

DOI: 10.15740/HAS/AU/12.TECHSEAR(5)2017/1226-1232 Agriculture Update______ Volume 12 | TECHSEAR-5 | 2017 | 1226-1232

Visit us : www.researchjournal.co.in

RESEARCH ARTICLE: Bio-physical characters of maize (*Zea mays* L.) genotypes to elevated carbon dioxide and temperature regimes

K. ADISHESHA, B.S. JANAGOUDAR, A. AMAREGOUDA, U.K. SHANAWAD AND M. CHANDRANAIK

Article Chronicle : Received : 15.07.2017;

Accepted : 30.07.2017

<u>Key Words:</u> Physiology of maize, Elevated CO_2 , Temperature, Biophysical parameter

Author for correspondence :

K. ADISHESHA

Department of Crop Physiology, University of Agricultural Sciences, RAICHUR (KARNATAKA) INDIA Email : adishesha1144@ gmail.com

See end of the article for authors' affiliations

SUMMARY: Higher atmospheric CO, concentration may influence positively plant production. Carbon dioxide was substrate for photosynthesis and gradient increase between the ambient air and mesophyll cells. Plants respond not only to change in surrounding CO, concentration, but to modifications of their microenvironment. Plants with C_4 photosynthetic pathway showed negligible photosynthetic response to elevated CO₂ because the C_4 cycle increased the CO₂ concentration in bundle sheath cells to the point where very little photorespiration occurs and calvin cycle is nearly saturated with CO₂ However, there is no consensus on the quantitave effects of increased CO₂ on plant processes and growth because of differences in response at different stages of growth, species of crops and growth limiting environmental factors. The purpose of this paper was to study the biophysical response of maize genotypes to elevated carbon dioxide and temperature regimes. The exposure of the crop elevated CO, and temperature regime resulted in the significant decrease in the photosynthetic rates. The minimum reduction was observed in HTMR-1, HTMR-2 and NK 6240 and the maximum in ARJUN and 900M-GOLD. Among the genotypes NK 6240, HTMR-1 and 900 M-GOLD genotype recorded maximum transpiration rate and stomatal conductance whereas, the genotypes HTMR-2 and ARJUN had the least transpiration rate and stomatal conductance. More detailed investigations are needed to complete our imagination about future consequences of possible climate variations, mainly in local level.

How to cite this article : Adishesha, K., Janagoudar, B.S., Aamaregouda, A., Shanawad, U.K. and Chandranaik, M. (2017). Bio-physical characters of maize (*Zea mays* L.) genotypes to elevated carbon dioxide and temperature regimes. *Agric. Update*, **12**(TECHSEAR-5) : 1226-1232; **DOI: 10.15740/HAS/AU/12.TECHSEAR(5)2017/1226-1232.**

BACKGROUND AND OBJECTIVES

Global atmospheric CO₂ concentration has been increasing since the beginning of the industrial revolution in the mid-18th century and is predicted to double at some time in the midor late 21st century. Humans emitted 6 gigatons of carbon per year into the atmosphere from fossil fuel burning and cement production during the 1990's, yet only about half of this carbon accumulated in the atmosphere. Of the remainder, about half was absorbed by the oceans and half by terrestrial ecosystems. Ecological responses to CO₂ enrichment and climate change are expressed at several interacting levels: photosynthesis and stomata movement at leaf level, energy and gas exchanges at the canopy level, photosynthates allocation at the plant level, and water budget and carbon cycling at the ecosystem level. Increasing level of CO₂ concentration has effect through modification of stomata behaviour on photosynthesis, water use efficiency and crop yield, etc. Stomata movements may change in response to elevated CO₂. A doubling CO₂ concentration reduces the conductance at the leaf level by 30-40 per cent, although large differences among species exist and values as high as 50-70 per cent decrease can be found in the literature with similar response between C₃ and C₄ species. Two responses of crops to elevated CO₂ are an increase e in the rate of photosynthesis and a decrease in stomatal conductance. The increase in net photosynthesis in C_3 species has been reported as high as 50-100 per cent when CO₂ concentration doubles compared to 10 per cent in C₄ species. The partitioning of net radiation on the leaves under elevated CO₂ concentration is modified due to decrease in stomatal conductance, which causes a decrease in transpiration leading to an increase in leaf temperature. The temperature of the leaf surface may rise 0.5 - 1.7°C only due to doubling CO₂ concentration or even upto 3°C, depending on the specie and the weather. Higher leaf temperatures may have important consequences on the longevity an photosynthetic capacity of the individual leaves and at the canopy level, as ageing maybe accelerated and shortening the growing season and estimated that a doubling CO_2 concentration, holding other factors constant, could lead to a 34 ± 6 per cent increase in agricultural yields of C_3 plants and a14±11 per cent in C4 plats with a 95 per cent confidence interval.

RESOURCES AND METHODS

An investigation was carried out to study the response of maize genotypes to elevated carbon dioxide and temperature regimes under Open Top Chamber (OTC's) at Main Agricultural Research Station (MARS), University of Agricultural Sciences, Raichur, Karnataka during Summer and *Kharif* season 2014-15. Five maize genotypes (HTMR-1, HTMR-2, ARJUN, 900M Gold, NK 6240) were sown in each OTC and in reference plot with controlled conditions with a spacing of 60 cm x 20 cm. Five plants were raised for each genotypes, therefore total 25 plants were raised in each open top chambers. For each genotype all the agronomic practices for raising the crop were practiced as per the package of practices of the University of Agricultural Sciences, Raichur. The following traits were recorded under elevated CO_2 and temperature regimes. Normalized difference vegetation index (NDVI), leaf temperature, photosynthetic rate, stomatal conductance, transpiration rate, cob length, and number of rows per cob,number of seeds per cob and grain yield per plant. The temperature and CO_2 treatments were randomly allocated in each of the five growth chambers as follows:

 T_1 : Reference open top chamber (390 ppm CO₂)

 T_2 : Ambient CO $_2$ @390 \pm 25ppm with 2°C rise in temperature

 T_3 : Elevated CO₂ @ 550 ± 25ppm with normal temperature

 $\rm T_4$: Elevated CO $_2$ @ 550 \pm 25ppm with 2 $^0\rm C$ rise in temperature

T₅: Reference plot (Open field)

OBSERVATIONS AND ANALYSIS

Significant difference was observed among the treatments, genotypes and also interaction effect at 30 and 60 DAS but non-significant difference was observed among the genotypes at 90 DAS. In general irrespective of the genotypes, mean of all the genotypes showed that the highest NDVI was observed in $e-CO_{2+}e$ -temp treatment except 90 days, followed by e-CO₂ except 90 days, reference plot except 30 days, and a-CO₂ and least NDVI was observed in $a-CO_{2+}e$ –temp treatment except 30 and 60 days. Irrespective of the treatments, the genotype HTMR-2 recorded maximum NDVI was noticed except 90 DAS and followed by, HTMR-1 except 90 DAS, 900M-GOLD except 30 and 90 days and NK 6240, and the lowest NDVI was noticed in ARJUN genotype. Among the treatments, e-CO₂ treatment recorded maximum photosynthetic rate followed by,e- $CO_{2+}e$ –temp, a- CO_{2} and a- $CO_{2+}e$ –temp and the least photosynthetic rate was observed in reference plot. Among the genotypes HTMR-1, NK 6240 and HTMR-2 genotypes recorded the highest photosynthetic rate, whereas and ARJUN and 900M-GOLD had less photosynthetic rate under altered conditions. This was mainly due to the e-CO₂ increase net photosynthesis in C_3 plants and C_4 plants because higher CO_2 can suppress RuBP oxygenase activity; decrease photorespiration (C_3)

Table 1 : Et	fect of elev	rated CO ₂ a	and temper	rature re-	gimes on	IVUN												
Treatments									IVUN									
			30 DA	S					60 DA	S					90 DA	S		
	HTMR- 1	HTMR- 2	ARJUN	GOLD GOLD	NK 6240	Mean	HTMR- 1	HTMR- 2	ARJUN	GOLD GOLD	NK 6240	Mean	HTMR- I	HTMR- 2	ARJUN	900 M GOLD	NK 6240	Mean
T_1	0.58	0.57	0.51	0.62	0.60	0.57	0.63	0.66	09.0	0.67	0.66	0.64	0.50	0.48	0.47	0.52	0.52	0.50
T_2	0.61	0.67	0.59	0.63	0.58	0.61	0.74	0.74	0.65	0.69	0.70	0.71	0.56	0.38	0.42	0.39	0.43	0.44
T_3	0.70	0.71	0.62	0.65	0.65	0.67	0.73	0.75	0.73	0.69	0.68	0.71	0.61	0.70	0.66	0.68	0.58	0.65
T_4	0.69	0.72	0.72	0.67	0.67	0.69	0.73	0.74	0.75	0.74	0.73	0.74	0.61	0.66	0.57	0.57	09.0	0.60
T_5	0.49	0.67	0.49	0.51	0.50	0.53	0.67	0.74	0.63	0.66	0.62	0.66	0.58	0.52	0.54	0.62	0.58	0.57
Mean	0.61	0.67	0.59	0.61	09.0		0.70	0.73	0.67	0.69	0.68		0.57	0.55	0.53	0.56	0.54	
		S.E±		C.D	. (P=0.01	(S.E±		C.D.	(P=0.01)	-		S.E±		C.D.	(P=0.01	
Υ		0.008			0.031			0.006		0	.022			0.008			0.029	
В		0.008			0.031			0.006		0	0.022			0.008			SN	
AXB		0.019		154	0.070			0.013		0	.049			0.018		0	990.0	
$T_1 = Ambien$ $T_3 = Elevate$ $T_5 = Referen$	nt CO ₂ (390 od CO ₂ (55) tee plot (op) ppm) 0 ppm) with en field)	1 normal te	mperature		FFZ	2 = 390 ppr 4 = 550 ppr VS=Non-sig	n $CO_2 + 2^0$ n $CO_2 + 2^0$ nificant	C in temper C in temper	rature	B	= Treatn =Genoty	nents pes					

Agric. Update, **12** (TECHSEAR-5) 2017 : 1226-1232 Hind Agricultural Research and Training Institute plants); and increase carbon assimilates for plant growth and development. Elevated CO₂ accelerates the photosynthetic rate, stimulates plant growth, and increases the carbon: nitrogen ratio of most plant species (Poorter et al., 1997; Curtis and Wang, 1998 and Barbehenn et al., 2004). Likewise, results of the study on spring wheat (Triticum aestivum L.) revealed that the host plants grown at e-CO₂ (550 and 700 ppm) generally had greater starch, sucrose, glucose, total nonstructural carbohydrates (TNCs), free amino acids, soluble protein and less fructose and nitrogen as reported by Chen et al. (2004). Whereas, under elevated temperature conditions photosynthetic rate was low mainly because plant could not maintain appropriate metabolism to keep normal development like photosynthesis, nutrient uptake, photorespiration, cell development, and so on and also higher temperature disrupts the movement of water, ion and organic solute across plant membranes, which interferes with photosynthesis and respiration (Christiansen, 1978). This was supported by number of authors (Berry and Bjorkman, 1980).

Assimilation rate significantly increased in all the genotypes when CO₂ was increased such increase in assimilation rates was due to increase in intercellular CO₂ concentration, which clearly suggests that the chloroplast is substrate limited. Considerable amount of information is available to suggest that the assimilation rate increases substantially when the plants were exposed to increasing CO_2 concentration. Among the treatments $a-CO_{2+}e$ temp treatment had recorded maximum transpiration rate and stomatal conductance followed by $e-CO_{2+}e$ –temp, a- CO₂, reference plot, and least transpiration rate and stomatal conductance was noticed e- CO₂ treatment. Among the genotypes NK 6240, HTMR-1 and 900M-GOLD genotype recorded maximum transpiration rate and stomatal conductance whereas the genotypes HTMR-2 and ARJUN had the least transpiration rate and stomatal conductance. Under elevated CO₂ condition transpiration rate and stomatal conductance was lowered mainly due to decrease in the water vapour pressure of the air inside the plant stand (Kocsis, 2007) and due to stomatal closure, and abundant carbon-dioxide concentration raised the intensity of photosynthesis. Elevated CO₂ reduce transpiration by partially closing the stomata and decreasing stomatal conductance. Similar results were obtained by Leakey et al. (2004) and found

Table 2 : Ef	Tect of elev	ated CO ₂	and temper	rature reg	times on	transpirs	tion rate	(m mol of	$H_2Om^{-2}S^{-1}$)									
Ireatments			20 DA	2				I ranspiratio	on rate(m r	nol of H ₂ C	((00 DA			
	HTMR- I	HTMR- 2	ARJUN	GOLD M 000	NK 6240	Mean	HTMR- 1	HTMR- 2	ARJUN	60LD	NK 6240	Mean	HTMR- I	HTMR- 2	ARJUN	900 M	NK 6240	Mean
T	1.48	1.28	86'0	1.52	1.63	1.38	2.06	1.99	1.95	2.43	1.99	2.08	2.88	2.57	2.52	2.94	3.02	2.79
T_2	2.13	1.92	2.15	1.65	2.55	2.08	2.54	2.59	231	2.40	3.11	2.59	3.12	3.23	2.82	3.02	3.67	3.17
Т3	1.27	1.00	0.57	1.03	1.25	1.02	2.04	1.74	1.48	1.78	2.00	1.81	2.60	2.28	2.10	2.31	2.69	2.40
T_4	1.71	0.96	1.02	16.1	1.99	1.52	2.16	1.88	1.85	2.53	2.52	2.19	2.72	2.66	2.32	2.71	2.65	2.61
Ts	1 33	1.04	0 64	1 49	1 60	1 22	2.28	1 90	143	2 11	2 60	2.06	2.63	251	2.10	2.70	2.70	2 53
Mean	1.58	1.24	1.07	1.52	1.81		2.22	2.02	1.80	2.25	2.44		2.79	2.65	2.37	2.74	2.95	
		S.E.±		C.D.	(P=0.01)	~		S.E.±		C.D.	(P=0.01)			S.E.±		C.D.	(P=0.01)	
Υ		0.059			0.222			0.023)	0.085			0.012			0.046	
В		0.059			0.222			0.023)	0.085			0.012			0.046	
AxB		0.133			0.496			0.051		0	061.0			0.028			0.103	
T ₁ = Ambier T ₃ = Elevate T ₅ = Referen Table 3 : Ef	nt CO, (390 cd CO ₂ (55) nce plot (op Tect of elev	(ppm) (ppm) wit en field) ated CO ₂	th normal te and temper	mperature rature reg	times on	T, T4	= 390 ppr = 550 ppr conducta	n CO,+ 2 ⁰ n CO ₂ + 2 ⁰ n CO ₂ + 2 ⁰	C in tempe C in temper C O ₂ m ⁻² s ⁻¹	rature	B	= Treatur =Genoty	pes					8
Teastments			100	0				stomatal co	nductance	(µmol CO	2m ⁻² s ⁻¹)				00 00	0		
11 Calling in	HTMR- I	HTMR- 2		GOLD 000 M	NK 6240	Mean	HTMR- 1	HTMR- 2	ARJUN	60LD	NK 6240	Mean	HTMR- l	HTMR- 2	ARJUN	GOLD C	NK 6240	Mean
T1	0.299	0.276	0.287	0.279	0.295	0.287	0.393	0.364	0.383	0.368	0.387	0.379	0.195	0.186	0.186	0.194	0.190	0.190
T_2	0.253	0.251	0.240	0.247	0.254	0.249	0.338	0.348	0.335	0.325	0.346	0.338	0.142	0.148	0.137	0.155	0.158	0.148
T_3	0.251	0.242	0.231	0.242	0.248	0.243	0.347	0.342	0.329	0.335	0.372	0.345	0.140	0.131	0.129	0.148	0.166	0.143
T_4	0.263	0.251	0.250	0.249	0.270	0.257	0.344	0.334	0.341	0.333	0.344	0.339	0.142	0.137	0.144	0.137	0.156	0.143
Т,	0.420	0.360	0.384	0.354	0.342	0.372	0.439	0.435	0.438	0.435	0.405	0.430	0.239	0.213	0.206	0.205	0.206	0.214
Mean	0.297	0.276	0.278	0.274	0.286		0.372	0.364	0.365	0.359	0.370		0.171	0.163	0.160	0.167	0.175	
		S.E.±		C.D.	(P=0.01)	-		S.E.±		C.D.	(P=0.01)			S.E.±		C.D.	(P=0.01)	
А		0.003			0.011			0.004		0	016			0.004			0.013	
В		0.003		-	0.011			0.004			SN			0.004			SN	
AXB		0.007		-	0.026			0.010			NS			0.008			NS	
$T_1 = Ambien$ $T_3 = Elevate$ $T_5 = Referent$	nt CO ₂ (390 od CO ₂ (55 oce nlot (on) ppm) 0 ppm) wit en field)	th normal te	mperature		μË	= 390 ppr = 550 ppr S=Non-sia	n $CO_2 + 2^0$ n $CO_2 + 2^0$ nificant	C in tempe C in tempe	rature rature	B >	= Treatn =Genoty	tents pes					
	Jahand an					i.	The sector of											

Agric. Update, **12** (TECHSEAR-5) 2017 :1226-1232 Hind Agricultural Research and Training Institute

Table 4 : Ef	fect of elev	ated CO ₂ i	and tempe	rature re	gimes on	photosy	nthetic rat	e (µmolCC	$(1^{2}s^{-1})$									
								Photosynt.	hetic rate (µmolCO ₂₁	$n^{-2}s^{-1}$)							
Treatments			30 D/	IS					60 DA	S					90 DA	S		
	HTMR- l	HTMR- 2	ARJUN	900 M GOLD	NK 6240	Mean	HTMR- I	HTMR- 2	ARJUN	900 M GOLD	NK 6240	Mean	HTMR- l	HTMR- 2	ARJUN	GOLD 900 M	NK 6240	Mean
T_1	29.79	29.25	28.38	28.25	29,90	29.11	43.39	41.93	38.44	39.79	41.64	41.04	22.21	23.10	21.46	23.44	23.39	22.72
T_2	30.13	29.30	24.41	23.60	27.93	27.07	41.08	40.61	39.14	38.15	41.34	40.06	20.38	20.21	18.10	19.35	21.14	19.83
Т,	35.13	34.06	33.54	31.91	33.73	33.67	50.78	52.36	48.88	47.95	50.51	50.10	27.70	27.23	25.23	24.33	26.50	26.20
T_4	33.66	33.81	32.43	32.69	34.71	33.46	49.15	47.00	46.08	46.03	50.46	47.74	25.96	25.31	24.48	24.18	24.88	24.96
T_{5}	30.06	29.04	25.98	26.38	28.33	27.96	42.43	41.26	39.64	42.86	42.93	41.82	22.89	22.55	21.01	20.13	22.49	21.81
Mean	31.75	31.09	29.75	29.57	31.32		45.36	44.83	42.83	43.34	45.38		23.83	23.68	22.66	22.28	23.68	
		S.E.±		C.D	. (P=0.01	(S.E.±		C.D.	(P=0.01)	~		S.E.±		C.D.	(P=0.01)	
٨		0.234			0.875			0.370			1.382			0.203		U	.759	
в		0.234			0.875			0.370			1.382			0.203		-	.759	
AXB		0.523			NS			0.827			NS			0.454			8698	
$T_1 = Ambier$ $T_3 = Elevate$ $T_5 = Referen$	tt CO ₂ (390 d CO ₂ (55 ce plot (op	ppm) 0 ppm) wit en field)	h normal te	mperatur	9	FFZ	² = 390 pp 4 = 550 pp [S=Non-sig	m $CO_2 + 2^0$ m $CO_2 + 2^0$ mificant	C in tempe C in tempe	rature	×Ξ	v= Treatn	nents pes					

that growth at elevated CO_2 significantly increased leaf photosynthetic rate by upto 41 per cent and also stomatal conductance is lowered by 23 per cent under elevated CO_2 compared to ambient condition in maize. This was supported by no of authors (Stancial *et al.*, 2000; Vu 2005 and Rogers *et al.*, 2004).

There was significant differences were observed among the treatments, and genotypes but non-significant difference was observed in interaction effect with respect to cob length. The highest cob length was observed in HTMR-1 (16.00 cm) in e-CO₂ treatment, which was followed by HTMR-1 (15.63 cm) in e-CO₂, e -temp treatment, and HTMR-1(15.38cm). Among treatments, the lowest cob length was observed in 900M-GOLD and ARJUN (9.69 cm) genotype $a-CO_2$, e –temp treatment. Significant difference was observed among the treatments. But non-significant difference was observed among genotypes and interaction effect. The highest number of rows per cob was observed in HTMR-2 (15.13) in e-CO₂ treatment, which was followed by HTMR-1 (14.88) in e-CO₂ treatment, and NK 6240 (14.00) in a-CO₂₊ e –temp treatment. Among treatments, the lowestnumber of rows per cob were observed in NK 6240 (10.25) genotype in reference plot. Significant difference was observed among the treatments. But nonsignificant difference was observed among genotypes and interaction effect. The number of grains per cob was highest in HTMR-1 (484) genotype in e-CO₂ treatment, followed by HTMR-2 (463), 900M-GOLD (297) in same treatment. The least number of grains per cob was noticed in 900M-GOLD (147) genotype a-CO₂₊ e -temp treatment.

Significant difference was observed among the treatments. But non-significant difference was observed among genotypes and interaction effect. The lowest grain yield per plant was observed in 900M-GOLD (56.40 g) in a-CO₂₊ e –temp treatment. The highest grain yield per plant was observed in HTMR-1(163.00 g) in e-CO₂ treatment. Elevated CO₂ treatment alone recorded maximum grain yield per plant in all genotypes, followed by interaction effect e-CO₂₊ e –temp treatment in all genotypes. The increase in the growth rates and increase in photosynthetic rates resulted in increase in the yield. Maximum cob length, the highest no of rows per cob, highest number of seeds per cob and also grain yield per plant was highest in e-CO₂ treatment due to substantial increase in yield in elevated climate change treatments.

K. ADISHESHA, B.S. JANAGOUDAR, A. AMAREGOUDA, U.K. SHANAWAD AND M. CHANDRA
--

Table 5a : Ef	ffect of eleva	ted CO ₂ and	temperatu	e regimes o	on yield co	mponents	5					
Treatments						Yield con	mponents					
			Cob length	(cm)					No of rows	per cob		
	HTMR-1	HTMR-2	ARJUN	900 M	NK	Mean	HTMR-1	HTMR-2	ARJUN	900 M	NK	Mean
				GOLD	6240					GOLD	6240	
T_1	13.31	10.75	11.56	13.38	14.44	12.69	11.88	12.50	12.50	12.25	14.00	12.63
T_2	12.25	10.88	9.69	9.69	12.00	10.90	11.25	11.75	11.63	11.50	11.13	11.45
T ₃	16.00	14.69	14.13	13.00	15.13	14.59	14.88	15.13	13.00	14.25	12.75	14.00
T_4	15.63	12.94	12.63	14.81	13.75	13.95	13.38	13.00	12.88	12.50	12.50	12.85
T ₅	15.38	13.31	10.69	12.25	12.50	12.83	12.50	12.25	11.38	11.88	10.25	11.65
Mean	14.51	12.51	11.74	12.63	13.56		12.78	12.93	12.28	12.48	12.13	
	S.E.±				C.D. (P=0.01)			$S.E.\pm$		C.D. (P=0.01)		
А		0.349			1.303		0.378				1.412	
В		0.349			1.303			0.378			NS	
A x B	-	0.780			NS			0.844			NS	
$T_1 = Ambient$	CO2 (390 pp	m)			T_2	= 390 ppn	$n CO_2 + 2^0 C$	in temperatur	e	A= Treatm	ents	
$T_3 = Elevated$	CO2 (550 p	pm) with nor	mal tempera	ture	T_4	= 550 ppr	$n CO_2 + 2^0 C$	in temperatur	e	B=Genoty	bes	

 $T_5 =$ Reference plot (open field)

 $T_4 = 550 \text{ ppm CO}_2 + 2^{\circ} \text{C}$ in temperature NS=Non-signficant

Table 5b : Effect of elevated CO2 and temperature regimes on yield component
--

Treatments						Yield co	omponents						
		No o	f seeds per c	ob (number)			(Grain yield po	er plant (g)			
	HTMR-	HTMR-	ARJUN	900 M	NK	Mean	HTMR-	HTMR-	ARJUN	900 M	NK	Mean	
	1	2		GOLD	6240		1	2		GOLD	6240		
T_1	296	312	304	312	283	301	97.26	92.99	91.56	92.69	85.35	91.97	
T_2	172	154	167	147	190	166	64.56	59.63	63.13	56.40	64.71	61.68	
T ₃	484	463	409	412	417	437	163.00	154.00	139.50	139.63	139.88	147.20	
T_4	388	391	343	347	341	362	127.75	127.75	116.20	118.65	117.33	121.54	
T ₅	260	242	230	267	242	248	86.38	80.88	76.95	82.44	72.96	79.92	
Mean	320	312	290	297	294		107.79	103.05	97.47	97.96	96.05		
	$S.E.\pm$			C.I	C.D. (P=0.01)			S.E.±			C.D. (P=0.01)		
А		12.379			46.268			3.183			11.896		
В		12.379			NS			3.183			NS		
A x B	-	27.679			NS		-	7.117			NS		
$T_1 = Ambient$	CO ₂ (390 pt	om)			Т	$f_2 = 390 \text{ pp}$	$m CO_{2} + 2^{0} C$	in temperat	ure	A= Treat	ments		

 T_3 = Elevated CO₂ (550 ppm) with normal temperature $T_5 =$ Reference plot (open field)

 $T_4 = 550 \text{ ppm CO}_2 + 2^{\circ} \text{C}$ in temperature NS=Non-significant

Likewise, the combination of increasing CO₂ concentration and air temperature resulted in reduced grain yield and declining harvest index compared to

increased CO₂ alone. (Moya et al., 1998). Similarly Mishra and Agrawal (2014) reported that in Mung bean crop under elevated CO₂ 700 ppm increased total chlorophyll, photosynthetic rate, growth and yield parameters.Higher temperature decrease the plant biomass and yield by decreasing photosynthesis and increasing transpiration and stomatal conductance (Nobel, 2005). Also, plants mitigate overheating by leaf rolling and drooping and vertical leaf orientation (Larcher, 2003 and Nobel, 2005) or by transient wilting (Chiariello

et al., 1987 and Nobel, 2005). Such adaptive mechanisms likely reduce leaf exposure to incident light and in turn, may lead to decreased photosynthesis.

B=Genotypes

Conclusion :

The exposure of the crop elevated CO₂ and temperature regime resulted in the significant decrease in the photosynthetic rates. The minimum reduction was observed in HTMR-1, HTMR-2 and NK 6240 and the maximum in ARJUN and 900M-GOLD. Among the genotypes NK 6240, HTMR-1 and 900 M-GOLD genotype recorded maximum transpiration rate and stomatal conductance whereas, the genotypes HTMR- 2 and ARJUN had least transpiration rate and stomatal conductance. The exposure of the crop to elevated CO_2 and temperature regime resulted in significant increase in leaf temperature in HTMR-2, 900M-GOLD and HTMR-1 and least leaf temperature was noticed in ARJUN and NK 6240 genotype. Among five maize genotypes studied the good response to NDVI was observed in HTMR-2, HTMR-1 and 900M-GOLD whereas, poor response to NDVI was observed in ARJUN and NK 6240 genotypes.

Authors' affiliations :

B.S. JANAGOUDAR, Department of Crop Physiology, University of Agricultural Sciences, DHARWAD (KARNATAKA) INDIA

A. AMAREGOUDA AND M. CHANDRANAIK, Department of Crop Physiology, University of Agricultural Sciences, RAICHUR (KARNATAKA) INDIA

U.K. SHANAWAD, Department of Agronomy, University of Agricultural Sciences, RAICHUR (KARNATAKA) INDIA

REFERENCES

Barbehenn, R.V., Chen, Z., Karowe, D.N. and Spickard, A. (2004). C_3 grasses have higher nutritional quality than C_4 grasses under ambient and elevated atmospheric CO₂. *Global Change Biol.*, **10** : 1565-1575.

Berry, J. and Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in high plants. *Ann. Rev. Plant Physiol.*, **31**: 491-543.

Chen, J., Xu, W., Burke, J.J. and Xin, Z. (2004). Role of phosphatidic acid in high temperature tolerance in maize. *Crop Sci.*, **50**: 506-515.

Chiariello, N.R., Field, C.B. and Mooney, H.A. (1987). Midday wilting in a tropical pioneer tree. *Func. Ecol.*, **1** : 3–11.

Christiansen, M.N. (1978). The physiology of plant tolerance to temperature extremes. In: Ajung (ed.) Crop tolerance to Suboptimal land conditions. *American. Soc. Agron. Madison.*, 173-191.

Curtis, P.S. and Wang, X. (1998). A meta-analysis of elevated CO₂ effects on woody plant mass, form and physiology. *Oecol.*, **113**: 299-313.

Kocsis, A.T. (2007). Impact of atmospheric CO_2 enrichment on some elements of microclimate and physiology of locally grown maize. *Appl. Ecol. Environ. Res.*, **6**(1): 85-94.

Larcher, W. (2003), *Physiological plant ecology*. 4th Ed. Springer-Verlag, Berlin Heidelberg.

Leakey, A.D.B., Bernacchi, C.J., Dohleman, F.G., Ort, D.R. and Long, S.P. (2004). Will photosynthesis of maize (*Zea mays*) in the us Corn Belt increase in future rich atmosphere.*Global Change Biol.*, **10**: 951-962.

Mishra, A.K. and Agrawal, S.B. (2014). Cultivar specific response of CO₂ fertilization on two tropical Mung Bean (*Vignaradiata* L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. *J. Agro. Crop Sci., ISSN* 0931-2250.

Moya, T.B., Ziska, L.H., Namuco, S.O. and Olszyk, D. (1998). Growth dynamics and genotypic variation in tropical, fieldgrown paddy rice (*Oryza sativa* L.) in response to increasing carbon dioxide and temperature. *Global Change Biol.*,**4** : 645– 656.

Nobel, P.S. (2005). Physicochemical and environmental plant physiology. 3rd ed. Academic Press, Inc., San Diego, California.

Poorter, H., Berkel, V. Y., Baxter, R., Hertog, J. D., Dijkstra, P., Gifford, R., Griffin, K. L., Roumet, C., Roy, J. and Wong, S. C. (1997). The effect of elevated CO_2 on the chemical composition and construction costs of leaves of 27 C_3 species. *Plant Cell Environ.*, **20** : 472-482.

Rogers, A., Allen, D.G., Davey, P.A., Morgan, P.A., Ainsworth, E.A., Bernacchi, C.J., Cornic, G., Dermody, O., Dohleman, F.G., Mahoney, J., Zhu, X.G. and Long, S.P. (2004). Leaf photosynthesis and carbohydrate dynamics of soybean grown throughout their life-cycle under Free-Air carbon dioxide Enrichment. *Plant, Cell & Environ.*, **27**: 449-458.

Stancial, K., Mortley, D.G., Hileman, D.R., Loretan, P.A., Bonsi, C.K. and Hill, W.A. (2000). Growth, pod and seed yield, gas exchange of hydroponically grown peanut in response to CO_2 enrichment. *Hort. Sci.*, **35** : 42-52.

Vu, J.C.V. (2005). Acclimation of peanut leaf photosynthesis to elevated growth CO_2 and temperature. *Environ. & Experimental Bot.*, **53**: 85-95.

