10) : 879- 884.

Rami, H.M. and Jehad, Q.Q. (2009). On improving the naive
string matching algorithm. Asian J. Informa. Technol., 8 (1):
14-23.

SAS Institute (2012). SAS/IML Version 9.3 SAS Institute, Cary,
North Carolina, USA.

Smith, T.E. and Waterman, M.S. (1981). Identification of
common molecular subsequences. J. Molecular Biol., 147 (1)
: 195-197.

Sunday, D.M. (1990). A very fast substring search algorithm.
Communications of the ACM, 33 (8) : 132–142.

Ukkonen, E. (1985). Finding approximate patterns in strings.
J. Algor., 6 (1) : 132-137.

Wu, S. and Manber, U. (1992). Fast text searching allowing
errors. Communications of the ACM, 35 (1) : 83-91.

Wu, S. and Manber, U. (1994). A fast algorithm for multi-
pattern searching. Technical Report TR-94-17, Department of
Computer Science, University of Arizona.

Zhu, R.F. and Takaoka, T. (1987). On improving the average
case of the boyer-moore string matching algorithm. J.
Information Process., 10 (3) : 173-177.

Ziad, A.A. Alqadi, Musbah Aqel and Ibrahiem M.M. EI Emary
(2007). Multiple skip multiple pattern matching algorithms.
IAENG Internat. J. Computer Sci., 34 : 2

NEW MULTIPLE PATTERN MATCHING ALGORITHM

11 t h

 of Excellence
Year

 

330-336


