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ABSTRACT

Derivation of general equation for two-dimensional aquifer flow is given. In this derivation we perform a volume balance
instead of a mass balance and obtained analytical solutions of two-dimensional saturated flow under various condition. We
also constructed transient unconfined groundwater flow equation by combining continuity equation with the Darcy law
and provide an analytical solution.

Key Words : Aquifer, Analytical solution, Unconfined, Two-dimensional, Transmissivity, Isotropic

View point paper : Waghmare, R.V. and Kiwne, S.B. (2017). Mathematical modeling of two-dimensional unconfined flow in aquifers.
Asian Sci., 12 (1&2): 1-10, DOI : 10.15740/HAS/AS/12.1and2/1-10.

* Author for correspondence
R. V. Waghmare,  Department of Mathematics, Shivaji Arts, Commerce and Science College, Kannad, AURANGABAD (M.S.) INDIA
(Email: waghmarerv@yahoo.com)

DOI : 10.15740/HAS/AS/12.1and2/1-10
Visit us | www.researchjournal.co.in

e ISSN–0976–7959

RESEARCH   PAPER

Asian
Science

 Volume 12 | Issue 1&2 | June & December, 2017 | 1-10

Flow in aquifers is often modeled as two-dimensional
in the horizontal plane. This can be done because
most aquifers have an aspect ratio like a thin

pancake, with horizontal dimensions that are hundreds
or thousands of times greater than their vertical
thickness. In most aquifers, the bulk of the resistance
encountered along a typical flow path is resistance to
horizontal flow. When this is the case, the real three-
dimensional flow system can be modeled in a reasonable
way using a two-dimensional analysis. This is
accomplished by assuming that h varies with x and y, but
not with z, reducing the spatial dimensions of the
mathematical problem to a horizontal plane. This
simplifying assumption for modeling aquifer flow as
horizontal two-dimensional flow is called the Dupuit-

Forchheimer approximation, named after the French and
German hydrologists who proposed and embellished the
theory (Dupuit, 1863 and Forchheimer, 1886).

Dupuit and Forchheimer proposed the
approximation for flow in unconfined aquifers, but the
concept is equally applicable to confined aquifers with
small amounts of vertical flow. They understood their
approximation to mean that vertical flow was ignored.
Kirkham (1967) later clarified the concept, pointing out
that there may be vertical flow in Dupuit-Forchheimer
models, but that resistance to vertical flow is neglected.

Dupuit-Forchheimer model represents in a physical
sense, imagine an aquifer perforated by numerous tiny
vertical lines that possess infinite hydraulic conductivity.
The vertical lines eliminate the resistance to vertical flow,
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but the resistance to horizontal flow remains the same.
In models using this approximation, the head distribution

on any vertical line is hydrostatic 



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
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
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0
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Derivation:
First, equations will be derived for one-dimensional

aquifer flow in the x direction and then they will be
extended to two-dimensional flow in x, y plane. In this
derivation we perform a volume balance instead of a
mass balance.

Consider an elementary volume that is a vertical
prism of cross-section x x y, extending the full
saturated thickness of the aquifer b. First consider the
discharge (volume/time) flowing through the face that is
normal to the x axis as the left side of the prism. Using
Darcy’s law the flow (volume/time) into the prism at
coordinate is Bath (1968).

(x)
x

hΔy(x)b(x)K x 


                                           ....(1)
where, K

x
 (x) the hydraulic conductivity at

coordinate x, b (x) is the saturated thickness at and x,
and h/x (x) is the x-direction component of the
hydraulic gradient at x. For a uniform, single-layer aquifer,
transmissivity is defined as T=Kb, so the above
expression can be simplified to Boulton (1965).
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x
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                                                 ...(2)
where, T

x
(x) is the x-direction transmissivity. Eq.

(2) applies regardless of whether the aquifer consists of
a single layer as in Eq. (1) or has some more complicated
distribution of transmissivity such as multiple layers with
varying K

x
. The flow out of the right side of prism at

coordinate x +x is similarly defined as:

x)(x
x
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yx)(xTx 

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                                     ....(3)
The net volume flux (volume/time) into the element

through the top and bottom of the prism is given as:

yxN                                                                 .....(4)
where, N is the net specific discharge coming in

the top and bottom. The dimensions of N are volume/
time/area [L/T]. The time rate of change in the volume
of water stored in the element (volume/time) is:

ΔyxΔ
t
h

S



                                                         .....(5)
Balancing the volume fluxes given by the previous

four expressions results in:
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                                                                          ..(6)
Dividing by x y and then writing the limit for x

approaching zero gives:
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The first term is a derivative. Therefore, this
equation can be written more compactly as Bath (1968).
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                                       ....(7)

This is the general equation for one-dimensional
aquifer flow. It is founded on Darcy’s law (Eq. 2 and 3)
and conservation of mass Eq. (6).

Modeling of two-dimensional aquifer flow:
If we extend the derivation to two dimensional

flows, the result is the general equation for two-
dimensional aquifer flow, allowing for anisotropy and
spatial variations in T Boulton (1965).
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   ....(8)

where, Tx,Ty are x and y direction transmissivities,
N is net recharge or leakage, S is storage co-efficient, t
is time.

Boundary and initial conditions:
In order to obtain a unique solution of partial

differential equation corresponding to a given physical
process, additional information about physical state of
the process is required. This information is described by
the boundary and initial conditions. For steady-state
problem only boundary conditions are required, whereas
for unsteady-state problem both boundary and initial
conditions are required. Mathematically, the boundary
condition includes geometry of the boundary and the
values of the dependent variable or its derivative normal
to the boundary. In physical terms, for ground-water
applications the boundary conditions are generally of
three types: (1) specified values, (2) specified flux or (3)
value-dependent flux, where the value is head,
concentration or temperature depending on the equation.
The initial conditions are simply the values of the
dependent variable specified every inside the boundary.
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For example, in a confined aquifer for which the equations
are linear, there is no need to impose the natural flow
system since. In this case, the initial condition is
drawdown (the dependent variable) equal to zero
everywhere (Nguyen and Raudkivi,1983).

Transmissivity is isotropic and homogeneous:
If the transmissivity is isotropic and homogeneous

(T
x
 = T

y
 = T = constant), the Eq. (8) reduces to

(Brutsaert et al., 1971).
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This equation can be written more compactly by
dividing by T and using the symbol for the Laplacian
operator, we get:

t
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h2




                                             ....(10)

If there is zero net recharge or leakage (N=0), then
this becomes:

t
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T
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h2




                                                    ....(11)

Steady-state flow with transmissivity is isotropic
and homogeneous:

If flow is steady-state ( 0
t
h





), the Eq. (10) takes

the form Charles (2002).

T
N

h2  ..... (12)

Eq. (12) is known in physics and engineering as the
Poisson equation, named after the French mathematician
Denis Poisson (1781-1840). If flow is steady and there
is zero net recharge/leakage (N =0), Eq. (12) reduces to
the Laplace equation.

0h2                                                        ....(13)

Flow in an unconfined aquifer:
Flow in an isotropic, homogeneous, unconfined

aquifer with a horizontal impermeable base is a special
case of aquifer flow. If we measure hydraulic head from
the base of the aquifer, then h=b and T=Kh. Using this
definition of transmissivity in Eq. (8) results in Boulton
(1965).
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where, K is assumed to be isotropic and

homogeneous. This is a nonlinear partial differential
equation because the terms in parentheses involve h
multiplied by its derivative, nonlinear equations are much
more difficult to solve than linear ones. The nonlinear
equation can be avoided if it is written in terms of the
variable h2 instead of h. This is done by substituting the
following two relations ( Bath, 1968),
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Into Eq. (14), resulting in a differential equation in
terms of h2 :
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Dividing by K/2, this reduces to:
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                                               ....(18)

For steady flow this becomes the linear Poisson
equation,

 
K
2N

hΔ 22                                                         ....(19)

Flow is steady and N = 0 :
If flow is steady and there is zero net infiltration/

leakage (N=0) the general Eq. (19) reduces to the linear
Laplace Eq. (De Wiest, 1969) :

0(h)Δ 22   ....(20)
where, h must be measured from the horizontal

aquifer base for Eq. 14 -20 to be valid.

Aquifers with uniform transmissivity:
For many flow problems in confined aquifers and

some in unconfined aquifers, it is reasonable to construct
a model that approximates the real system in the following
ways: 1. The flow is steady state. 2. The resistance to
vertical flow is neglected; only the resistance to horizontal
flow is accounted for. 3. The aquifer transmissivity T is
homogeneous and constant (Bath, 1968).

Solution for uniform flow:
One solution of Laplace Eq. (13) represents uniform

flow in one direction, where the hydraulic gradient is
constant over the whole x,y plane and the potentiometric
surface is planar. On a large scale, the potentiometric

MATHEMATICAL MODELING OF TWO-DIMENSIONAL UNCONFINED FLOW IN AQUIFERS

1-10



4 HIND INSTITUTE OF SCIENCE AND TECHNOLOGYAsian Sci., 12(1&2) June & Dec., 2017 :

surface of an aquifer is usually not planar. But if the
area of interest is just a small portion of an aquifer, the
head distribution within that area may be nearly planar
and this solution can be useful. This solution can be
derived by observing that one possible set of solutions
for the Laplace equation would both (Yates, 1992).

0
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

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y
h
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2



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                                     .....(21)

If the above equations are true, then integration of
the above gives:

A
x
h





and B
y
h





                                          ....(22)

where, A and B are constants. Integrating both of
these equations results in a solution of the form (Bath,
1968).

CByAxh                                              .....(23)
where, A,B and C are constants. This solution

represents uniform horizontal flow with a planar
potentiometric surface. The constants A and B are the
hydraulic gradients in the x and y  directions, as Eq. (22)
shows. The constant C moves the head surface up and
down to different elevations without affecting the
gradient. By itself, this solution represents flow in a
uniform direction with a uniform hydraulic gradient
everywhere in the x, y plane. If A=B=0, this solution
reduces to h = C, a stagnant condition with no gradient
and no flow. Three points of known head are required to
uniquely define the surface with the constants A,B and
C.

Solution for radical flow to a well:
A very useful solution to Laplace’s equation is that

for steady radial flow, which applies to flow in the vicinity
of a pumping well. This solution assumes radial flow
toward a well, so it makes sense to formulate the solution
in terms of a radial co-ordinate r centered on the well.
The origin of the co-ordinate system is taken as the
centerline of the well. With this solution, all flow is radially
symmetric in the r direction. This solution for radial flow
can be derived directly from the governing Laplace Eq.
(13), or it can be derived by combining Darcy’s law and
mass balance. We will take the latter approach, which is
straight forward Yates (1992).

Define the discharge of the well as Q[L3/T], which
by convention here is positive for a well that removes
water from the aquifer and negative for a well that inject
water into the aquifer. With mass balance, this same

discharge must be flowing through any closed boundary
that can be drawn around the well. Imagine that this
boundary is a cylinder of radius r centered on the well.
The height of the aquifer is b, so the surface area that
flow goes through on this cylinder is 2rb. The specific
discharge in the negative r direction (towards the well)

anywhere on this cylindrical surface is
dr
dh

Kqr . The

total discharge through the cylinder is the product of
specific discharge and the surface area of the cylinder,
and it must equal the discharge of the well (Boulton,1965).

 Q=2rbK dr

dh
=2rT dr

dh
                          ......(24)

This equation can be rearranged to separate the
variables r and h to give:

r
dr

T2
Q

dh


                                                 .....(25)

Integrating both sides of this equation yields the
solution for steady radial flow in an aquifer with constant
T (Raudkivi, 1979).

CrIn
T2

Q
h 

                                              .....(26)

where, C is a constant and r is the radial distance
from the center of the well to the point where h is
evaluated. This solution satisfies Laplace’s equation,
which when written in terms of radial co-ordinates for
radially symmetric flow is:

r

h

r

1

r

h
hΔ

2

2
2







                                          ......(27)

Because of the natural log in Eq. (26), the head
predicted by this solution has the following behaviors
close to and far from the well (James  and Charles,1980).

As r 0h  - and as r +, h +           ....(28)
Since wells always have some finite radius, the

singular behaviour as r 0 is not a concern. On the other
hand, the behaviour of this solution becomes
inappropriate at large distances from the well. In real
aquifers, heads do not increase indefinitely with distance
from pumping wells because of the existence of features
like rivers or lakes that supply water to the aquifer. Since
this solution does not incorporate the influence of such
far-field boundary conditions, its predictions become
inaccurate far from the well. This solution alone is valid
only in the region close to the well where the heads and
discharges are dominated by the influence of the well.
When the head is known at some point close to the well,
the constant C in Eq. (26) can be determined. Say that
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the head at radius r
0
 equals to h

0
. The solution at r = r

0
 is

(Tsai and Chen,1996).

CrIn
T2

Q
h 00 

                                            ....(29)

Solving the above equation for C yields:

00 rIn
T2

Q
hC


                                          .....(30)

Substituting this definition of C back into Eq. (26)
gives a form of the solution for the case where head is
known at a point near the well.

0
0

h
r
r

In
T2

Q
h 

                                         .....(31)

This equation is sometimes referred to as the Thiem
equation (Thiem, 1906). The point where r = r

0
 and h =

h
0
 can be at the radius of the pumping well if you know

the head at the pumping well, or it can be at the location
of some nearby non-pumping well or piezometer.

Solution for uniform recharge/leakage:
If there is steady flow and a nonzero net vertical

flow in through the upper and lower boundaries of the
aquifer (N0), Poisson’s Eq. (12) applies. Then the
recharge/leakage rate N is constant and independent on
x, y, there are some fairly simple solutions that can be
useful. One case where such a solution is often helpful
is the recharge area of an unconfined aquifer. Another
is a small portion of a confined aquifer where the net
leakage through aquitards is approximately uniform
(Singh, 2013).

The following function is a solution to the Poisson
equation that models constant recharge/leakage at rate
N over the entire x,y plane, as we will prove by
differentiation (Bath, 1968):

C]D)y(1[Dx
2T
N

h 22                               ....(32)

where, D is positive constant in the range 0 < D <
1. Performing the double differentiations on this solution
proves that it is a solution of Poisson’s equation for
constant recharge/leakage at rate N (compare with Eq.
(12).

T

N
D)2(1

2T

N
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2T

N

y

h
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h
2
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





                       ....(33)

 The head pattern produced by this solution for three
different values of the constant D. If D =1/2, the
recharge/leakage is conducted off to infinity in a radial
flow pattern, and the contours of constant head are
circles centered on the origin (Crank, 1975).

Cy
2
1

x
2
1

2T
N

h 22 






 

C,r
4T
N

h 2  )yx(r 222        ...(34)

The hydraulic gradient increases with distance from
the origin, which is necessary to conduct away an amount
of recharge/leakage that increases with the square of
distance from the origin. If D = 0 or D = 1, the flow
pattern becomes one dimensional, with water flowing
off to infinity in either the  y or x direction, respectively.
For other values of D, the head contours form ellipses,
each with aspect ratio:

D)D/(1
Δx
Δy

                                                    ...(35)

where, y/x  is the ratio of the y and x lengths of
the ellipses. When D< 1/2, y x and when D > 1/2,
y x. Inverting Eq. (35) gives.

2

2

x)y/(1

x)y/(
D




                                              ...(36)

There is an infinite variety of solutions depending
on the value of D because there is an infinite variety of
possible lateral boundary condition for the case of uniform
recharge/leakage. To see how various factors influence
these solutions, examine the radially symmetric form, Eq.
(34), for a constant T aquifer in a circular island in a
lake. Assume the island has a radius r

0
 and the head at

the shore is h
0
  Applying Eq. (34) at the shoreline yields.

Cr
4T
N

h 0
2

0                                               ....(37)

Solving for C in the above gives:

0
2

0 r
4T

N
hC                                                  ....(38)

Substituting Eq. (38) back into Eq (34) gives the
solution for this particular situation.

00
22 h)r(r

4T
N

h                                         ....(39)

The head surface is a parabolic, radially symmetric
mound with its highest level at the center of the island.
The head surface is horizontal at the center of the island
and gets steeper with increasing r. The height of the
head above the lake level (h – h

0
) at the center of the

island (r = r
0
)  is.

0)r(atr
4T
N

hh 0
2

0                                    .....(40)

The height of the potentiometric surface is
proportional to the ratio of recharge/leakage to
transmissivity, N/T. when this ratio is higher; the mound
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in the potentiometric surface is higher. The height of the

potentiometric surface is also proportional to 0
2r . The

height of the mound is proportional to the square of the

average distance to fixed-head boundaries ( 0
2r  in the

case). These concepts apply to aquifers of variable
shape, not just to circular ones.

Solution of transient unconfined ground water flow:
The problem of unsteady flow of groundwater into

a well has been extensively studied, but the equivalent
two-dimensional problem of flow into a large excavation
has not received the same attention. We give an analytical
solution of the equations describing the transient
unconfined groundwater flow into a large cut such as an
open cut strip mine. Here the free surface boundary of
flow is time dependent and is not known beforehand
(Gambolati, 1976). The discharge comes from the elastic
storage and also from the lowering of the water table.
Besides the simplifying assumptions of negligible
interrelation between the stress field and flow field of
the aquifer and negligible effect of the capillary fringe
(Brutsaert et al., 1971) the treatments of unsteady
confined flow usually assume that the elastic storage
coefficient is negligible, i.e. the aquifer and water are
incompressible, e.g. Gambolati (1976) and on an
assumption related to the effect of falling water table on
the vertical mass transport and the associated
piezometric gradient. The Dupuit approximation neglects
the vertical mass transport and puts the horizontal
velocity proportional to the slope of the free surface
(Boulton, 1954).

Governing equations in two dimensions:
The continuity equation combined with the Darcy

law leads for two- dimensional unconfined flow to Eq.
(11) i.e.

t
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S
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h
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2

2










                                           ....(41)

where, y
γ
p

h 







  is the piezometric head; T= Kh

0

is the transmissivity (m2s-1); h
0
 is the undisturbed

piezometric level and S is the storage co-efficient
(Carslaw and Jaeger, 1959).  For an unconfined aquifer
the storage co-efficient S is given by Boulton (1965).

eυ SSS                                                      ....(42)
where, S is the storage co-efficient due to partial

drainage of voids with an upper limit of porosity of the
aquifer; S

e
= h

0


g
 (+n) is the elastic storage co-

efficient;  is the inverse of the modulus of elasticity E
s

of the aquifer;  is the inverse of the bulk modulus E
w
 of

water and n is the porosity. Since S is of the same order
of size as n, the ratio of S

e
 to S is usually small, i.e.

/n)](ρ[βh/nS 0e  ....(43)
where,  and  are very small (xand 

smaller still) and unless h
0
 is extremely large the right

hand side is of the order of 10-6. For the saturated
condition of the aquifer Eq. (41) reduces to (Necati ozisic
, 1993).

t
h

T
s

h e2




                                                 .... (44)

and for the incompressible aquifer and water to:
0h2                                                        .....(45)

Eq. (45) is Laplace equation and which is valid for
steady conditions and for the above unsteady conditions
(Jacob Bear, 1979). The time dependence for this type
of unsteady flow comes in through the upper boundary
condition. The boundary conditions, are as follows:

(i) No flow across the lower impervious boundary:
0yat0y /h 

(ii) At the free surface:
ΔxΔhSt)Q(Q υxy 

Which is for isotropic conditions becomes

ΔxΔhSνΔtΔy
y
hΔx

y
h

K 
















and on dividing through withxt  and going to the
limit

t
h

y
h

y
h

S
K

2

ν 




























at y = h. Neglecting the square of the piezometric
gradient leads to the linearized boundary condition:

0
y
h

S
K

t
h

ν









at y = h.
(iii) At the discharge boundary:

0xh;y;hyh

0x;hh;hy0

0w

ww





where, the first is control by the water level h
w
 and

the second by atmospheric pressure on the surface of
seepage, which is ignored by the Dupuit approximation
(Nguyen and Raudkivi, 1983).
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Boulton (1954 and 1965; Carslaw and Jaeger, 1959
and Jacob Bear, 1979) used the above approximate
boundary conditions to solve the transient flow problem
in cylindrical co-ordinates but instead of satisfying
boundary conditions (ii) at y =h , he complied with it at
y=h

0
, the initial water level. He stated that the error

involved made the calculated drawdown too large but
that the error would tend to be cancelled due to another
assumption in the solution.

Szabo and McGaig (1968) and Streltsova (1975)
used the above equations to solve the anisotropic flow
case, using a finite difference model, and found the
computed drawdown to be in good agreement with that
from an analogue solution. Streltsova (1975) and Szabo
and McGaig (1968) introduced a vertical diffusivity term
and solved a two-dimensional transient flow problem by
Laplace transform. She found that the solutions
converged to those from the Dupuit approximation for
large values of time but did not elaborate on the
estimation of the vertical diffusion length.

Solution for instantaneous drawdown at discharge
face:

The solution of

0
y

h

x

h
2

2

2

2







 ...(46)

with the boundary conditions (i), (ii), (iii) for νSS 

and t < 0; h = h
0









0

w

hh0;x

hh0;x
0t

Since the drawdown is symmetrical with respect to
the centre line of the excavation the general solution
would be an even function of x, of the form (Boulton,
1954).

da)x(asin(ay)cosht)(a,Th 0
                         ....(47)

where, dummy variable a is used which vanishes
on integration and T (a,t) is the transient component, a
function of a and time t. It will satisfy the Laplace
equation, Eq. (46), boundary condition (i), the symmetry
requirement and it must have a finite value at x =. For
x > 0; | x | = x; the boundary condition (ii), modified for
short time, i.e. y=h

0
 like Boulton’s approximation, can

be written as:

0da(ax)sinh)(ahsinha
S
K

t)T(a,)(ahcosh
t
T

0 o
ν

0  












i.e. 0)(ahsinha
S

K
t)(a,T)(ahcosh

t

T
0

ν
0 




where,
]t)(ahtanha)(K/S[expT(a,0)t)T(a, 0ν                  ...(48)

T (a,0) can be evaluated from the initial boundary
condition t=0, giving the initial water surface level
(Boulton, 1954).



0 0 da(ax)sinh)(ahcoshT(a,0)(a)H

which is the Fourier sine transform of [T(a,0) cosh
(ah

0
)] of which the inverse transform gives:

   
    

0
0

dxaxsin
ahcosh
xH

π
2

a,0T                           ....(49)

If for convenience the water level at the excavated
pit, after the instantaneous drawdown (t = 0) is taken as
the datum, then the initial water surface level H (x) is a
Heaviside unit function (Bath, 1968) with a jump of (h

0
-

h
w
) at x = 0 . The integral of Eq. (49) can, therefore, be

evaluated as (Boulton, 1954).

     






 










a
hh

ahπcosh
2

a,0T w0

0
                          ....(50)

and the solution for the piezometric head with datum
at y = h

w
 becomes:

   
 

    datahtanha
S
K

exp
a
axsin

ahcosh
aycosh

hh
π
2

h 0
ν

0
0

w0



















 

  ...(51)

When, y= h
0
is introduced above, which tends to

reduce the error due to boundary condition (ii), Eq. (48),
the free surface equation becomes (Boulton, 1954).

  w0
ν

0w0 hdatahtanha
S

K
exp(ax)sin

a

1
)h(h

π
2

h 



















 














    ..(52)

The drawdown at distance x from the pit and time
t is :

   

































 















  datahtanha
S
K

expaxsin
a
1

π
2

-1)h(hhhs 0
ν

0w00

                                                               ....(53)

Substitution of )t
hS

K
(τ

0ν

 and = ah
0
  in Eq. (53)

yields (Boulton, 1954).

   




















 















  dλλtanhτλexp
h
λx

sin
λ
1

π
2

1hhs
0

0w0   ..(54)

or

 



















 τ,

h

x
G1hhs

0
w0                                    ...(55)

where,
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 dλλtanhτλexp
h
λx

sin
λ
1

π
2τ,

h
x

G
0

0
0









 






















 

and  vanishes on integration. Values of the integral









τ,

h
x

G
0

have been evaluated numerically..

Comparison with the dupuit approximation :
The dupuit-forchheimer model assumes that the

velocity through the saturated depth of the aquifer is
constant and proportional to the gradient of the water
table at that point, i.e. small surface and negligible vertical
piezometric gradients as is the case when the drawdown
is small. The transient flow Eq. is (Boulton, 1965).

t
h

K

S

x
h

h
x

ν























                                        ....(56)

Polubarinova-Kochina (1962) solved this equation
by two types of linearization and by using the Boltzmann
transformation. The linearization  h2 = h h

0
 yielded.






































2
1

ν

0
w0w t

S
kh

2
x

erf)h(hhh                         ....(57)

and the linearization u = h2  led to:

 
2
1

2
1

ν

0
w
2

0
2

w
2

S
tkh

2
x

erfhhhh






























                      ...(58)

These are to be compared to Eq. (55), i.e.

  







 τ,

h
x

Ghhhh
0

w0w

....(59)
The G-function plotted against , with  as a

parameter, shows that the integral G varies significantly

only over small values of . For example for 100
h
x

0



and all values of 0< ; 0.33λ10.0
h
x

0

  both followed

by small positive and negative oscillations with diminishing

a m p l i t u d e  a s  increases. When 1.0
h
x

0

   and    2 the

range is 0 << ~ 2;    4 the range is 0 << 1. 5  and  

6  the range is 0 < < 1.0. For 0.1
h
x

0

 ,    4 the range is 0

<  < 1.5 . In the range of < 1, the value of λλtanh  ,
particularly when << 1, then (Boulton,1954).

 












 







  dλτλexp)/

h
x

(sin
π
2

G 2
0

0




                         (60)

where, the integral:

 


















 







τ2

x/h
erf

2
π

dλτλexp)/
h

x
(sin 02

0
0




as can be shown with the help of tables (Handbook
of Mathematical Functions, National Bureau of Standards

p . 3 0 2 ,   















 
0

22
1

x
2

α
x

exp
α
π

2
1

dttx2cosatexp(x)g a n d

 

0 dxxg(x)f ). This substituted in Eq. (59) yields

 













τ2

)h(x /
erfhhhh 0

w0w which is identical with Eq. (57).

The difference between drawdown using G as defined

by Eq. (55) and (60) is   
π

GGhh2Δ 1w0 


where, G, is as defined by Eq (60).Computer printout
shows that G and G

1
 are identical to three decimal places

and two decimal places when.

x / h0 3 decimals τ 2 decimals τ

0.01 4 0.5

0.1 10 4

1.0 60 8

3.0 80 20

10 80

Both functions have the value 1.000 when

x / h0 5 6 7 8 9 10
τ 0.1 0.5 1.0 1.0 2.0 2.0

It is seen that for small values of (< 0.1) the
Dupuit solutions overestimate the drawdown but in the

vicinity of τ  0.1 the second linearization, Eq. (58), comes

close to the above presented solution which progressively
moves closer to the solution by the first linearization, Eq.
(57) and these are almost identical for > 2.0 (Boulton,
1954).

It should be noted that the capillary fringe and the
flow through this fringe were ignored both by the above
solution and those by Polubarinova-Kochina (1962). The
justification here is that large excavations are implied
where the influence of the fringe frequently becomes
small. The numerical analysis of the transient flow
situation, including the capillary fringe and K as a function
of elevation, by Vauclin et al. (1975) and their laboratory
experiments with a drawdown s = 0.7 m, porosity n =
0.3 and saturated soil K = 0.4 m h-1 yielded continuously
downward sloping water table profiles. The above
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solution straddles these profiles as an “s-curve”, i.e. the
water table is presented as a wave front which translates
away from the cut and flattens with time. For large time
increment an outflow region, with a uniform depth of
flow, is established.

The flow rate into the excavation per unit length is
(Boulton,1954).

 
0x

0

w0

0x
τ,

h
x

G
x

hh2T
x
s

2Tq 
 


















    







 

0w0
0

dλλhtanτλexphh
πh
4T

which for a given time can be evaluated with the
aid of the numerically evaluated integral.

Conclusion :
Analytical solutions are given for two-dimensional

Laplace equation under various conditions and also
transient two-dimensional unconfined groundwater, flow
into a large excavation after a rapid lowering of the
outflow level (Boulton, 1954). The solution approximates
that based on the Dupuit approximation for values of

2
hS

Ktτ
0ν









 .
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