

DOI: 10.15740/HAS/IJPS/12.2/156-159 Visit us - www.researchjournal.co.in

Research Article

Stdiues on relationship among yield components and selection criteria for yield improvement in sorghum [*Sorghum bicolor* (L.) Moench]

SUSHIL KUMAR

SUMMARY

Association and path analysis was attempted for six traits *viz.*, days to 50 per cent flowering, plant height, panicle length, days to maturity, test weight and grain yield per plant. Thirty sorghum hybrids their respective parents and three checks were studied. Grain yield had expressed highly significant and positive correlation with plant height, panicle length, days to maturity and test weight at both genotypic and phenotypic levels, the characters that had positive direct effects on grain yield at both phenotypic and genotypic levels were test weight (0.543, 0.557), panicle length (0.352, 0.354), days to 50% flowering (0.169, 0.206) and days to maturity (0.113, 0.084). Plant height (-0.108, -0.082) had direct effect in negative direction at both phenotypic level and genotypic level. The inter-relationship among these characters might be used in the breeding programme to exploit the yield potential and to develop high yielding improved varieties with ease and target oriented research.

Key Words : Hybrids, Correlation, Path co-efficient, Sorghum

How to cite this article : Kumar, Sushil (2017). Stdiues on relationship among yield components and selection criteria for yield improvement in sorghum *[Sorghum bicolor* (L.) Moench] . *Internat. J. Plant Sci.*, **12** (2): 156-159, **DOI: 10.15740/HAS/IJPS/12.2/156-159**.

Article chronicle : Received : 21.03.2017; Revised : 03.05.2017; Accepted : 21.05.2017

Sorghum [Sorghum bicolor (L.) Moench] is an important staple food for more than 300 million people and feed for cattle in Asia and Africa. It is the fourth most important cereal crop following rice, wheat and maize. It is known for its drought tolerance

AUTHOR FOR CORRESPONDENCE

SUSHIL KUMAR, Department of Genetics and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, MEERUT, (U.P.) INDIA Email: sushil_svbp@rediffmail.com and is an indispensable crop of vast rainfed areas in semiarid regions in India. It is also grown in nutrient deficient soils and possesses tolerance to pests and diseases. The correlation and path analysis in combination, can give a better insight, into cause and effect relationship between different pairs of characters. The correlation measures the relationship existing between pairs of trait. But dependent traits are an interaction product of many mutually associated components. The path analysis takes into account the cause and effect relationship between the variables by partitioning the association into direct and indirect effects through other independent variables. The path analysis helps to resolve these correlations, further it throws more light on the way in which component traits contribute towards specifically identifying important component traits. Grain yield is the product of interaction of component traits. Apart from correlation studies, path co-efficient analysis is important to obtain information about different ways in which the component characters influences the grain yield.

MATERIAL AND METHODS

In present study, 32 sorghum hybrids along with, their respective parents and three checks were studied. The experiment was laid out in medium deep black soil under rain fed condition at Sardar Vallabhbhai Patel University of Agricultural and Technology, Meerut (U.P.) during *Kharif* 2012. The Randomized Block Design was followed with three replications and each entry was sown in two rows of 3 m length with inter row spacing of 45 cm and intra row spacing of 15 cm. All the recommended practices were followed to raise good crop. From each entry of every replication, five randomly selected plants were tagged for recording observations on all the quantitative characters. Days to 50 per cent flowering and days to maturity were recorded at plot level. Mean of five plants for each entry for each character was calculated and used for statistical analysis. Estimation of variation components and phenotypic and genotypic correlations were calculated by using the formulae given by Burton (1952) and Johnson *et al.* (1955). The simple correlation co-efficient was subjected to path analysis (Dewey and Lu, 1959).

RESULTS AND DISCUSSION

Phenotypic and genotypic correlations were calculated for six characters to know the nature of association existing among them. The results are presented in Table 1.

Days to 50 per cent flowering showed highly nosignificant positive correlation with grain yield at both genotypic and phenotypic level (Bueno, 1990). Larger the period for flowering may give scope for higher photosynthesis time. The significant correlation of plant height with grain yield was recorded. Further selection for any one of these traits results in development of dual

Table 1 : Genotypic and phenotypic correlation co-efficients for yield and yield contributing characters in sorghum							
Characters		Days to 50% flowering	Plant height	Panicle length	Days to maturity	Test weight	Grain yield
Days to 50% flowering	Р	1.000	0.395**	-0.121	0.337*	-0.196	0.025
	G	1.000	0.406**	-0.115	0.363*	-0.212	0.029
Plant height	Р		1.000	0.638**	0.193	0.1491	0.312*
	G		1.000	0.652**	0.203	0.154	0.313*
Panicle length	Р			1.000	0.0979	0.469**	0.544**
	G			1.000	0.108	0.501**	0.558**
Days to maturity	Р				1.000	0.369*	0.389*
	G				1.000	0.416**	0.416**
Test weight	Р					1.000	0.704**
	G					1.000	0.730**
P= Phenotypic level G= Genotypic level			* and **indicate significance of values at P=0.05 and 0.01, respectively				

Table 2 : Direct and indirect effect	te on grain viold a	t nhonotunia laval and	anotypic level in corchum
Table 2 : Direct and multect effect	ts on grain yielu a	t phenotypic level and	i genotypic level in sorghum

Characters		Days to 50% flowering	Plant height	Panicle length	Days to maturity	Test weight	Grain yield
Days to 50% flowering	Р	0.169	0.067	-0.020	0.057	-0.033	0.025
	G	0.206	0.083	-0.023	0.075	-0.043	0.029
Plant height	Р	-0.032	-0.082	-0.053	-0.016	-0.012	0.312
	G	-0.043	-0.108	-0.070	-0.021	-0.016	0.312
Panicle length	Р	-0.042	0.225	0.352	0.034	0.165	0.544
	G	-0.041	0.231	0.354	0.038	0.177	0.558
Days to maturity	Р	0.038	0.021	0.011	0.113	0.041	0.389
	G	0.030	0.017	0.009	0.084	0.035	0.416
Test weight	Р	-0.106	0.081	0.254	0.200	0.543	0.704
	G	-0.122	0.089	0.289	0.240	0.577	0.730

Internat. J. Plant Sci., 12 (2) July, 2017 : 156-159 Hind Agricultural Research and Training Institute

purpose sorghum varieties which meet the two important demands of farmer for grain yield and fodder.

Panicle length recorded the significant positive association with grain yield at genotypic and phenotypic et al., 2001; Umakanth et al., 2005; Patil et al., 2009 and Mahajan et al., 2011). This panicle length trait for increased grain yield, by way of accommodating more number of grains per panicle. Once the panicle length increases, so the grain obtained from per panicle increases, so the grain yield automatically increases. Hence, selection for long and semi compact panicle may be practiced for gaining higher grain yield in sorghum. Days to maturity showed high significant positive association with grain yield at both phenotypic and genotypic level. These results are similar to that of relation between flowering and grain yield. This positive correlation of flowering and days to maturity with grain yield is may be because crop absorbs more amounts of nutrients from the soil for longer period. 1000 grain weight showed highly significant and positive correlation with grain yield at both genotypic and phenotypic levels (Umakanth et al., 2005; Patil et al., 2009; Mahajan et al., 2011 and Veerbadhiran and Kennedy, 2001).

The path co-efficient analysis also measures the relative importance of causal factors involved. This is simply a standardized partial regression analysis, wherein total correlation value is subdivided into causal scheme. In the present study, the path co-efficient analysis was carried out at both phenotypic and genotypic level (Table 2). Days to 5 per cent flowering had negative indirect influence on grain yield at both phenotypic and genotypic levels through panicle length (-0.020, -0.023), test weight (-0.033, -0.043). Days to 50 per cent flowering had nonsignificant positive correlation with grain yield. It showed highly positive direct effect on grain yield at both phenotypic and genotypic level (Iyanar et al., 2001; Veerbadhiran and Kennedy, 2001 and Patil et al., 2009). Positive response of different genotypes to this trait. Further, there may be one optimum level for this association. Plant height showed negative indirect influence on grain yield at both phenotypic and genotypic levels through days to flowering (-0.016, -0.012). Panicle length had significant association with grain yield. The direct effect of panicle length on grain yield was positive at both phenotypic and genotypic level. Panicle length showed positive indirect influence on grain yield at both genotypic and phenotypic levels through days to flowering (0.034, 0.038), plant height (0.225, 0.354) and test weight (0.165, 0.177). Whereas, Panicle length/showed positive direct effect of on grain yield (Kukadia et al., 1980; Iyanar et al., 2001 and Patel et al., 1979). The result suggests that due to its positive direct effect and significant association with grain yield, this trait may contribute for increased grain yield.

The indirect positive effect on grain yield was exhibited by days to maturity via panicle length (0.009, 0.011), 1000 grain weight (0.577, 0543) plant height (0.172, 0.0219) and days to flowering (0.030, 0.038) at both genotypic and phenotypic levels. Test weight had highly significant association with grain yield. This character had positive indirect influence on grain yield at both genotypic and phenotypic levels via panicle length (0.289, 0.254), plant height (0.0895, 0.081) and days to maturity (0.240, 0.200). It is apparent that increase in weight (Iyanar et al., 2001 and Ezeaku and Mohammed, 2006). This indicates that selection can also be performed for this trait in order to increase with grain yield.

Conclusion :

In the present study, genotypic correlations were higher than phenotypic correlation for yield contributing character viz., plant height, days to 50 per cent flowering, panicle length, days to maturity and test weight indicating less influence of environment. The results also indicated that the influence of the environment on these characters is very less as there is not much difference between phenotypic and genotypic correlations of these characters. Hence, due consideration should be given to these characters while planning a breeding strategy for increased grain yield.

Acknowledgement :

The authors are grateful to University Grant Commission-New Delhi for their support in conducting the research work under Department of Genetics and Plant Breeding, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut

REFERENCES

- Al-Jibouri, H.A., Miller, P.A. and Robinson H.F. (1958). Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron. J., 50: 633-637.
- Anonymous Ministry of Agriculture Department of Agriculture and Cooperation (2010). Status paper on millets. Directorate of millets development.
- Anonymous UP.gov.in (2011) State based on Final Fore-cast

reports for the year.

- Bueno, A. (1990). Leaf area estimation, growth analysis and yield evaluation in grain sorghum. *Dissert. Ab. Internet.*, **40**(11): 5097.
- Burton, G.W. (1952). *Quantitative inheritance in grasses*. Proceedings of the 6th International Grassland Congress, pp. 227-283.
- Baghel, B.R.S., Choudhary, L. and Sharma, V. (2005). Combining ability analysis over the environments for harvest index and its components in sorghum [Sorghum bicolor (L.) Moench]. Indian J. Genetics & Plant Breeding, 65 (4): 315-316.
- Bhavasar, V.V. and Borikar, S.T. (2002). Combining ability studies in sorghum involving diverse coty steriles. *J. Maharashtra Agric. Universities*, **27** : 35-38.
- Biswas, P.K., Bala, Ravi S., Elangoan, M. and Laxman, J.V. (1997). Analysis of genetic variance and heterosis of major attributes of sweet sorghum. *Proceedings of* the 1st International Sweet Sorghum Conference, September 14-19, China, pp. 314-319.
- Choudhary, S.D. (1988). Evaluation of high energy sorghum lines. *Paper Presented to 28th All India Sorghum Workshop*, held at Kanpur on May 2-4.
- Dewey, D.R. and Lu, K.H. (1959). A correlation and path coefficient analysis of components of crested wheatgrass seed production. *Agron. J.*, **51**: 515-518.
- Ezeaku, I.E. and Mohammed, S.G. (2006). Character association and path analysis in grain sorghum. *African J. Biotechnol.*, **5**(14): 1337-134.
- Giriraj, K. (1983). Studies on correlation, path analysis, genetic divergence, heterosis, combining ability and nature of gene action in eight parent diallel cross of sorghum [Sorghum bicolor (L.) Moench]. Thesis Abstracts, 9 : 287-288.
- Griffing, R.B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. *Australian J. Biol. Sci.*, **9**: 463-493.
- Gupta, S.C. and Paliwal, R.L. (1976). Diallel analysis of forage yield and quality character in sorghum. *Egyptian J. Genetics & Cytol.*, 5: 89-97.
- Iyanar, K. Gopalan, A. and Ramasamy, P. (2001). Correlation and path analysis in sorghum. *Ann. Agric. Res.*, **22**(4):

495-497.

- Johnson, H.W., Robinson, H.F. and Comstock, R.E. (1955). Genotypic and phenotypic correlation in soybean and their implication in selection. *Agron. J.*, **47**: 477-483.
- Khanure, S.K. (1993). Variability, correlation, path analysis and stability analysis for quantitative characters in *rabi* sorghum [*Sorghum bicolor* (L.) Moench]. M.Sc. (Ag.) Thesis, University of Agricultural Sciences, Dharwad, KARNATAKA (INDIA).
- Kukadia, M.U., Desai, K.B. and Tikka, S.B.S. (1980). Genetic association in grain sorghum. *Sorghum Newslett.*, 23: 28-29.
- Mahajan, R.C., Wadikar, P.B., Pole, S.P. and Dhuppe, M.V. (2011). Variablity, correlation and path analysis studies in sorghum. *Res. J. Agric. Sci.*, 2(1): 101-103.
- Patel, R.H., Desai, K.B. and Tikka, S.B.S. (1979). Path co-efficient analysis of yield components in grain sorghum. *Sorghum Newslett.*, **22** : 15-16.
- Patil, S.L. Sheelavantar, M.N. and Lamani, V.K. (2009). Correlation analysis among growth and yield components of winter sorghum *I S M N*, **44** : 14-17
- Ravindrababu, Y., Pathak, A.R. and Tank, C.J. (2003).Genetic components of variation in sorghum [Sorghum bicolor (L.) Moench]. Indian J. Genetics & Plant Breeding, 63 : 328.
- Umakanth, A.V., Madhusudhana, R., Latha, K.M. Rafiq, S.M. and Kiran, V.S.S. (2005). Analysis of genetic variation and trait interrelationship in sorghum [Sorghum bicolor (L.) Moench]. National. J. Pl. Improv., 6(2): 104-107.
- Veerabadhiran, P., Palanisamy, S. and Palanisamy, G.A. (1994). Association analysis in grain sorghum [Sorghum bicolor (L.) Moench]. Madras Agric. J., 81(10): 532-534.
- Veerbadhiran, P. and Kennedy, V.J.F. (2001). Correlation and path analysis studies in selected germplasms of sorghum. *Madras Agril. J.*, **88**(4/6) : 309-310.
- Warked, Y.N., Potdukhe, N.R., Dethe, A.M., Kahate, P.A. and Kotgire, R.R. (2008). Genetic variability, heritability and genetic advance for quantitative traits in sorghum germplasm. *Agric. Sci. Digest*, **28** (3): 202-205.

