
An application of generalized linear model in survival
analysis

 Yasmeena Ismail, S.A Mir, M.A Bhat and Nageena Nazir

Received: 17.12.2017; Revised: 19.03.2018; Accepted: 05.04.2018

 ABSTRACT : Diabetes is a chronic, often debilitating and sometimes fatal disease, in which
the body either cannot produce insulin or cannot properly use the insulin it produces. Type 1
diabetes occurs when the immune system mistakenly attacks and kills the beta cells of the
pancreas. Type 2 diabetes occurs when the body can’t properly use the insulin that is released
(called insulin insensitivity) or does not make enough insulin. Diabetic nephropathy, also known
as Kimmelstiel Wilson syndrome or nodular diabetic glomerulosclerosis or intercapillary
glomerulonephritis, is a clinical syndrome characterized by albuminuria (>300 mg/day or >200
mcg/min), permanent and irreversible decrease in glomerular filtration rate (GFR), the rate of rise
in serum creatinine (SrCr).  According to the WHO, 31.7 million people were affected by diabetes
mellitus (DM) in India in the year 2000. This figure is estimated to rise to 79.4 million by 2030, the
largest number in any nation in the world. In this paper, survival analysis will be done of the type
2 diabetic nephropathy patients through generalized linear model. Most appropriate distribution
for duration of diabetes is selected through Bayesian information criterion value. Then two
generalized linear models are fitted by taking the duration of diabetes as response variable and
the predictors as SrCr, number of successes; GFR, number of successes, respectively. These
covariates are linked with the response variable using different link functions. At the last,
survival function under different links will be compared.

KEY WORDS: Generalized linear model, Link function, Bayesian information criterion, Survival func-
tion, Diabetic nephropathy, GFR
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Linear regression attempts to model the relationship
between two variables, where one is the
dependent or response variable and other is the

independent or predictor variable. Generalized linear
models are an extension of classical linear models
introduced by Nelder and Weddeburn 1972 (McCullagh
and Nelder, 1989). They showed that regression and
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analysis of variance methods could be applied to any
response variable whose distribution belongs to the
exponential family (Stroup and Kachman, 1994). In a
generalized linear model three elements are involved.
We have already looked at two of them, the probability
distribution, the linear structure and the third is the link
function. Generalized linear models include as special
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cases, linear regression and analysis of variance models,
logit and probit models for quantal responses, log linear
models and multinomial response models for counts and
some commonly used models for survival data. GLM
have application in disciplines as widely varied as
agriculture, demography, ecology, economics, education,
engineering, environmental studies and pollution,
geography, geology, history, medicine, political science,
psychology and sociology.

Survival analysis is the name for a collection of
statistical techniques used to describe and quantify time
to event data. In survival analysis we use the term
‘failure’ to define the occurrence of the event of interest.
The term ‘survival time’ specifies the length of time taken
for failure to occur. Failure time data or survival data
are frequently encountered in biomedical studies,
engineering, and reliability research. In medical studies,
clinical endpoints for assessment of efficacy and safety
of a promising therapy usually include occurrence of
some predefined events such as deaths, the onset of a
specific disease, the response to a new chemotherapy in
treatment of some advanced cancer, the eradication of
an infection caused by a certain micro-organism, or
serious adverse events. The statistical analysis of survival
data has been well developed in the literature. The
estimation of the survival distribution can be done by the
Kaplan-Meier product limit estimator, which can also be
viewed as a kind of nonparametric maximum likelihood
estimator. Several survival distributions are proposed and
an appropriate distribution is identified by the various
information criterions like AIC, BIC and AICC. AIC
stands for Akaike’s Information Criterion (Akaike, 1973).
AIC is aimed at finding the best approximating model to
the unknown true data generating process. It could be
argued that a good model selection criterion should work
even if the user tries a “bad” (e.g., over parameterized)
model: if the model is bad, the criterion should be able to
detect this. In this regard, AIC fails. In order to remove
this deficiency, (Hurvich and Tsai, 1989) introduced a
corrected version, AICC which refers to Finite Sample
Corrected AIC. BIC stands for Bayesian information
criterion unlike Akaike Information Criteria, BIC is
derived within a Bayesian framework as an estimate of
the Bayes factor for two competing models (Schwarz,
1978 and Kass and Raftery, 1995). Models that minimize
the Bayesian Information Criteria are selected. From a
Bayesian perspective, BIC is designed to find the most

probable model given the data.
Diabetes is a chronic, often debilitating and

sometimes fatal disease, in which the body either cannot
produce insulin or cannot properly use the insulin it
produces. Type 1 diabetes occurs when the immune
system mistakenly attacks and kills the beta cells of the
pancreas. Type 2 diabetes mellitus is a lifelong (chronic)
disease in which the body becomes resistant to the normal
effects of insulin and/or gradually loses the capacity to
produce enough insulin in the pancreas. Onset is usually
after 40 years of age but can occur at any age. Diabetic
nephropathy, also known as Kimmelstiel Wilson syndrome
or nodular diabetic glomerulosclerosis or intercapillary
glomerulonephritis, is a clinical syndrome characterized
by albuminuria (>300 mg/day or >200 mcg/min),
permanent and irreversible decrease in glomerular
filtration rate (GFR), the rate of rise in serum creatinine
(SrCr). Throughout the world the number of the people
developing type 2-DM is increased dramatically.
According to the WHO, 31.7 million people were
affected by diabetes mellitus (DM) in India in the year
2000. This figure is estimated to rise to 79.4 million by
2030, the largest number in any nation in the world.

Hakulinen and Tenkanen estimated the relative
survival rates of lung cancer patients by assuming a
Binomial distribution and applying generalized linear model
approach with log-log link (Hakulinen and Tenkanen,
1987). Karem applied general and generalized linear
models for determining which combination of effects
allows for the optimal prediction of survival for lung
cancer patients. They showed that a full effects
generalized linear model outperforms the general linear
model (Karem, 2006). Yuan, Hong and Shyr also studied
the survival patterns of lung cancer patients by applying
Cox proportional hazard models (Yuan et al., 2007).
Akram, Ullah and Taj investigated the survival pattern
of cancer patients using the non-parametric and
parametric modeling strategies. They applied Kaplan-
Meier method and Weibull model based pn Anderson-
Darling test to the real life time data of cancer patients
(Akram et al., 2007). Gurprit Grover, A Sabharwal and
J Mittal estimated the survival functions of type 2 diabetic
patients with renal complication. They also compared
the estimated survival functions under the log and
reciprocal links with Kaplan Meier (KM) estimates
graphically (Grover et al., 2013).

In this paper, data of type 2 diabetic patients was
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collected from SKIMS, Srinagar J&K (data base of Dr.
Lal path’s lab). The dataset consists of 53 Diabetic
Nephropathy patients. Aim of this study is to obtain the
survival function with the help of the data on type 2
diabetic patient. we first fit four different distributions
separately on two models. And then choose the models
with minimum AIC, BIC and AICC. Gamma distribution
comes out to be the best distribution for the first model
and Inverse Gaussian for the second model based on
the values of AIC, BIC, AICC. The two Generalized linear
regression analysis are performed by considering log
duration as response variable, SrCr and number of
success as independent variables for the first model and
considering duration as response variable, GFR and
number of success as independent variable for second
model. These responses are linked with the independent
variables by two link functions. And based on the
estimates of both the models we will find the survival
function by Kaplan Meier approach. This work is an
extension of Grover et al. (2013) paper where they
estimated the survival function based on the first model
of this paper we have added up the second model which
is based on GFR which takes into account the ages and
gender of the patients under consideration.

RESEARCH  METHODS
Generalized linear model is defined in terms of a

set of independent random variables Y1,…,YN each with
a distribution from the exponential family . The Poisson,
Normal, Binomial,  Gamma, Inverse Gaussian
distributions are some of the members of this family.
The distribution of each Y

i
has the canonical form and

depends on a single parameter i , thus

(1)

The parameter i are typically not of direct interest.
Suppose that E (Yi) = i where i is some function of i.
For a generalized linear model there is a transformation
of i such that

T
ii

(2)

In this equation g is a monotone, differentiable
function called the link function. The most common link
function are identity, log, reciprocal, power, cumulative
logit. Log and identity link functions are used with all the
distributions. Then an appropriate distribution is selected
from the following four members of the exponential family
of distributions Gamma, Inverse Gaussian, Normal and

Multinomial. The important properties of these
distributions are the gamma distribution is the most
popular model for analyzing the skewed data. It is suitable
for modeling data with different types of hazard rate
function: increasing, decreasing, in the form of bathtub
and unimodal. This characteristic is useful for estimating
individual hazard rate functions and both relative hazards
and relative times (Cox and Mann, 2008). Cox et al.
(2007) presented a parametric survival analysis and
taxonomy of the gamma hazard rate function. The hazard
rate function of the Inverse Gaussian distribution has -
shape like log-normal, generalized Weibul and Log-
logistic distributions, i.e. the hazard rate of Inverse
Gaussian distribution is unimodal which increases from
0 to its maximum value and then decreases asymptotically
to a constant. This is the reason Inverse Gaussian
distribution is used often in reliability and survival analysis.
The hazard function of lognormal could be increasing
and then decreasing with time i.e.,non monotonic (Cox
et al., 2007). The probability distribution function
likelihood function and the survival function of above
distributions are:

Gamma distribution :

(3)

S(t) = [1- I ( t, )] (4)
where I ( t, ) is the incomplete Gamma function

defined as,

(5)

1 (6)

Inverse Gaussian Distribution :

(7)

dx
X

1
2

exp
x
1

2
1tS

2

2

t

0

2
3

(8)

(9)

An application of generalized linear model in survival analysis

68-74



HIND INSTITUTE OF SCIENCE AND TECHNOLOGYAsian J. Home Sci., 13(1) June, 2018 : 71

Normal Distribution :

(10)

(11)
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(12)

Multinomial Distribution :
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Once all the above distribution are fitted to both the
models an appropriate model is selected by comparing
the values of AIC, BIC, AICC. The idea of AIC is to
select the model that minimizes the negative likelihood
penalized by the number of parameters as specified in

AIC = –2 log p (L) + 2p

where, -2log p (L) is the deviance term and L refers
to the likelihood under the fitted model and p is the number
of parameters in the model. As already mentioned that if
the model is bad, the particular criterion should be able
to detect this, thus AIC fails a corrected version of AIC
is introduced i.e., AICC which refers to Finite Sample
Corrected AIC. AICC , defined by

AICC (p,q) =-2 log [likelihood(p,q)] + 2(p+q+1)

(13)
In AICC, we take penalty term for AIC, which we

can consider to be 2(p+q+1) and multiply it by the

correction factor , And the third criterion is BIC,

defined as:
BIC = -2 log p(L)  +  p log(n) (14)
BIC differs from AIC only in the second term which

now depends on sample size n. The model with the lowest
AIC, BIC, AICC values is preferred.

Application :
Study of 53 diabetic nephropathy patients was

carried out from the nephrology department of SKIMS,
J&K (pathological tests were done in Dr Lal’s Path Lab).
The data regarding the age at which the diabetes was
diagnosed, gender, protein albumin, 24 hour urine
collection, SrCr values, Fasting Blood Glucose (FBG),
Diastolic Blood Pressure(DBP) and Systolic Blood
Pressure(SBP). GFR was also calculated by CKD-EPI
creatinine equation (2009) expressed

eGFR = 141 x min (SCr k, 1)a x max (SCr / k, 1)-1.209 x 0.993Age

x 1.018 [iffemale] x 1.159 [ifblack] (15)
GFR is an important marker for the development

of diabetic nephropathy. On the basis of all this
information the above two discussed models are fitted
and their AIC, BIC, AICC values are calculated. Table 1
gives the AIC, BIC, AICC values of the distributions fitted
for the Generalized Linear Model

Log(Dur) i = 0 + 1(SrCr) i + 2(no. of success) i (16)
where,
Dur = Duration of diabetes
SrCr = Serum creatinine
No. of success = The number of times SrCr exceeds

its normal range (1.4mg/ml)

RESEARCH  FINDINGS AND  DISCUSSION
It is clear from the Table 1 that gamma distribution

has the minimum value for AIC, BIC, AICC thus gamma
distribution is the most appropriate distribution for the
duration of diabetes of model (16).

Now, gamma generalized linear model with log link
is used to estimate the duration of diabetes based on
serum creatinine and number of success the results are
shown in Table 2.

It is clear from the table that for estimating duration

Table 1 : AIC, BIC, AICC values of different distributions
Distribution Link AIC BIC AICC

Gamma Log -173.745 -165.789 -172.929

Inverse Gaussian Log -172.812 -164.856 -171.996

Normal Identity 105.391 111.358 105.871

Multinomial Cumulative logit 26.001 51.858 35.101
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of diabetes serum creatinine and number of success are
significant as the p-values are less the .0100. The fitted
gamma generalized linear model is

Log(Dur)i = 0.132 -0.058(SrCr) i+0.002(no. of succ) i (17)
Now, Table 3 gives the AIC, BIC AICC values of

the distributions fitted for the generalized linear model
Log(Dur)i = 0 + 1(GFR)i + 2(no. of success)i (18)
where,
Dur= Duration of diabetes
GFR= Glomelural Filtration Rate
No. of success= Number of times SrCr exceeds

the normal range

In Table 3 we found that the values of AIC, BIC,
AICC are minimum for Inverse Gaussian distribution. And
Inverse Gaussian comes out to be the most appropriate
distribution for the duration of diabetes of model (17).
Inverse Gaussian generalized linear model with log link
is used for estimating the duration of diabetes based on
GFR and no. of success. The results are shown in Table
4.

Thus the fitted Inverse Gaussian generalized linear
model with log link is

Log(Dur)i = -.266 + .010(GFR) i + .002(no. of succ) i (19)
The estimates of shape and scale parameters of

Table 2 : Gamma Generalized Linear Model with log link for estimating the duration of diabetes based on serum creatinine and number of
success

95%  CIVariable Parameter
estimate

Standard
error Upper Lower

Wald Chi-square p-value

Intercept 0.132 0.0379 0.058 0.206 12.163 0.00

SrCr -0.058 0.0049 -0.068 -0.048 138.071 0.00

Succ 0.002 0.0005 0.001 0.003 14.725 0.00

Dispersion 0.002 0.0004 0.001 0.003

AIC -173.745

BIC -165.789

AICC -172.929

Link =Log

Log (dur)i =0.132 -0.058(SrCr)i + 0.002(Succ)i

*degree of freedom for each intercept is 1

Table 3 : AIC, BIC, AICC values for different distributions
Distribution Link function AIC BIC AICC

Gamma Log -190.843 -182.887 -190.026

Inverse Gaussian Log -193.339 -185.383 -192.523

Normal Identity -184.512 -176.556 -183.696

Multinomial Cumulative logit 127.748 153.604 136.848

Table 4 : Inverse Gaussian generalized linear model estimating the duration of diabetes based on GFR and number of success
95% CIVariable Parameter

estimate
Standard

Error Upper Lower
Wald

Chi-square
p-value

Intercept -0.266 0.0153 -0.296 -0.236 303.937 0.00

GFR 0.010 0.0007 0.009 0.011 209.553 0.00

Succ 0.002 0.0004 0.001 0.003 17.996 0.00

Dispersion 0.001 0.0003 0.001 0.002

AIC -193.339

BIC -185.383

AICC -192.523

Link = Log

Log(Dur)i = -0.266 +0.010(SrCr)i + 0.001(Succ)i
*Degree of freedom for each intercept is 1
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the gamma and inverse Gaussian distributions are used
to estimate the survival functions. The survival estimates
obtained by Kaplan Meier method, gamma and inverse
Gaussian distributions are shown in Table 5. Fig. 1 shows
the survival curve plotted using the gamma and inverse
Gaussian generalized linear models and Kaplan Meier.
The mean duration of diabetes of patients who develop
diabetic nephropathy under gamma and inverse Gaussian
distributions is 10.3 while under Kaplan Meier is 9.9.

Diabetic nephropathy is the leading cause of chronic
kidney diseases and end stage renal failure. Throughout
the world the number of the people developing type 2-
DM is increased dramatically (WHO). In the course of
diabetes mellitus diabetic nephropathy occurs in 30%-
40% in patients with type 1 diabetes (USRDS) and in
25%-40% in patients with type 2-diabetes (Hall, 2006).
So researchers are making different efforts to apply

Table 5 : Survival functions by using Gamma and Inverse Gaussian generalized linear model and Kaplan Meier
Duration of diabetes SGamma (t) SInverse Gaussian (t) SKM (t)

7 0.9075 0.9287 0.8333

8 0.7500 0.7245 0.6852

9 0.6019 0.6298 0.5370

10 0.4630 0.4595 0.4074

11 0.3703 0.3989 0.3519

12 0.3056 0.3220 0.2778

13 0.2407 0.2540 0.2222

14 0.1852 0.1755 0.1667

15 0.1019 0.0683 0.0556

19 0.0370 0.0370 0.0370

20 0.0185 0.0185 0.0185

25 0.0000 0.0000 0.0000

Fig. 1 : Survival curves using Gamma and Inverse
Gaussian generalized linear model and Kaplan
Meier Method

technologies to come up with results which are helpful
to the medical field. We have also made a contribution
in this regard by obtaining the survival functions of the
type 2 diabetic patients. Gamma distribution comes out
to be the best fit for model I and inverse Gaussian
distribution is best fit for model II on comparing their
AIC,BIC and AICC values. Survival function of type 2
diabetic patients are obtained based on gamma and
inverse Gaussian distributions. And these survival
functions are compared with the estimates obtained by
the Kaplan Meier method. The survival function based
on gamma and inverse Gaussian distributions and those
obtained by the Kaplan Meier method are approximately
same. Model II (proposed model) provides an alternative
approach to obtain the survival function of type 2 diabetic
patients.
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