

Visit us : www.researchjournal.co.in

Research Article:

Life fecunity table of *Leucinodes orbanalis* Guenee on brinjal in laboratory condition

F.S. KHAN, A.A. MOTAPHALE, P.M. SANGLE AND P.S. BORIKAR

ARTICLE CHRONICLE : Received : 13.07.2017; Accepted : 28.07.2017

SUMMARY : Laboratory experiment was conducted during *Kharif* 2009 and 2010 at Department of Entomology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani (Maharashtra) to study Life fecundity table of *Leucinodes orbonalis Guenee* on Brinjal under laboratory condition. In life table studies egg to adult emergence, 5 per cent male and 6 per cent female moths emerged successfully. The net reproductive rate (R_0) representing the total females per female per generation was 17.01. The finite rate of increase in number (λ) was 1.21 females per female per day. The corrected value of the intrinsic rate (r_m) was 0.0833 female per female per day. On reaching stable age-distribution the population of *L. orbonalis* in its various stages viz., egg, larva, pre-pupa, pupa and adult was distributed to the extent of 52.72, 38.83, 3.72, 4.34 and 0.38 per cent, respectively.

How to cite this article : Khan, F.S., Motaphale, A.A., Sangle, P.M. and Borikar, P.S. (2017). Life fecunity table of *Leucinodes orbanalis* Guenee on brinjal in laboratory condition. *Agric. Update*, **12**(TECHSEAR-3) : 832-837; **DOI: 10.15740/HAS/AU/12.TECHSEAR(3)2017/832-837.**

<u>KEY WORDS:</u> Biology, Egg, Larva, Pupa, Laboratory

Author for correspondence :

F.S. KHAN

Department of Agricultural Entomology, Vasantrao Naik Marathwada KrishiVidyapeeth, PARBHANI (M.S.) INDIA Email : fariakhan.316@ rediffmail.com See end of the article for

See end of the article for authors' affiliations

BACKGROUND AND **O**BJECTIVES

Brinjal or Baingan (Solanum melongena Linnaeus) known as egg plant and aubergine in North America and Europe, respectively, is an important vegetable in India. It is native of India and locally called 'Wangi' in Maharashtra often described as poor man's vegetable. After potato, it ranks second highest consumed vegetable in India, along with tomato and onion.Brinjal is a good source of carbohydrates, proteins, vitamin A, B, C and minerals like iron, phosphorus and calcium. It has medicinal properties also (Choudhari, 1967). Though perennial vegetable, it is grown as a seasonal crop throughout the country. The crop suffers due to whitefly (Bemisia tabaci

Gennadius), aphid (Aphis gossypii Glover), jassid (Amrasca biguttulabiguttula Ishida), thrips (Thrips tabaci Lindemann), epilachna beetle (Henosepilachna viginitioctopunctata Fabrcius), mites (Intranychus macfuslanii Baker and Pricthaid) and shoot and fruit borer (Leucinodes orbonalis Guenee). Of these brinjal shoot and fruit borer, L. orbonalis is serious throughout the country. Damage of the borer starts in nursery before transplanting and continues upto harvest. It infests young shoots which limits the ability of plants to produce healthy fruit bearing shoots thereby reducing potential yield. It bores into fruits making them unmarketable. Infested fruits often show holes plugged with excreta. The shoot and fruit damage may reach 70 per cent (Lal,1964). Damaged fruits show 68 per cent reduction in ascorbic acid (Hami, 1995). Overall losses due to insect pests vary from 26.3 to 65.5 per cent (Gangwar and Sachan, 1981) with a maximum of 95.8 per cent (Akhtar and Khawja, 1973). Life tables determine population growth characters of insect pests. They provide rate of multiplication of pest species under given set of climatic conditions which forms sound ecological base for pest management practices.

Resources and Methods

Rearing of insect :

The laboratory culture of L. orbonalis was initiated by collecting infested fruits of brinjal from field. The larvae were reared individually in 5 x 5 cm plastic containers by providing them with fresh pieces of brinjal fruits daily in morning, until pupation. The newly emerged male and female moths were placed in oviposition cage (plastic jars of 19 cm height and 21 cm diameter). The tender brinjal twigs with succulent leaves were placed in small conical flask containing water which served as a substrate for oviposition. The cotton swabs dipped in five per cent honey were placed in petridish at the bottom of cage to serve as food for emerging moths. The cage was covered with muslin. The freshly laid eggs thus obtained were used for laboratory investigations. The culture was maintained at ambient room temperature conditions.

Life fecundity tables of L. orbonalis on brinjal :

The life fecundity tables of L. orbonalis on brinjal were constructed by studying 100 eggs in a group of 20 each. The eggs on white paper were moistened in petriplates to facilitate hatching. All the larvae soon after hatching were reared individually on small pieces of brinjal fruits daily. Everyday observations on hatching, larval and pupal development, successful adult emergence, fecundity and age specific mortality in eggs, larvae, pupae and adults were taken. Adults emerged on same day were transferred to a separate cage for determining agespecific fecundity. As per Southwood (1968), female births (m) were calculated by dividing eggs laid per female, considering the sex ratio 1:1. The life fecundity tables under laboratory conditions were constructed by using the following column headings proposed by Birch (1948), elaborated by Howe (1953) and Atwal and Bains

x =	Pivotal age in days
$l_x =$	Survival of females at age x
$m_x =$	Age schedule for female birth age 'x'

Net reproductive rate (\mathbf{R}_0) :

The sum of products $1_x m_x$ is the net reproductive rate represented by R_0 (Lotka, 1925). The net reproductive rate is the rate of multiplication of the population in each generation measured in terms of females produced per generation. The number of times a population would multiply per generation was calculated by the following formula,

 $R_0 = \Sigma l_x m_x$

Mean generation time (T_c) :

The precise value of cohort generation time (The mean age of the mothers in a cohort at the birth of female off spring) was calculated as under

$$\mathbf{T}_{\mathbf{c}} \mathbb{N} \frac{\Sigma \mathbf{l}_{\mathbf{x}} \mathbf{m}_{\mathbf{x}}}{\mathbf{R}_{\mathbf{o}}}$$

Innate capacity for increase in numbers :

The number of individuals survived and the mean number of female offsprings produced at each age interval was recorded. From the data of life-tables, the arbitrary value of innate capacity for increase r_c was calculated as per Laughlin (1965).

$$r_c \; \mathbb{N} \frac{Log \; R_0}{T_c}$$

The intrinsic rate of natural increase (r_m) was then calculated from the value of arbitrary ' r_m ' by taking two trial values arbitrarily selected on either side of it, differing in the second decimal place by interpolation with the formula given by Birch (1948) and Watson (1964).

d $e^{7-rm \ x \ lxmx} = 1096.6$

Table was then constructed with column 'x' and $l_x m_x$ ' for each trial 'r_m'. The two trial values of $\Sigma e^7 r_m x l_x m_x$ were then plotted on the horizontal axis against their, respective arbitrary 'r_m's on the vertical axis. The points were joined to give a line which intersected a vertical line drawn from the desired values of $\Sigma e^7 r_m x l_x m_x = 1096.6$. The point of intersection gave the value of true 'r_m' accurate to four decimal places. The precise generation time (T) was then calculated from the formula

 $\mathrm{T\,N}\,\frac{\mathrm{Log}_{e}\,R_{0}}{}$

The finite rate of natural increase (}):

The finite rate of natural increase (λ) *i.e.* females per female per day was calculated as under

 $\} = anti \log_{e} r_{m}$

Stable-age-distribution :

The stable age distribution (% distribution of various age groups) is the distribution, which would be reached by a population of stable age schedule of birth rate and death rate $(m_{v} \text{ and } l_{v})$ when grown in a limited space (Andrewartha and Birch, 1954). The stable age distribution was worked out with knowledge of r and age specific morality of the immature as well as mature stages.

 $\mathbf{l_x} \ \mathsf{N} \ \frac{\mathbf{l_x} < (\mathbf{l_x} < 1)}{2}$

The lx was multiplied with $e^{7-rm(x+1)}$ and the percentage distribution of each pivotal age (x) was worked out. By putting together the percentages under each pivotal age for respective stages viz., egg, larva, pupa and adult, the expected percentage distribution of each stage in a stable age distribution was calculated.

OBSERVATIONS AND ANALYSIS

The results obtained from the present study as well as discussions have been summarized under following heads:

Life-fecundity tables of *L. orbonalis* on brinjal :

The life-fecundity tables of L. orbonalis were constructed for three generations during 2009-2010. The observations on hatching of eggs, larval, pupal and agespecific mortality of females and fecundity were taken.

Life-fecundity tables of L. orbonalis in first generation :

The results pertaining to life-tables and age-specific fecundity of L. orbonalis on brinjal obtained in first generation are presented in Table 1 to 5.

The data presented in Table 1 revealed that in a cohort of 100 eggs the survival of L. orbonalis on brinjal during first generation was found to be 81, 55, 50 and 50 per cent in egg, larval, pre-pupal and pupal stages, respectively. During egg to adult emergence 5 per cent male and 6 per cent female moths emerged successfully.

The data obtained on life-table and age-specific fecundity of L. orbonalis during first generation are tabulated in Table 2 revealed that the survival of immature stage (1) was 0.11 per individual within a pivotal age of

Table 1 : Survival of life stages of <i>L. orbonalis</i> during development in first generation						
			Numbers surviving			
No. of eggs observed	Incubation period (0-5	Larval period	Pre pupal period	Pupal period	Adult	
	days)	(6-17 days)	(18-20days)	(21-31 days)	Male	Female
20	18	10	10	10	1	2
20	13	8	8	8	1	1
20	16	13	10	10	1	1
20	17	11	11	11		2
20	17	13	11	11	2	
100	81	55	50	50	5	6

Pivotal age in days	Survival of females of different age intervals	Age schedule for female birth			
Х	l _x	m _x	l _x m _x	l _x m _x X	
0-31	0.11	Immature stages			
32	0.11	Pre oviposition period			
33	0.11				
34	0.11	46.42	5.11	173.74	
35	0.10	82.90	8.29	290.15	
36	0.08	45.17	3.61	129.96	
37	0.05	0.00	0.00	0.00	
			$\Sigma 1_{\rm x} m_{\rm x} ({\rm R}_0) = 17.01$	$\Sigma 1_{x}m_{x}X = 593.85$	

Agric. Update, 12 (TECHSEAR-3) 2017: 832-837 834 Hind Agricultural Research and Training Institute

31 days on brinjal. The pre-oviposition period varied from 32nd to 33rd day of pivotal age. The number of eggs laid per female was divided by two to get the number of female births (m_{1}) . The female births were highest (82.90) on 2nd day of oviposition period at 35th day of pivotal age. The first female mortality was recorded on 35th day of pivotal age. The net reproductive rate (R_0) representing the total females per female per generation was 17.01. Thus the population of *L. orbonalis* was able to multiply 17.01 times per generation on brinjal.

The data pertaining to length of generation, intrinsic rate of increase in numbers and finite rate of increase in numbers (ë) observed on L. orbonalis is presented in Table 3.

It is evident that the mean length of generation (T_{i}) and the arbitrary value for innate capacity for increase in number (r_o) were 34.91 days and 0.081 female per female per day. The corrected value for intrinsic rate of natural increase (r_m) and precise generation time (T) were 0.083 female per female per day and 34.04 days. The finite rate of increase in number (λ) was 1.21 females per female per day.

The data for calculation of corrected value of intrinsic rate of increase in numbers (r_m) are presented inTable 4. Three trial values of arbitrary intrinsic rate 'r_m' *i.e.* 0.08, 0.09 and 0.10 were selected in ascending order. Three trial values of 1144.20, 807.36 and 569.71 were plotted on horizontal axis against their respective arbitrary intrinsic rate 'r_m' on vertical axis. The points obtained were joined to get a line which intersected a vertical line drawn from the desired value of equation *i.e.* $\Sigma e^{7-\text{rmx}} \lim_{m \to \infty} 1096.6$ (Birch, 1948 and Watson, 1964). The point of intersection gave the corrected value of the intrinsic rate (r_m) of 0.0833 female per female per day.

The contribution of different developmental stages towards the stable age-distribution of L. orbonalis was worked out and the data are presented in Table 5.

On reaching stable age-distribution the population of L. orbonalis in its various stages viz., egg, larva, prepupa, pupa and adult was distributed to the extent of 52.72, 38.83, 3.72, 4.34 and 0.38 per cent, respectively.

According to Satpathi et al. (2006) the net fecundity rate (\mathbf{R}_{0}) was higher in summer (9.42) than in winter (5.05). Similar trends of the net reproductively rate (r_m)

during first generation	in numbers and linke rate of increase in number observed on L. orbonaus
Population growth statistics	
Mean length of generation	
$T_c N \frac{l_x m_x X}{R_o}$	34.91 days
Innate capacity for increase in number	
$r_{c} N \frac{Log_{e}R_{o}}{T_{c}}$	0.081 female/female/day
Arbitrary r _m (r _c), 0.08, 0.09, 0.10	
Corrected r_m , $\Sigma e^{7-rm x lxmx} = 1096.63$	0.0833 female/female/day
Corrected generation time	
$T N \frac{Log_e R_o}{}$	34.04 days
r _m Finite rate of increase in number ()	
= antilog _e r _m	1.211 females/female/day

Table 3 : Mean length of generation, innate capacit	ty for increase in numbers ε	and finite rate of increase	in number observed o	n L. orbonalis
during first concretion				

Table 4 : Calculation of r _m of <i>L. orbonalis</i> by trial and error method in first generation							
Pivotal age	l _x m _x	r _m :	r _m =0.08 r _m =0.09		=0.09	r _m =	0.10
		$e(^{7-rmx})$	$e(\frac{7-rm x l m}{x x})$	$e(^{7-rmx})$	$e\begin{pmatrix} 7-rm x l m \\ x x \end{pmatrix}$	$e(^{7-rmx})$	$e(\frac{7-\operatorname{rm} x \lim_{x \to x}}{x})$
32-33							
34	5.11	72.24	369.15	51.42	262.75	36.60	187.02
35	8.29	66.69	552.83	46.99	389.57	33.12	274.52
36	3.61	61.56	222.23	42.95	155.04	29.96	108.17
37	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total		,	1144.20		807.36		569.71

Agric. Update, 12 (TECHSEAR-3) 2017: 832-837 835 Hind Agricultural Research and Training Institute

and intrinsic rate of increase (r_m) were 18.89 and 0.1059 in summer and 10.31 and 0.05222 in winter, respectively. The finite rate of increase (λ) was unaffected but the mean generation time (T) abruptly increased in the winter (31.023 days) than summer season (21-179). The insect

was able to multiply 2.10 times per week in summer and 1.44 times in winter but the doubling time of population occurred in one and two weeks during summer and winter, respectively.Similar results were recorded by Singh and Singh (2003), Jat *et al.* (2003) and Bodkhe (2004).

Age group in days (Y) Survival of individuals at different age institution Le ^{- (X+1)} Le ^{-(math)} Lee ^{-(math)} (X) Percent age distribution 0 1 0.99 0.9200 0.9108 11.8456 1 0.977 0.944 0.8465 0.7931 10.3408 2 0.911 0.899 0.7788 0.06931 9.0142 52.72 Egg 3 0.877 0.866 0.6162 8.0141 53.72 Egg 4 0.85 0.831 0.6666 0.4913 63897 6 0.811 0.800 0.5581 0.4464 53.8057 7 0.79 0.772 0.7135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4137 0.35562 11 10 0.665 0.3680 0.2133 2.7741 13 0.61 0.660 0.3115 0.1894 1.4444 0.58 0.575 0.2232	Table 5 : Stable age distribution of L. orbonalis in first generation							
In days Interval Light (1) alstrobuton 0 1 0.99 0.9200 0.9108 11.8456 1 0.97 0.94 0.8465 0.7951 10.3408 2 0.91 0.89 0.7788 0.6631 9.0142 52.72 Egg 3 0.87 0.86 0.7166 0.6162 8.0141 4 0.85 0.83 0.6593 0.5472 7.1167 5 0.81 0.80 0.5581 0.4444 5.8057 7 0.79 0.77 0.5135 0.3933 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4347 0.3042 3.5563 10 0.66 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14	Age group	Survival of individuals at	Stable age distribution	$e^{7-rm(x+1)}$	$Lx-e^{7-rm(x+1)}$	Per cent age		
No. (0) 1 0.90 0.9200 0.9108 11.8456 1 0.97 0.944 0.8465 0.7951 10.3408 2 0.91 0.89 0.7788 0.6931 9.0142 $52.72 Egg$ 3 0.87 0.86 0.7166 0.6162 8.0141 4 0.855 0.833 0.6593 0.5472 7.1167 5 0.81 0.80 0.5811 0.4444 5.8087 6 0.811 0.80 0.5811 0.4444 5.8087 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.666 0.3680 0.2428 3.1577 $38.83 Larva$ 12 0.65 0.655 0.2237 0.1503 1.761	in days	different age interval	$\frac{L_x = I_x + (1x+1)}{2}$			distribution		
0 1 0.97 0.94 0.8465 0.7951 1.184.39 2 0.91 0.89 0.7788 0.6931 9.0142 \$2.72 Egg 3 0.87 0.86 0.7166 0.6162 8.0141 4 0.85 0.81 0.606 0.4913 6.3897 5 0.81 0.80 0.5581 0.4164 5.807 7 0.79 0.717 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3946 4.5488 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.213 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.153 1.954 15 0.58 0.57 0.2637 0.153 1.954 16 0.56 0.2426 0.1358 1.7661 1.524		1	0.00	0.0200	0.0108	11.9456		
1 0.97 0.94 0.840 0.781 10.3408 2 0.91 0.86 0.7166 0.6612 8.0141 3 0.87 0.86 0.7166 0.6162 8.0141 4 0.85 0.83 0.6593 0.5472 7.1167 5 0.81 0.80 0.5581 0.4464 5.8057 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3466 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.219 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.55 0.2232 0.1324 3.72 Pre pupa	0	1	0.99	0.9200	0.9108	11.8450		
2 0.91 0.89 0.788 0.0931 9.0142 5.7.2 kgg 3 0.87 0.86 0.7166 0.6162 8.0141 4 0.85 0.83 0.6593 0.5472 7.1167 5 0.81 0.80 0.5581 0.4444 5.897 6 0.81 0.80 0.5581 0.4444 5.897 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.472 0.3963 5.362 9 0.72 0.70 0.4347 0.3042 3.563 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.1303 1.9547 13 0.61 0.58 0.57 0.2637 0.1503 1.9547 14 0.58 0.55 0.2232 0.1254 3.72 Pre pupa 16 0.56 0.55 0.223 0.125	1	0.97	0.94	0.8465	0.7951	10.3408	50 70 F	
3 0.87 0.86 0.166 0.012 8.014 4 0.85 0.83 0.6593 0.5472 7.1167 5 0.81 0.80 0.5581 0.4464 5.8057 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.66 0.3680 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.1538 1.5951 15 0.58 0.57 0.2637 0.1538 1.5951 16 0.56 0.56 0.2322 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.6931 1.2524 3.72 Pre pupa	2	0.91	0.89	0.7788	0.6931	9.0142	52.72 Egg	
4 0.85 0.83 0.693 0.494 7.167 5 0.81 0.606 0.4913 6.3897 6 0.81 0.80 0.5581 0.4464 5.8057 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3946 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.741 13 0.61 0.60 0.3115 0.1662 2.1615 14 0.58 0.57 0.2637 0.1503 1.9547 15 0.58 0.55 0.2322 0.127 1.5958 16 0.56 0.2426 0.1358 1.7661 17 0.55 0.2322 0.127 1.5958 18 0.54 0.52 0	3	0.87	0.86	0.7166	0.6162	8.0141		
5 0.81 0.81 0.006 0.4913 0.3897 6 0.81 0.80 0.5581 0.4464 5.8057 7 0.79 0.77 0.5155 0.3933 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.1503 1.9547 15 0.58 0.52 0.2127 1.5958 16 0.56 0.2426 0.1358 1.7661 17 0.55 0.51 0.1806 0.432 3.72 Pre pupa 20 0.50<	4	0.85	0.83	0.6593	0.5472	/.116/		
6 0.81 0.80 0.581 0.4464 5.807 7 0.79 0.77 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.744 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.55 0.232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.5234 3.72 Pre pupa 20 0.50 0.422 0.055 0.229	5	0.81	0.81	0.6066	0.4913	6.3897		
7 0.79 0.71 0.5135 0.3953 5.1411 8 0.75 0.74 0.4725 0.3496 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.58 0.2637 0.1503 1.9547 15 0.58 0.55 0.2322 0.1227 1.5958 16 0.56 0.56 0.2426 0.1358 1.7661 17 0.55 0.55 0.2322 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1380 0.0834 1.0846 21 0.45 0.43 0.1599 0.6687 0.8934	6	0.81	0.80	0.5581	0.4464	5.8057		
8 0.75 0.74 0.4725 0.3396 4.5468 9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.668 0.3999 0.2719 3.53c2 11 0.67 0.666 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.2426 0.1358 1.7661 17 0.55 0.55 0.2322 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0687 0.8934 21 0.45 0.43 0.1599 0.6687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 2	7	0.79	0.77	0.5135	0.3953	5.1411		
9 0.72 0.70 0.4347 0.3042 3.9563 10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.56 0.2426 0.1358 1.7661 17 0.55 0.52 0.2034 0.1068 1.3890 18 0.54 0.52 0.2054 0.1068 1.3890 20 0.50 0.48 0.1738 0.834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.400 0.38 0.1472 0.0559 0.7229 23 0.36 0.351 0.1346 0.0336 0.6151	8	0.75	0.74	0.4725	0.3496	4.5468		
10 0.68 0.68 0.3999 0.2719 3.5362 11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.58 0.2637 0.1503 1.9547 16 0.56 0.56 0.2426 0.1388 1.7661 17 0.55 0.55 0.2232 0.1207 1.5958 18 0.54 0.52 0.2054 0.1068 1.3390 19 0.52 0.51 0.1899 0.0687 0.8934 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.351 0.1344 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.520	9	0.72	0.70	0.4347	0.3042	3.9563		
11 0.67 0.66 0.3680 0.2428 3.1577 38.83 Larva 12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.58 0.2866 0.1662 2.1615 15 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.56 0.2426 0.1358 1.7661 17 0.55 0.55 0.2232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.448 0.1738 0.0834 1.0846 21 0.45 0.433 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1264 0.0386	10	0.68	0.68	0.3999	0.2719	3.5362		
12 0.65 0.63 0.3386 0.2133 2.7741 13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.58 0.2866 0.1662 2.1615 15 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.55 0.2232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.146 0.0309 0.4018 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.22 0.217 0.1146 0.0309 0.2197	11	0.67	0.66	0.3680	0.2428	3.1577	38.83 Larva	
13 0.61 0.60 0.3115 0.1869 2.4307 14 0.58 0.58 0.2866 0.1662 2.1615 15 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.55 0.2232 0.1358 1.7661 17 0.55 0.55 0.2232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3390 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.6687 0.8934 22 0.400 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.0970 0.0203 0.2640 4.	12	0.65	0.63	0.3386	0.2133	2.7741		
14 0.58 0.2866 0.1662 2.1615 15 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.56 0.2426 0.1358 1.7661 17 0.55 0.55 0.2232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1803 0.0834 1.0846 20 0.50 0.48 0.1739 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1264 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.054 0.2197 1.434 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 31 0.13	13	0.61	0.60	0.3115	0.1869	2.4307		
15 0.58 0.57 0.2637 0.1503 1.9547 16 0.56 0.56 0.2426 0.1358 1.7661 17 0.55 0.55 0.2232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0	14	0.58	0.58	0.2866	0.1662	2.1615		
16 0.56 0.2426 0.1358 1.761 17 0.55 0.55 0.232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274	15	0.58	0.57	0.2637	0.1503	1.9547		
17 0.55 0.232 0.1227 1.5958 18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0399 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0998 0.1274	16	0.56	0.56	0.2426	0.1358	1.7661		
18 0.54 0.52 0.2054 0.1068 1.3890 19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0988 0.274 31 0.13 0.11 0.0639 0.0076 0.	17	0.55	0.55	0.2232	0.1227	1.5958		
19 0.52 0.51 0.1890 0.0963 1.2524 3.72 Pre pupa 20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.170 30 0.14 0.13 0.0755 0.0988 0.1274 31 0.13 0.11 0.0639 0.0076	18	0.54	0.52	0.2054	0.1068	1.3890		
20 0.50 0.48 0.1738 0.0834 1.0846 21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.10 0.09 0.0498 0.0044 0.0572 <td>19</td> <td>0.52</td> <td>0.51</td> <td>0.1890</td> <td>0.0963</td> <td>1.2524</td> <td>3.72 Pre pupa</td>	19	0.52	0.51	0.1890	0.0963	1.2524	3.72 Pre pupa	
21 0.45 0.43 0.1599 0.0687 0.8934 22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0639 0.0076 0.0988 32 0.11 0.11 0.0588 0.0064 0.0832 33 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 34 0.10 0.09 0.0498 0.0044 0.0	20	0.50	0.48	0.1738	0.0834	1.0846		
22 0.40 0.38 0.1472 0.0559 0.7229 23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0639 0.0070 0.0910 32 0.11 0.11 0.0588 0.0064 0.0832 33 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	21	0.45	0.43	0.1599	0.0687	0.8934		
23 0.36 0.35 0.1354 0.0473 0.6151 24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0588 0.0064 0.0832 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.10 0.09 0.0498 0.0044 0.0572	22	0.40	0.38	0.1472	0.0559	0.7229		
24 0.33 0.31 0.1246 0.0386 0.5020 25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0639 0.0076 0.0988 32 0.11 0.11 0.0538 0.0064 0.0832 33 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	23	0.36	0.35	0.1354	0.0473	0.6151		
25 0.29 0.27 0.1146 0.0309 0.4018 26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult	24	0.33	0.31	0.1246	0.0386	0.5020		
26 0.25 0.24 0.1054 0.0252 0.3277 27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	25	0.29	0.27	0.1146	0.0309	0.4018		
27 0.22 0.21 0.0970 0.0203 0.2640 4.34 Pupa 28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	26	0.25	0.24	0.1054	0.0252	0.3277		
28 0.20 0.19 0.0893 0.0169 0.2197 29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	27	0.22	0.21	0.0970	0.0203	0.2640	4.34 Pupa	
29 0.17 0.16 0.0821 0.0131 0.1703 30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	28	0.20	0.19	0.0893	0.0169	0.2197		
30 0.14 0.13 0.0755 0.0098 0.1274 31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	29	0.17	0.16	0.0821	0.0131	0.1703		
31 0.13 0.11 0.0695 0.0076 0.0988 32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	30	0.14	0.13	0.0755	0.0098	0.1274		
32 0.11 0.11 0.0639 0.0070 0.0910 33 0.11 0.11 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	31	0.13	0.11	0.0695	0.0076	0.0988		
33 0.11 0.011 0.0588 0.0064 0.0832 34 0.11 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	32	0.11	0.11	0.0639	0.0070	0.0910		
34 0.11 0.0541 0.0059 0.0767 0.38 Adult 35 0.10 0.09 0.0498 0.0044 0.0572	33	0.11	0.11	0.0588	0.0064	0.0832		
35 0.10 0.09 0.0498 0.0044 0.0572	34	0.11	0.11	0.0541	0.0059	0.0767	0.38 Adult	
	35	0.10	0.09	0.0498	0.0044	0.0572		
36 0.08 0.07 0.0458 0.0032 0.0416	36	0.08	0.07	0.0458	0.0032	0.0416		
37 0.05 0.05 0.0421 0.0021 0.0273	37	0.05	0.05	0.0421	0.0021	0.0273		

Authors' affiliations :

A.A. MOTAPHALE, P.M. SANGLE AND P.S. BORIKAR, Department of Agricultural Entomology, Vasantrao Naik Marathwada KrishiVidyapeeth, PARBHANI (M.S.) INDIA

REFERENCES

Akhtar, M. and Khwja, Z.S. (1973). Quantitative effectiveness of insecticide. *J. Entomol.*, **18**(1): 266-257.

Andrewartha, H.G. and Birch, H.C. (1954). The distribution and abudance of Animals. University of Chicago Press, Chicago : 782

Atwal, A.S. and Bains, S.S. (1974). Applied Animal Ecology. Kalyani Publishers, Ludhiana, 128-135

Bodkhe, G.R. (2004). Bio ecology of brinjal shoot and fruit borer *Leucinodes orbonalis* Guen. M.Sc. (Ag.) Thesis, Marathwada Agricultural University, Parbhani. : 54

Birch, L.C. (1948). The intrinsic rate of natural increase of an insect population. *J. Animal Ecol.*, **17**(4): 15-26.

Choudhari, B.C. (1967). *Vegetables*. National Book Trust New Delhi, 104

Gangwar, S.K. and Sachan, J.N.(1981). Seasonal incidence and control of insect pest in brinjal with special reference to shoot and fruit borer, *Leucinodes orbonalis* Guen. *Meghalaya Res. J.*, **2**(2):187-192

Hami, M.A. (1995). Effect of borer attack on vitamin C content

of brinjal. Pakistan J. Entomol., 4(4): 223-224.

Jat, K.L. (2003). Biology of *Leucinodes orboralis*, an important pest of brinjal in Rajasthan. *Indian J. Entomol.*, **65**(4): 513-517

Lal, B.S. (1964). *Vegetable Pests*. Entomology in India. Entomological Society of India, 187-211

Laughlin, R. (1965). Capacity for increase : a useful population statistics. *J. Animal Ecol.*, **34** : 77-91

Lokta, A.T. (1925). Element of Physical Biology. Capacity for increase : a useful population statistics. *J. Animal Ecol.*, **34** : 77-91

Satpathi, C.R., Mandal, A. and Mukhopadhay, A.K. (2006). Effect of seasonal variation on life table of fruit and shoot borer of Brinjal or *(Leucinodes orbonalis* Guen. Pyralidae : Lepidoptera) in West Bengal. *Indian J. Entomol.*, **68**(2) : 162-165.

Singh, Y.P. and Singh, P.P. (2003). Biology of shoot and fruit borer (*Leucinodes orbonalis* Guen.) of egg plant (*Solanum melongena*) in medium high attitude hills of Meghalaya. *Indian J. Entomol.*, **65** :147-154.

Southwood, T.R.E. (1968). *Ecological Methods*, Methuen and Co. Ltd., London 361

Watson, T.P. (1964). Influence of host plant condition on population increase of *Tetranychus telarius* (Linnaeus) (Acarina : Tetranychidae). *Bilgardia*, **35** : 273-322.

