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ABSTRACT

Derivation of general equation for two-dimensional aquifer flow is given. In this derivation we perform a volume balance
instead of a mass balance and obtained analytical solutions of two-dimensional saturated flow under various condition. We
also constructed transient unconfined groundwater flow equation by combining continuity equation with the Darcy law

and provide an analytical solution.
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iN the horizontal plane. This can be done because

most aquifers have an aspect ratio like a thin
pancake, with horizontal dimensions that are hundreds
or thousands of times greater than their vertical
thickness. In most aquifers, the bulk of the resistance
encountered along a typical flow path is resistance to
horizontal flow. When this is the case, the real three-
dimensional flow system can be modeled in areasonable
way using a two-dimensional analysis. This is
accomplished by assuming that h varieswith x and y, but
not with z, reducing the spatial dimensions of the
mathematical problem to a horizontal plane. This
simplifying assumption for modeling aquifer flow as
horizontal two-dimensional flow is called the Dupuit-

Fow in aquifersisoften model ed astwo-dimensional

Forchheimer approximation, named after the French and
German hydrol ogistswho proposed and embellished the
theory (Dupuit, 1863 and Forchheimer, 1886).

Dupuit and Forchheimer proposed the
approximation for flow in unconfined aquifers, but the
concept is equally applicableto confined aquiferswith
small amounts of vertical flow. They understood their
approximation to mean that vertical flow was ignored.
Kirkham (1967) later clarified the concept, pointing out
that there may be vertical flow in Dupuit-Forchheimer
models, but that resistanceto vertical flow isneglected.

Dupuit-Forchheimer model representsinaphysica
sense, imagine an aquifer perforated by numerous tiny
vertical linesthat possessinfinite hydraulic conductivity.
Thevertical linesdiminatetheresistanceto vertical flow,
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but the resistance to horizontal flow remains the same.
In model s using this approximation, the head distribution

on any vertical lineishydrostatic [Z—: = 0] :

Derivation:

First, equationswill be derived for one-dimensional
aquifer flow in the x direction and then they will be
extended to two-dimensional flow in x, y plane. In this
derivation we perform a volume balance instead of a
mass balance.

Consider an elementary volume that is a vertical
prism of cross-section Ax x Ay, extending the full
saturated thickness of the aquifer b. First consider the
discharge (volume/time) flowing throughthefacethatis
normal to the x axis as the | eft side of the prism. Using
Darcy’s law the flow (volume/time) into the prism at
coordinateis Bath (1968).

oh

K (9D ) Ay —(x) (1)

where, K, (x) the hydraulic conductivity at
coordinate x, b (x) is the saturated thickness at and X,
and oh/ox (x) is the x-direction component of the
hydraulic gradient at x. For auniform, single-layer aguifer,
transmissivity is defined as T=Kb, so the above
expression can be simplified to Boulton (1965).

oh

T 09y — () ..(2)

where, T _(X) is the x-direction transmissivity. Eq.
(2) appliesregardless of whether the aquifer consists of
asinglelayer asin Eq. (1) or has some more complicated
distribution of transmissivity such asmultiplelayerswith
varying K . The flow out of the right side of prism at
coordinate x + bx issimilarly defined as:

-T, (X+Ax)Ay%(x+Ax) (3)

Thenet volumeflux (volume/time) into the el ement
through the top and bottom of the prismisgiven as:

NA X Ay 4

where, N is the net specific discharge coming in
the top and bottom. The dimensions of N are volume/
time/area[L/T]. The timerate of change in the volume
of water stored in the el ement (volume/time) is:

ch
ssrhxay (5)

Balancing the volume fluxes given by the previous
four expressionsresultsin:

sh 1T A 1 éh
. {'rx (x)Ay ‘Z—hmJ ¥ {Ix (x+ A0 Ay D (x+ Ax) [+ NAX Ay =s LA x Ay
ox X i ot

..(6)

Dividing by Ax Ay and thenwriting thelimit for Ax
approaching zero gives:

lim | Tx(x+ AX)Z—Z(X + AX) - Tx(x)g—:(x) oh

Ax—0 +N=S—
AX ot

The first term is a derivative. Therefore, this
equation can be written more compactly as Bath (1968).

0 oh ch
&[Tx&j+N:SE (7)

Thisis the general equation for one-dimensional
aquifer flow. It is founded on Darcy’s law (Eg. 2 and 3)
and conservation of mass Eq. (6).

Modeling of two-dimensional aquifer flow:

If we extend the derivation to two dimensional
flows, the result is the general equation for two-
dimensional aquifer flow, allowing for anisotropy and
spatial variationsin T Boulton (1965).

(. oh) o(. oh oh
&[TX&)‘FE[T)/E]‘FN =SR ""(8)

where, Tx, Ty arex andy direction transmissivities,
N isnet recharge or leakage, Sis storage co-efficient, t
istime.

Boundary and initial conditions:

In order to obtain a unique solution of partial
differential equation corresponding to a given physical
process, additional information about physical state of
the processisrequired. Thisinformationis described by
the boundary and initial conditions. For steady-state
problem only boundary conditions are required, whereas
for unsteady-state problem both boundary and initial
conditions are required. Mathematically, the boundary
condition includes geometry of the boundary and the
values of the dependent variable or itsderivative normal
to the boundary. In physical terms, for ground-water
applications the boundary conditions are generally of
threetypes: (1) specified values, (2) specified flux or (3)
value-dependent flux, where the value is head,
concentration or temperature depending on the equation.
The initial conditions are simply the values of the
dependent variabl e specified every inside the boundary.
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For example, in aconfined aquifer for which theequations
are linear, there is no need to impose the natural flow
system since. In this case, the initial condition is
drawdown (the dependent variable) equal to zero
everywhere (Nguyen and Raudkivi,1983).

Transmissivity is isotropic and homogeneous:

If the transmissivity isisotropic and homogeneous
(T, = T,=T= constant), the Eq. (8) reduces to
(Brutseert et al., 1971).

ox: oy

This egquation can be written more compactly by
dividing by T and using the symbol for the Laplacian
operator, we get:

..(10)

If thereiszero net recharge or leakage (N=0), then
this becomes:

_Sboh

vh=="
T ot

(12)

Steady-state flow with transmissivity is isotropic
and homogeneous:

oh
If flow is steady-state (5 =°), the Eq. (10) takes

the form Charles (2002).

w N
Vh=—2= . (12)

Eqg. (12) isknown in physics and engineering asthe
Poi sson equation, named after the French mathematician
Denis Poisson (1781-1840). If flow is steady and there
iszero net recharge/leakage (N =0), Eq. (12) reducesto
the Laplace equation.

Vh=0 ...(13)
Flow in an unconfined aquifer:

Flow in an isotropic, homogeneous, unconfined
aquifer with a horizontal impermeable baseis a special
case of aquifer flow. If we measure hydraulic head from
the base of the aquifer, then h=b and T=Kh. Using this
definition of transmissivity in Eq. (8) resultsin Boulton
(1965).

Ki(h@}—i h@ +N:S@
ox\ ox) oyl oy ot

where, K is assumed to be isotropic and

(14)

homogeneous. This is a nonlinear partial differential
eguation because the terms in parentheses involve h
multiplied by itsderivative, nonlinear equationsaremuch
more difficult to solve than linear ones. The nonlinear
eguation can be avoided if it is written in terms of the
variable h? instead of h. Thisisdone by substituting the
following tworelations ( Bath, 1968),

héh 10 (hz)

x 2% ....(15)
and

oh 10,

@=§E(h ) ....(16)

Into EqQ. (14), resulting in adifferential equationin
termsof h?:

K[ & (2 & (. oh
j[y(h )+W(h )}rN:Sg ...(17)
Dividing by K/2, thisreducesto:
2pnz . 2N 2S¢éh
A+ = .(18)

For steady flow this becomes the linear Poisson
equation,

&(nf =22 ..(19)

Flow issteady and N =0 :

If flow is steady and there is zero net infiltration/
leakage (N=0) the general Eq. (19) reducestothelinear
Laplace Eq. (De Wiest, 1969) :

£%(h)* =0 ...(20

where, h must be measured from the horizont
aquifer base for Eq. 14 -20 to be valid.

Aquiferswith uniform transmissivity:

For many flow problemsin confined aquifers and
somein unconfined aquifers, it isreasonableto construct
amodé that approximatesthereal systeminthefollowing
ways. 1. The flow is steady state. 2. The resistance to
vertical flow isneglected; only theresistance to horizontal
flow isaccounted for. 3. The aquifer transmissivity T is
homogeneous and constant (Bath, 1968).

Solution for uniform flow:

Onesolution of Laplace Eq. (13) representsuniform
flow in one direction, where the hydraulic gradient is
constant over thewholex,y plane and the potentiometric
surface is planar. On a large scale, the potentiometric
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surface of an aquifer is usualy not planar. But if the
area of interest isjust asmall portion of an aquifer, the
head distribution within that area may be nearly planar
and this solution can be useful. This solution can be
derived by observing that one possible set of solutions
for the Laplace equation would both (Yates, 1992).

Foed o 1)

If the above equations are true, then integration of
the above gives:

oy

x Aand 5, =B (22
where, A and B are constants. Integrating both of
these equations results in a solution of the form (Bath,

1968).
h=Ax+By+C 23

where, A,B and C are constants. This solution
represents uniform horizontal flow with a planar
potentiometric surface. The constants A and B are the
hydraulic gradientsinthex andy directions, as EqQ. (22)
shows. The constant C moves the head surface up and
down to different elevations without affecting the
gradient. By itself, this solution represents flow in a
uniform direction with a uniform hydraulic gradient
everywhere in the x, y plane. If A=B=0, this solution
reducesto h = C, a stagnant condition with no gradient
and no flow. Three points of known head are required to
uniquely define the surface with the constants A,B and
C.

Solution for radical flow to a well:

Avery useful solution to Laplace’s equation is that
for steady radia flow, which appliesto flow inthevicinity
of a pumping well. This solution assumes radial flow
toward awell, soit makes senseto formul ate the sol ution
in terms of aradial co-ordinate r centered on the well.
The origin of the co-ordinate system is taken as the
centerlineof thewell. Withthissolution, dl flow isradialy
symmetricinther direction. Thissolution for radia flow
can be derived directly from the governing Laplace Eq.
(13), or it can be derived by combining Darcy’s law and
mass balance. We will take the latter approach, whichis
straight forward Yates (1992).

Definethedischarge of thewell asQ[L3/T], which
by convention here is positive for awell that removes
water from the aquifer and negative for awell that inject
water into the aquifer. With mass balance, this same

discharge must be flowing through any closed boundary
that can be drawn around the well. Imagine that this
boundary is acylinder of radiusr centered on the well.
The height of the aquifer is b, so the surface area that
flow goesthrough on thiscylinder is 2nrb. The specific
discharge in the negative r direction (towards the well)

anywhere on this cylindrical surface is -q,= K% . The

total discharge through the cylinder is the product of
specific discharge and the surface area of the cylinder,
andit must equal thedischarge of thewell (Boulton,1965).
dh
Q=2prbK % =2p Ty e (24)
This equation can be rearranged to separate the
variablesr and hto give:

Integrating both sides of this equation yields the
solution for steady radial flow inan aquifer with constant
T (Raudkivi, 1979).

h =&I nr+C

where, Cisaconstant and r is the radial distance
from the center of the well to the point where h is
evaluated. This solution satisfies Laplace’s equation,
which when written in terms of radial co-ordinates for
radially symmetricflow is:

. 0°h 16h

Ah :?4'?6—', ...... (27)

Because of the natural log in Eq. (26), the head
predicted by this solution has the following behaviors
closeto and far fromthewell (James and Charles,1980).

Asr® 0,h® -p andasr ® +u, h® +u ....(28)

Since wells always have some finite radius, the
singular behaviour asre 0isnot aconcern. Ontheother
hand, the behaviour of this solution becomes
inappropriate at large distances from the well. In real
aquifers, heads do not increaseindefinitely with distance
from pumping wells because of the existence of features
likeriversor lakesthat supply water to the aquifer. Since
this solution does not incorporate the influence of such
far-field boundary conditions, its predictions become
inaccurate far fromthewell. Thissolution aloneisvalid
only in theregion close to the well where the heads and
discharges are dominated by the influence of the well.
When the head is known at some point closeto thewell,
the constant C in Eq. (26) can be determined. Say that
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thehead at radiusr equalsto h. Thesolutionatr=ris
(Tsai and Chen,1996).

Q
hozzp.l_lnro*c (29)
Solving the above equation for Cyields:
c :ho_%l nre .. (30)

Substituting this definition of C back into Eq. (26)
gives aform of the solution for the case where head is
known at a point near the well.

Q r
hzﬁlnamo ..... (31)
Thisequationissometimesreferred to asthe Thiem
equation (Thiem, 1906). The point wherer =r and h =
h, can be at the radius of the pumping well if you know
the head at the pumping well, or it can be at thelocation
of some nearby non-pumping well or piezometer.

Solution for uniform recharge/leakage:

If there is steady flow and a nonzero net vertical
flow in through the upper and lower boundaries of the
aquifer (N=0), Poisson’s Eq. (12) applies. Then the
recharge/leakage rate N is constant and independent on
X, Y, there are some fairly simple solutions that can be
useful. One case where such a solution is often helpful
is the recharge area of an unconfined aguifer. Another
isasmall portion of a confined aquifer where the net
leakage through aquitards is approximately uniform
(Singh, 2013).

Thefollowing function isa solution to the Poisson
equation that models constant recharge/leakage at rate
N over the entire x,y plane, as we will prove by
differentiation (Bath, 1968):

N 2 2
h:_E[DX +(1-D)y“]+C ....(32)

where, D is positive constant in therange0 <D <
1. Performing the doubl e differentiations on thissolution
proves that it is a solution of Poisson’s equation for
constant recharge/leakage at rate N (compare with Eq.
(12).

o°h  o%h N N N
= —2D-——2(1-D)=——
2 oyr 2T 2T (1-D) T (33)

The head pattern produced by thissolutionfor three
different values of the constant D. If D =1/2, the
recharge/leakage is conducted off to infinity inaradial
flow pattern, and the contours of constant head are
circlescentered onthe origin (Crank, 1975).

+
2T \ 2 2
h=—Nr2ic (r2=x2+y?) (34
4T 1 LRy

Thehydraulic gradient increaseswith distancefrom
the origin, whichisnecessary to conduct away an amount
of recharge/leakage that increases with the square of
distance from the origin. If D =0 or D = 1, the flow
pattern becomes one dimensional, with water flowing
off toinfinity in either the y or x direction, respectively.
For other values of D, the head contours form ellipses,
each with aspect ratio:

Ay —
- =DI(1-D) ...(35)

where, Ay/Ax istheratio of they and x lengths of
the ellipses. When D< 1/2, Ay < Ax and when D > 1/2,
Ay < AX. Inverting Eq. (35) gives.
(Ay/Aax)?
- 1+ (Ay/AX)? -+(36)
Thereisan infinite variety of solutions depending
on the value of D because there is an infinite variety of
possiblelateral boundary condition for the case of uniform
recharge/leakage. To see how various factors influence
these solutions, examinetheradially symmetric form, Eq.
(34), for a constant T aquifer in acircular island in a
lake. Assume the island has aradius r, and the head at
theshoreish, Applying Eq. (34) at the shorelineyields.
N

hoz_Ero +C ...(37)
Solving for Cinthe above gives:
Chgr vl (39

Substituting Eq. (38) back into Eq (34) gives the
solution for this particular situation.

h=-N(r2r2)+h,

= .(39)

Thehead surfaceisaparabolic, radially symmetric
mound with its highest level at the center of theidland.
The head surfaceishorizontal at the center of theisland
and gets steeper with increasing r. The height of the
head above the lake level (h — h ) at the center of the
island (r =r) is.

N
h—hy=———r2 (atr =0
e o ( )

The height of the potentiometric surface is
proportional to the ratio of recharge/leakage to
transmissivity, N/T. when thisratio is higher; themound
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in the potentiometric surfaceishigher. The height of the

potentiometric surface is also proportional to 5. The
height of the mound is proportional to the square of the

average distance to fixed-head boundaries ("o in the
case). These concepts apply to aquifers of variable
shape, not just to circular ones.

Solution of transient unconfined ground water flow:

The problem of unsteady flow of groundwater into
awell has been extensively studied, but the equivalent
two-dimensional problem of flow into alarge excavation
has not received the same attention. We give an anal ytical
solution of the equations describing the transient
unconfined groundwater flow into alarge cut such asan
open cut strip mine. Here the free surface boundary of
flow is time dependent and is not known beforehand
(Gambolati, 1976). Thedischargecomesfromtheelastic
storage and also from the lowering of the water table.
Besides the simplifying assumptions of negligible
interrelation between the stress field and flow field of
the aquifer and negligible effect of the capillary fringe
(Brutsaert et al., 1971) the treatments of unsteady
confined flow usually assume that the elastic storage
coefficient is negligible, i.e. the aquifer and water are
incompressible, e.g. Gambolati (1976) and on an
assumption related to the effect of falling water table on
the vertical mass transport and the associated
piezometric gradient. The Dupuit approximation neglects
the vertical mass transport and puts the horizontal
velocity proportional to the slope of the free surface
(Boulton, 1954).

Governing equations in two dimensions:;
The continuity equation combined with the Darcy
law leads for two- dimensional unconfined flow to Eq.
11)i.e
0°h  8°h _Soh

. _ ....(41)
ox? oy* Tt

y
is the transmissivity (m?s?); h, is the undisturbed
piezometric level and S is the storage co-efficient
(Cardlaw and Jaeger, 1959). For an unconfined aquifer
the storage co-efficient Sisgiven by Boulton (1965).

S=S,+S. ...(42)
where, S, is the storage co-efficient due to partial

where, |, :[p]ﬂ/ is the piezometric head; T= Kh,

drainage of voids with an upper limit of porosity of the
aquifer; S=h, P, (a+nP) is the elastic storage co-
efficient; o istheinverse of the modulus of elasticity E_
of theaquifer; 3 istheinverse of the bulk modulusE  of
water and nisthe porosity. Since S isof the same order
of sizeasn, theratio of S;to S, isusually small, i.e.

S./n =h,p[B + (a/n)] _.__(43)

where, o and  are very small (B~5 x 10"%and a
smaller still) and unless h is extremely large the right
hand side is of the order of 10°. For the saturated
condition of theaquifer Eq. (41) reducesto (Necati ozisic
, 1993).

2 Se oh ... (44
V=22 (44)

and for the incompressible aquifer and water to:

v’h=0 (45)

Eq. (45) isLaplace equation and whichisvalid for
steady conditions and for the above unsteady conditions
(Jacob Bear, 1979). The time dependence for this type
of unsteady flow comesin through the upper boundary
condition. The boundary conditions, areasfollows:

(i) No flow across the lower impervious boundary:
oh/oy=0aty=0

(ii) At the free surface:
(Q,-Q,)At =S,Ah Ax
Whichisfor isotropic conditions becomes

—K(@Ax—@ijAt =Sv Ah Ax
oy oy

and on dividing through with AX.At and goingto the

K|(an) _an|_an

s, [\lay) ay| ot

at y = h. Neglecting the square of the piezometric
gradient leadsto the linearized boundary condition:

limit

oh K oh
_+——:
ot S, oy
ay=h.

(iii) At the discharge boundary:
O;y;hw; h=h,; x=0
hwéyého; y=h; x=0

where, thefirstis control by thewater level h and
the second by atmaospheric pressure on the surface of
seepage, which isignored by the Dupuit approximation
(Nguyen and Raudkivi, 1983).
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Boulton (1954 and 1965; Carslaw and Jaeger, 1959
and Jacob Bear, 1979) used the above approximate
boundary conditionsto solvethetransient flow problem
in cylindrical co-ordinates but instead of satisfying
boundary conditions (ii) at y =h , he complied with it at
y=h,, the initial water level. He stated that the error
involved made the calculated drawdown too large but
that the error would tend to be cancelled due to another
assumptioninthesolution.

Szabo and McGaig (1968) and Streltsova (1975)
used the above equations to solve the anisotropic flow
case, using a finite difference model, and found the
computed drawdown to be in good agreement with that
from an anal ogue solution. Streltsova (1975) and Szabo
and McGaig (1968) introduced avertical diffusivity term
and solved atwo-dimensional transient flow problem by
Laplace transform. She found that the solutions
converged to those from the Dupuit approximation for
large values of time but did not elaborate on the
estimation of the vertical diffusionlength.

Solution for instantaneous drawdown at discharge
face:

The solution of

h oy ...(46)

ox° oy

with the boundary conditions (i), (ii), (iii) for s=s,
andt<0; h=h,

x=0; h=h,
t=0—>
x>0; h=h,

Sincethe drawdown is symmetrical with respect to
the centre line of the excavation the general solution
would be an even function of x, of the form (Boulton,
1954).

h=J;T (at) cosh (ay) sin (ax) da ..(47)

where, dummy variable ais used which vanishes
on integration and T (a;t) isthe transient component, a
function of a and time t. It will satisfy the Laplace
equation, Eq. (46), boundary condition (i), the symmetry
requirement and it must have afinitevalueat x = oc. For
X > 0; | x | = x; the boundary condition (ii), modified for
short time, i.e. y=h, like Boulton’s approximation, can
be written as:

j;{aa—rcosh (ahy) +T(a,t)S£asinh (ah,) }sinh (ax)da=0

v

K
S

i.e %Cosh (ah,)+ T (a t)—asinh (ah,) =0

v

where,

T(a,t)=T(a,0) exp[-(K/S,)atanh (ahy)t] ...(48)

T (a,0) can be evaluated from the initial boundary
condition t=0, giving the initial water surface level
(Boulton, 1954).

H (a) = |, T(a,0)cosh (ah,) sinh (ax)da

whichisthe Fourier sinetransform of [T(a,0) cosh
(ah,)] of which the inverse transform gives:

T(a,O):%jg’m:q(ﬁ—ojsin (@x)dx ..(49)

If for conveniencethe water level at the excavated
pit, after the instantaneous drawdown (t = 0) istaken as
the datum, then the initial water surfacelevel H (x) isa
Heaviside unit function (Bath, 1968) with ajump of (h,-
h,) a x=0. Theintegral of Eq. (49) can, therefore, be
evaluated as (Boulton, 1954).

L

and the solution for the piezometric head with datum
aty = h, becomes:

h= %(ho—hw)fff fgi(gii))#exp{—[sﬁ] atanh (aho)‘}da ..(51)

....(50)

v

When, y= h,is introduced above, which tends to
reducethe error dueto boundary condition (ii), Eq. (48),
the free surface equation becomes (Boulton, 1954).
h= (%j(ho—hw)ﬂf[%J sin (ax)exp{— [sﬁj atanh (aho)t}damw +(52)

v

The drawdown at distance x from the pit and time
tis:

s=h,-h = (h,-h,) {1(%];;[&]@ (ax)exp{ [Sﬁvjatanh (aho)t} da}
..(53)

)t and A = ah, in Eq. (53)

Svho

Substitution of t=(
yields(Boulton, 1954).

s_(ho_hw){l-[ﬂf;(ﬂsn(%] exp[- TAtanh ) ]dx} .(54)

0

or

s_(ho—hw){l—e(%,rﬂ

where,

...(55)
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G [hio , TJ = [%j}o’“ [%j S n[a—:j exp[- TA tanh A]dA
and 2 vanishes onintegration. Values of theintegral

G (hirJ have been eval uated numerically.

0

Comparison with the dupuit approximation :

The dupuit-forchheimer model assumes that the
velocity through the saturated depth of the aquifer is
constant and proportional to the gradient of the water
tableat that point, i.e. small surfaceand negligiblevertica
piezometric gradients asisthe case when the drawdown
issmall. Thetransient flow Eq. is(Boulton, 1965).

i[h@]{i}@ ....(56)
ax\ ox) (K et
Polubarinova-K ochina (1962) solved thisequation

by two types of linearization and by using the Boltzmann
transformation. Thelinearization h*=hh, yielded.

)]

h=h,+(hy—h,,)erf

....(57)
andthelinearizationu=h? ledto:
" {h v J] kgjt];ﬂz -
These are to be compared to Eq. (55), i.e.
h=h,+(h,—h, )G (i,xj
o ..(59)

The G-function plotted against A, with t as a
parameter, showsthat theintegral G variessignificantly

X
only over small values of L. For example for ;—=100
0

and all valuesof o<1 <0.1; 1,~=100<A <033 hoth followed
by small positive and negetive oscill ationswith diminishing

A increases. When hi0=1-0 andt > 2 the
rangeiso<| <~2;t Z4therangeiso<l <1.5 andt >
6 therangeiso<! <1.0. For hizo.l,t > 4therangeiso

<1 <15 . In the range of 1< i the value of tanha=x,
particularly when <<1, then (Boulton,1954).

S e

where, theintegral:

ol o IX 2 _(m x/hy
[ [sm G }exp(—)\ T)d _( ZJerfLﬁ}
as can be shown with the hel p of tables (Handbook
of Mathematical Functions, National Bureau of Standards

p.302, 9X=Fexp[-at? )cos2xtdt§[§]2exp[ Xz] and

a

f(x=[7g(x)dx). This substituted in Eq. (59) yields

Iho D . .
h=h,,+(h,—h, Jerf [(Xz\/;)}whmh isidentical with Eq. (57).

The difference between drawdown using G as defined
by Eq. (55) and (60) is , _ 2(ho=h, JG,~G)

T
where, G isasdefined by Eq (60).Computer printout
showsthat G and G, areidentical to three decimal places
and two decimal places when.

X/ hg 3decimals > 2decimals T >
0.01 4 0.5
0.1 10
10 60
3.0 80 20
10 80
Both functions have the value 1.000 when
x/ ho 5 6 7 8 9 10
T= 01 05 1.0 1.0 20 20

It is seen that for small values of 7t (t < 0.1) the
Dupuit solutions overestimate the drawdown but in the
vicinity of = 0.1thesecond linearization, Eq. (58), comes
closeto the above presented sol ution which progressively
moves closer to the solution by thefirst linearization, EQ.
(57) and thesearealmost identical for t> 2.0 (Boulton,
1954).

It should be noted that the capillary fringe and the
flow through thisfringe wereignored both by the above
solution and those by Polubarinova-K ochina (1962). The
justification here is that large excavations are implied
where the influence of the fringe frequently becomes
small. The numerical analysis of the transient flow
stuation, including thecapillary fringeand K asafunction
of elevation, by Vauclinet al. (1975) and their |aboratory
experiments with a drawdown s = 0.7 m, porosity n =
0.3 and saturated soil K = 0.4 m h'yielded continuously
downward sloping water table profiles. The above
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solution straddles these profiles as an “s-curve”, i.e. the
water tableis presented asawave front which translates
away fromthe cut and flattenswith time. For largetime
increment an outflow region, with a uniform depth of
flow, isestablished.

Theflow rateinto the excavation per unit lengthis
(Boulton,1954).

as

=-2T
g oX

x=0

_ 2T (ho_hw)iG {L le
6x 1 x=0

_ (ﬂ](ho_hw )i exp (- TAtanh A)dA
nth,

which for a given time can be evaluated with the
aid of the numerically evaluatedintegral.

Conclusion :

Analytical solutionsare given for two-dimensional
Laplace equation under various conditions and also
transient two-dimensi onal unconfined groundwater, flow
into a large excavation after a rapid lowering of the
outflow level (Boulton, 1954). The solution approximates
that based on the Dupuit approximation for values of

T=( Kt J>2
S,h, .
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