
SUMMARY : Silicon is the most aboundant element in soil and is beneficial for a large variety of plants.
It is concentrated in plant tissues in quantities similar to that of macronutrients. Considerable damages
to plants caused by abiotic stresses such as drought stress, salinity stress, heavy metal stress and
nutrient imbalance, as well as biotic stresses like insect pests and pathogens and even herbivorous
attacks, have been reported to be reduced significantly by silicon application. Soil contamination with
toxic heavy metals (such as Cd ,Pb, As, Hg, Zn) is becoming a most devasting problem worldwide
because of the rapid development of social economy. Silicon significantly improved the growth and
biomass of crop plants and reduced the toxic effects of heavy metals after different stress periods. Si
treatment ameliorated root function and structure compared with non-treated crop plants,which suffered
severe root damage. Silicon plays a substantial role in alleviating heavy metal toxicity in crop plants.
Also, silicon may reduce the toxic effects of heavy metals in soil. It may protect the foliage and increase
light uptake and reduce respiration. Therefore, in this review, we discussed the effects of silicon on
heavy metal stress in especially field crops.
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BACKGROUND AND OBJECTIVES

Silicon constitutes a major substantial
percentage of different soil types, generally
about 31% (Sposito, 1989). In soil solutions,
silicon is found mostly as uncharged
monomeric silicic acid at concentrations from
about 0.1 mM to 0.6 mM Epstein (1994) or
upto about 0.8 mM at equilibrium Lindsay
(1979) when the solution pH is below 9 Ma
and Takahashi(2002).Silicon (Si) is an
abundant element in the Earth’scrustand plays
a role in heavy metal all eviation in plants by
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different mechanisms Greger et al., (2016).
Sireduces the translocation of Cd from roots
to shoots and thus, prevents the adverse effect
of Cd on photosynthetic machinery and grains
Greger and Landberg (2008). How ever, Cd
in high concentration is also trapped in roots
through vacuolars equestrations, leading to
decreased Cd translocation in aerial parts of
the plants Liu et. al (2013). Phytochelatins
(PCs) and metallothioneins (MTs) may bind
to Cd before transporting the complexes into
the vacuoleor out of the cell by ATP-binding
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cassette transporters in few plants Jasinski et al. (2003).
PCs are formed from glutathione by the induction of
PCS1 gene Semane et al. (2007). Further, MTs are
involved in detoxifying cytosolic environment of the cell
from Cdtoxicity Dal Corso et al. ( 2010). The heavy
metal is taken up in to the cell via carriers,such as low-
affinity cation transporters and Fe-regulated transporters
in plants Takahashi et al. (2011). Among the Fe
transporters, IRTs and NRAMPs have been reported to
take up heavy metals. IRT1 is essential for root Fe up
take in response to Fedeficiency but it also accepts Cd
as a substrateand is involved in the root-to- shoot
transport of Cd Rogers et al. (2000). In a transgenic
study, elimination of NRAMP5 transporter reduces Cd
uptake in rice Ishikawa et al. (2012). Additionally, the
ferricchelate reductase (FRO) gene may perform key
functions in Feacquisition in plants. It was reported the
inhibition of Fe translocation when bean plants were
exposed to chromium (Cr) in nutrient solutions Barcelo
et al. (1993). Also, Craffects Fe uptake indicots either
by inhibiting the reduction of Fe(III) to Fe(II) or by
competing with Fe(II) atthesite of absorption. Inaddition,
IRT1 is induced in response to Fe-deficiency and is
capable of transporting minerals and heavy metals Vert
et al. (2002). Further, organic acids such as citrate and
malate are major chelators in both Strategy I and II plants,
which bind Feat the site of uptake and facilitate long-
distance transport in plants Kabir et al. (2012). To
complete a life cycle, plants are continuously exposed to
various abiotic stresses and sometime multiple
stresses.These stresses in turn causing the generation
of various reactive oxygen species (ROS), such as singlet
oxygen (1O2), superoxide(O-2 ), hydrogen peroxide
(H

2
O

2
), or hydroxyl radicals (OH) in cells .These ROS

can cause serious oxidative damage to the protein,DNA,
and lipids of cell components Tripathi et al. (2017).
Therefore, ROS scavenging is most important defense
mechanism to cope with stress condition in plants Das
and Roychoudhury (2014). According to previous reports,
exogenously Si can improve the ability of ROS scavenging
by regulation of antioxidants enzyme activity. Further
more, regulation pattern across various crop plants is
different depending upon the exposure time of the stress
Kim et al. (2016). Therefore, here, we discussed various
possibilities based on previous literature survey and our
understanding the role of Si in modulating antioxidant
activities in plants during abiotic stress.

Defense mechanism against rosgeneration :
Plants continuously produce several ROS during

metabolic process like photosynthesis and respiration
processes in cell organelles such as mitochondria,
chloroplast, and peroxisomes. In plants,superoxide
dismutase (SOD), catalase (CAT), and ascorbate
peroxidase (APX) are the main enzymatic antioxidants,
whereas carotenoids, tocopherols, ascorbate, and
glutathione are classified as the non-enzymatic
antioxidants. SOD are distributed in a different form in
various plant organs such as chloroplasts (Cu/ZnSOD,
FeSOD), cytosol (Cu/ZnSOD) and mitochondria
(MnSOD). Primarily, SOD catalyzes the efficient removal
of superoxide free radicals inchloroplasts as they are
mainly generated in the photosystem I, during the light
reaction. CAT is located in the peroxisomes of plant cells,
and its main role is the elimination of H

2
O

2
, which is

produced by the SOD reaction. Another antioxidant, APX,
also can remove H

2
O

2
; however, it is distributed in the

preoxisomes as well as chloroplasts, cytosol, and
mitochondrion.Plants can induce defense responses
against oxidative stress by activating the non-enzymatic
antioxidants, which represent the second line of defense
against ROS, hydrophilic molecules(ascorbate,
glutathione) and lipophilic metabolites (carotenoids,a-
tocopherol Gowayed et al. (2017). In addition, glutathione
protects the thiol-groups of enzymes located in the
chloroplast stroma and participates in the production of
a-tocopherol and ascorbate  Racchi (2013). Besides its
role in detoxification of ROS, glutathione induces
physiological responses such as the regulation of sulfur
transportand expression of stress defense genes .
Carotenoids are a class of phenolic compoundsdistributed
in various fruits and vegetables. Theycan prevent lipid
peroxidation by scavenging single oxide radical from
chloroplasts Kühlbrandt et al. (1994).

Cadmium toxicity:
Cadmium, as a non-essential element, is one of the

aggravating factors in soil salinity, which plays a major
role in inhibition of plant growth by accumulation in plant.
Cadmium in the plant could intervene in plant chemical
synthesis processes such as ammonification, nitrification,
DE nitrification, and microbiological process that affect
the quantity and quantity of the crop products Cojocaru
et al. (2016). It also leads to the generation of [e.g.,
“Reactive Oxygen Species (ROS)”] and oxidative stress
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so that it can impact on the performance of protein and
lipids. Cadmium in leaf leads to leaf chlorosis Lin et al.
(2016). Photosynthesis inhibition with the decline of
pigment content, chlorophyll a, and phycobiliproteins
Simek et al. (2016). Results indicated that salicylic acid
and silicon alleviate the inhibitory effects of cadmium on
maize seedlings by increasing both their chlorophyll
content and fresh weight.Although individual treatments
of salicylic acid and silicon reduced plants free proline,
soluble sugars and cadmium uptake and lipid peroxidation
rate, they improved root and shoot fresh weights in both
cadmium stressed and unstressed seedlings. When
combined, salicylic acid and silicon alleviated the inhibitory
effects of cadmiumon seedlings significantly.
Mohsenzadeh et al. (2011).

Lead(Pb) toxicity:
Lead as a non-redox active metal, by positioning in

group 14  of the periodic table and having a low melting
point is one of the important metals in a variety of
industrial products, including paints, weights, ammunitions,
and leaded glass. Lead is considered as an immobilized
property in the soil so that plants can easily access it;
however, it should be noticed how lead enters the plant
body. One of the consequences of increasing lead is the
production of ROS in plant cells, which can cause the
replacement of essential ions in the cell and impair other
processes such as cell adhesion and cell signaling Lyer
et al. (2015). In the cell, nuclear by binding with DNA,
lead can reduce the role of repairs in DNA and lead to a
disturbance in mitotic stage and prolongs interface and
consequently, increase the period of the cell cycle Dikilitas
et al. (2016). Pb (lead toxicity) in plants can decrease
the growth of roots and increase the roots’ suberized.
Pb (lead), with impact on the Reaction Centre and
Antennae, decreases the efficiency of photosystem II
Dao and Beardall (2016), which can negatively affect
plant metabolism.The key mechanisms of Si mediated
toxicity  allevieation mechanisms is mainly 1)
Complexation and co-precipatiation of toxic metals with
silicon, 2) Imobilization of toxic metals ions,
3)Compartmentalization with vacuoles. Silicon (Si)
addition protect the plant tissues from membrane oxidative
damage under Pb stress, thus mitigating Pb toxicity and
improving the growth of cotton plants. The results of the
present experiment coincided with the conclusion that
Silicon (Si) is involved in the metabolic or physiological

changes in Pb stressed cotton plants (Bharwana et
al.,2013).

Silicon and other stress interection:
Silicon can reduce the negative effects of other

stresses including physical stresses (high temperature,
freezing, drought, lodging, radiation,irradiation, UV) and
chemical stresses (salt,nutrient imbalance, metal toxicity)
in Borago officinalis L. Probably, because of the
strengthening effects on cell wall. Silicon has indicated
a significant effect on lodging especially in rice,wheat
and barley by enhancing the amount of light and
photosynthesis Dorairaj et al. (2017). Some researchers
reported a highly significant role of supplied silicon in
enhancing the biosynthesis of phenolic compounds under
UV-B stress. The result of experiments showed that
silicon application was significant in alleviating the adverse
effects of UV-B.Significant advances have been made
in alleviating the effects of UV-B by exogenous silicon
application on soybean, wheat and maize Shen et al.
(2014) silicon application reduced the apoplastic Mn levels
in cowpea Horst et al. (1999). The most significant
effects of silicon on metal toxicity are by reducing Cd
and copper (Cu) uptake and root-to-shoot translocation
by increasing metal adsorption and Zn and Mn uptake
Rizwan (2012). It was revealed that silicon reduced Cd
uptake by the plants as well as decreased shoot to grain
translocation of Cd Adrees et al. (2015).

Conclusion :
The mechanism responsible for increased metal

tolerance in Si-treated plants is still a matter of
discussionand contradictory results have been reported.Si
application shows varying response to ROS scavenging
by activating the defense system plants. In doing so, the
activity of antioxidant (CAT, SOD, PPO, POD, APX,
GPX, and GSSH) may also oscillate depending upon the
intensity of heavy metal stress and plant type. However,
plants treated with Si presented not only biomass
increasing but also higher metal accumulation. This
clearly indicates that a silicon-mediated mechanism plays
a role in alleviating the metal stress. Significant structural
alterations on xylem diameter,mesophyll and epidermis
thickness, and transversal area occupied by collenchyma
and midvein were alsoobserved as a result of Si
application. The precipitation of silica in the endodermis
and pericycle of roots seemsto play an important role on
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the crop plantstolerance to heavy metal stress. Such
results indicate that Si could beused in phytotechnologies
aiming at increasing the tolerance and accumulation of
metals in plants,which may become very good opurtunity
to reduce heavy metals from our food grains.
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