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BABSTRACT : Diabetesisachronic, often debilitating and sometimesfatal disease, in which
the body either cannat produce insulin or cannot properly use the insulin it produces. Type 1
diabetes occurs when the immune system mistakenly attacks and kills the beta cells of the
pancreas. Type 2 diabetes occurs when the body can’t properly use the insulin that is released
(calledinsulininsensitivity) or does not make enough insulin. Diabetic nephropathy, al so known
as Kimmelstiel Wilson syndrome or nodular diabetic glomerulosclerosis or intercapillary
glomerulonephritis, isaclinical syndrome characterized by albuminuria (>300 mg/day or >200
mcg/min), permanent and irreversibledecreasein glomerular filtration rate (GFR), therateof rise
in serum creatinine(SrCr). According to the WHO, 31.7 million peoplewere affected by diabetes
mellitus(DM) in Indiain the year 2000. Thisfigureisestimated toriseto 79.4 million by 2030, the
largest number in any nation in theworld. In this paper, survival analysiswill be done of thetype
2 diabetic nephropathy patientsthrough generalized linear model . Most appropriate distribution
for duration of diabetesis selected through Bayesian information criterion value. Then two
generalized linear modelsarefitted by taking the duration of diabetes asresponse variable and
the predictors as SrCr, number of successes;, GFR, number of successes, respectively. These
covariates are linked with the response variable using different link functions. At the last,

See end of the paper for authors’ affiliations

Nageena Nazir

S.K. Universty of Agricultural
Sciences and Technology of
Kashmir, Shalimar, Srinagar
(J&K) India

Email : nazir.nageena@gmail.com

between two variables, where one is the
dependent or response variable and other is the
independent or predictor variable. Generalized linear
models are an extension of classical linear models
introduced by Nelder and Weddeburn 1972 (McCullagh
and Neder, 1989). They showed that regression and

I inear regression attempts to mode thereationship

survival function under different linkswill be compared.

B KEY WORDS: Generalized linear model, Link function, Bayesian information criterion, Surviva func-
tion, Diabetic nephropathy, GFR

mHOW TO CITE THISPAPER : Ismail, Yasmeena, Mir, SA., Bhat, M.A and Nazir, Nageena (2018). An
application of generalized linear modd in survival analysis. Asian J. Home Sci., 13 (1) : 68-74, DOI:
10.15740/HAS/AJH S/13.1/68-74. Copyright@ 2018: Hind Agri-Horticultural Society.

analysis of variance methods could be applied to any
response variable whose distribution belongs to the
exponential family (Stroup and Kachman, 1994). In a
generalized linear model three elements are involved.
We have already looked at two of them, the probability
distribution, thelinear structure and thethird is the link
function. Generalized linear modds include as specia
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cases, linear regression and analysis of variance models,
logit and probit models for quantal responses, log linear
models and multinomial response models for counts and
some commonly used models for survival data. GLM
have application in disciplines as widdly varied as
agriculture, demography, ecology, economics, education,
engineering, environmental studies and pollution,
geography, geology, history, medicine, political science,
psychology and sociol ogy.

Survival analysis is the name for a collection of
statistical techniques used to describe and quantify time
to event data. In survival analysis we use the term
“failure’ to define the occurrence of the event of interest.
The term “survival time’ specifies the length of time taken
for failure to occur. Failure time data or survival data
are frequently encountered in biomedical studies,
engineering, and reliability research. In medical studies,
clinical endpoints for assessment of efficacy and safety
of a promising therapy usually include occurrence of
some predefined events such as deaths, the onset of a
specific disease, the response to a new chemaotherapy in
treatment of some advanced cancer, the eradication of
an infection caused by a certain micro-organism, or
serious adverseevents. Thestatistical analysisof survival
data has been well developed in the literature. The
estimation of the survival distribution can be doneby the
Kaplan-Meer product limit estimator, which can also be
viewed as a kind of nonparametric maximum likelihood
estimator. Several survival distributionsare proposed and
an appropriate distribution is identified by the various
information criterions like AIC, BIC and AICC. AIC
stands for Akaike’s Information Criterion (Akaike, 1973).
AlC isaimed at finding the best approximating model to
the unknown true data generating process. It could be
argued that agood modd selection criterion should work
even if the user tries a “bad” (e.g., over parameterized)
modd: if themodd isbad, the criterion should beableto
detect this. In thisregard, AIC fails. In order to remove
this deficiency, (Hurvich and Tsai, 1989) introduced a
corrected version, AlIC_ which refers to Finite Sample
Corrected AIC. BIC stands for Bayesian information
criterion unlike Akaike Information Criteria, BIC is
derived within a Bayesian framework as an estimate of
the Bayes factor for two competing models (Schwarz,
1978 and Kassand Raftery, 1995). Moddsthat minimize
the Bayesian Information Criteria are sdlected. From a
Bayesian perspective, BIC is designed to find the most

probable modd given the data.

Diabetes is a chronic, often debilitating and
sometimes fatal disease, in which the body either cannot
produce insulin or cannot properly use the insulin it
produces. Type 1 diabetes occurs when the immune
system mistakenly attacks and kills the beta cdls of the
pancreas. Type 2 diabetes mdlitusis alifdong (chronic)
diseasein which thebody becomes resistant to the normal
effects of insulin and/or gradually loses the capacity to
produce enough insulin in the pancreas. Onset is usually
after 40 years of age but can occur at any age. Diabetic
nephropathy, also known as Kimme stid Wilson syndrome
or nodular diabetic glomerulosclerosis or intercapillary
glomerulonephritis, isaclinical syndrome characterized
by albuminuria (>300 mg/day or >200 mcg/min),
permanent and irreversible decrease in glomerular
filtration rate (GFR), the rate of risein serum creatinine
(SrCr). Throughout the world the number of the people
developing type 2-DM is increased dramatically.
According to the WHO, 31.7 million people were
affected by diabetes melitus (DM) in India in the year
2000. This figure is estimated to rise to 79.4 million by
2030, the largest number in any nation in the world.

Hakulinen and Tenkanen estimated the relative
survival rates of lung cancer patients by assuming a
Binomial distribution and applying generalized linear modd
approach with log-log link (Hakulinen and Tenkanen,
1987). Karem applied general and generalized linear
models for determining which combination of effects
allows for the optimal prediction of survival for lung
cancer patients. They showed that a full effects
generalized linear mode outperforms the general linear
modd (Karem, 2006). Yuan, Hong and Shyr also studied
the survival patterns of lung cancer patients by applying
Cox proportional hazard modds (Yuan et al., 2007).
Akram, Ullah and Taj investigated the survival pattern
of cancer patients using the non-parametric and
parametric modeling strategies. They applied Kaplan-
Meier method and Weibull mode based pn Anderson-
Darling test to the real life time data of cancer patients
(Akram et al., 2007). Gurprit Grover, A Sabharwal and
JMittal estimated thesurviva functions of type 2 diabetic
patients with renal complication. They also compared
the estimated survival functions under the log and
reciprocal links with Kaplan Meier (KM) estimates
graphically (Grover et al., 2013).

In this paper, data of type 2 diabetic patients was
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collected from SKIMS, Srinagar J& K (data base of Dr.
Lal path’s lab). The dataset consists of 53 Diabetic
Nephropathy patients. Aim of this study isto obtain the
survival function with the help of the data on type 2
diabetic patient. we first fit four different distributions
separatdy on two models. And then choose the models
with minimumAIC, BIC andAIC_. Gamma distribution
comes out to be the best distribution for the first mode
and Inverse Gaussian for the second model based on
thevaluesof AIC, BIC,AlIC_. Thetwo Generalized linear
regression analysis are performed by considering log
duration as response variable, SrCr and number of
success as independent variables for the first modd and
considering duration as response variable, GFR and
number of success as independent variable for second
model. These responses are linked with the independent
variables by two link functions. And based on the
estimates of both the models we will find the survival
function by Kaplan Meer approach. This work is an
extension of Grover et al. (2013) paper where they
estimated the survival function based on the first mode
of this paper we have added up the second modd which
is based on GFR which takes into account the ages and
gender of the patients under consideration.

B RESEARCH METHODS

Generalized linear moded is defined in terms of a
set of independent random variablesY ..., Y, each with
adistribution fromthe exponential family . The Poisson,
Normal, Binomial, Gamma, Inverse Gaussian
distributions are some of the members of this family.
The distribution of each Y, has the canonical form and
depends on a single parameter 0, , thus

f(y30;)=exp[y;b;(0;) +¢;(0;)+d;(y;)] (1)

The parameter 0, aretypically not of direct interest.
Supposethat E (Y)) = p, where . is some function of 0.
For a generalized linear modd thereis a transformation
of p, such that

g0)=x/p 2

In this equation g is a monotone, differentiable
function called the link function. The most common link
function areidentity, log, reciprocal, power, cumulative
logit. Log and identity link functions are used with all the
distributions. Then an appropriatedistributionis sdected
fromthefollowing four members of the exponential family
of distributions Gamma, Inverse Gaussian, Normal and
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Multinomial. The important properties of these
distributions are the gamma distribution is the most
popular modd for analyzing the skewed data. It issuitable
for modeling data with different types of hazard rate
function: increasing, decreasing, in the form of bathtub
and unimodal. This characteristicisuseful for estimating
individual hazard ratefunctions and both relative hazards
and relative times (Cox and Mann, 2008). Cox et al.
(2007) presented a parametric survival analysis and
taxonomy of the gamma hazard rate function. Thehazard
rate function of the Inverse Gaussian distribution has N-
shape like log-normal, generalized Weibul and Log-
logistic distributions, i.e. the hazard rate of Inverse
Gaussian distribution is unimodal which increases from
0toitsmaximumvalueand then decreases asymptotically
to a constant. This is the reason Inverse Gaussian
distribution is used oftenin reliability and survival analysis.
The hazard function of lognormal could be increasing
and then decreasing with time i.e.,non monotonic (Cox
et al., 2007). The probability distribution function
likelihood function and the survival function of above
digtributionsare:

Gamma distribution :
Y
f(t|Ly):l):—ty'le';";l>0,y>0&t>0 3
Y
S = [1- | (A, 7)] (4)

where | (At, y) is the incomplete Gamma function
defined as,

| R
I(M»V):E(J;lly e "du (5)
(6)

Y
f(t| k,y):l):—ty'le_“;k >0,y >0&t>0
Y

Inverse Gaussian Distribution :

f(t|u,k):J%ex;{_)ﬁE:l)z };w Op>0&1>0  (7)
w2t o

A —liﬁi(fi -n)?
L= (LJ : 1 exp izl
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i=1 !

flst+ (9
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Normal Distribution :

2

1|t—p

f(t|p,0)= ——[—}
n,c ozn”{z . J ((10)]
L =—nlogs — 1o Zn—i i(b—u)2 (12)

. 2 & 267 i1

S0 =1 ~(t-w226?) 1 "

=1 o {’ dt=1 {1+er[6‘/_]:|
(12)

Multinomial Distribution :

oty tm
f(ty,ty 0t _(n Cty ot et }‘1‘!’22---13".
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m m m
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1

Once all the above distribution are fitted to both the
models an appropriate model is selected by comparing
the values of AIC, BIC, AIC_ The idea of AIC is to
sdect the mode that minimi zes the negative likelihood
penalized by the number of parameters as specified in

AIC =-21log p (L) + 2p

where, -2log p (L) isthedevianceterm and L refers
tothelikeihood under thefitted modd and p isthe number
of parametersin themodel. As already mentioned that if
the modd is bad, the particular criterion should be able
to detect this, thus AIC fails a corrected version of AIC
is introduced i.e., AIC_ which refers to Finite Sample
Corrected AIC. AIC_, defined by

n
n-p-q-2
(13)

InAIC,, we take penalty term for AIC, which we

can consider to be 2(p+g+1) and multiply it by the

- ,Andthethird criterionisBIC,

AlIC_(p,q) =-2 log [likelihood(p,q)] + 2(p+qg+1)

correction factor

n-p-q

defined as:
BIC = -2 log p(L) + p log(n) 14
BIC differsfromAIC only inthe second termwhich
now depends on samplesizen. Themode with thelowest
AIC, BIC, AIC, values is preferred.

Application :

Study of 53 diabetic nephropathy patients was
carried out from the nephrology department of SKIMS,
J& K (pathological testsweredonein Dr Lal’sPath Lab).
The data regarding the age at which the diabetes was
diagnosed, gender, protein albumin, 24 hour urine
collection, SrCr values, Fasting Blood Glucose (FBG),
Diastolic Blood Pressure(DBP) and Systolic Blood
Pressure(SBP). GFR was also calculated by CKD-EPI
creatinine equation (2009) expressed

eGFR = 141 x min (S, k, 1)* x max (S, / k, 1)%2% x 0.9934
x 1.018 [iffemale] x 1.159 [ifblack] (15

GFR is an important marker for the development
of diabetic nephropathy. On the basis of all this
information the above two discussed models are fitted
and their AIC, BIC, AIC_ values are calculated. Table 1
givestheAlC, BIC, AIC_ valuesof thedistributionsfitted
for the Generalized Linear Modd

Log(Dur),= B, + B,(SrCr), + B,(no. of success),

where,

Dur = Duration of diabetes

SrCr = Serum cregtinine

No. of success = Thenumber of times SrCr exceeds
its normal range (1.4mg/ml)

(16)

B RESEARCH FINDINGS AND DISCUSSION

It isclear fromthe Table 1 that gamma distribution
has the minimum value for AIC, BIC, AIC_ thus gamma
distribution is the most appropriate distribution for the
duration of diabetes of mode (16).

Now, gamma generalized linear mode with log link
is used to estimate the duration of diabetes based on
serum creatinine and number of success the results are
shown in Table 2.

Itisclear fromthetablethat for estimating duration

Tablel1: AIC, BIC, AlC¢ values of different distributions

Distribution Link AIC BIC AICc
Gamma Log -173.745 -165.789 -172.929
Inverse Gaussian Log -172.812 -164.856 -171.996
Normal Identity 105.391 111.358 105.871
Multinomial Cumulative logit 26.001 51.858 35.101
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of diabetes serum creatinine and number of success are
significant as the p-values are less the .0100. Thefitted
gamma generalized linear model is
Log(Dur), = 0.132 -0.058(Sr Cr)+0.002(no. of succ), (17)
Now, Table 3 gives the AIC, BIC AIC_ values of
the distributions fitted for the generalized linear model

In Table 3 we found that the values of AIC, BIC,
AIC_areminimumfor Inverse Gaussiandistribution. And
Inverse Gaussian comes out to be the most appropriate
distribution for the duration of diabetes of modd (17).
Inverse Gaussian generalized linear modd with log link
is used for estimating the duration of diabetes based on

Log(Dur),= B, + B,(GFR), + B,(no. of success), (18 GFR and no. of success. Theresults are shown in Table

where, 4,

Dur= Duration of diabetes

GFR= Glomdural Filtration Rate

No. of success=s Number of times SrCr exceeds
the normal range

Thus thefitted Inverse Gaussian generalized linear
model withlog link is

Log(Dur), = -.266 + .010(GFR), + .002(no. of succ), (19)

The estimates of shape and scale parameters of

Table 2 : Gamma Generalized Linear Model with log link for estimating the duration of diabetes based on serum creatinine and number of

success

Variable Parameter Standard 95% ClI Wald Chi-square p-value
estimate error Upper Lower

Intercept 0.132 0.0379 0.058 0.206 12.163 0.00

SCr -0.058 0.0049 -0.068 -0.048 138.071 0.00

Succ 0.002 0.0005 0.001 0.003 14.725 0.00

Dispersion 0.002 0.0004 0.001 0.003

AIC -173.745

BIC -165.789

AlCc -172.929

Link =Log

Log (dur); =0.132 -0.058(SrCr); + 0.002(Succ);

*degree of freedom for each intercept is 1

Table3: AlIC, BIC, AlCcvaluesfor different distributions

Distribution Link function AlIC BIC AlC.

Gamma Log -190.843 -182.887 -190.026
Inverse Gaussian Log -193.339 -185.383 -192.523
Normal Identity -184.512 -176.556 -183.696
Multinomial Cumulative logit 127.748 153.604 136.848

Table4 : Inverse Gaussian generalized linear model estimating the duration of diabetes based on GFR and number of success

Variable Parameter Standard 95% ClI Wald p-value
estimate Error Upper Lower Chi-square

Intercept -0.266 0.0153 -0.296 -0.236 303.937 0.00

GFR 0.010 0.0007 0.009 0.011 209.553 0.00

Succ 0.002 0.0004 0.001 0.003 17.996 0.00

Dispersion 0.001 0.0003 0.001 0.002

AIC -193.339

BIC -185.383

AlCc -192.523

Link = Log

Log(Dur); = -0.266 +0.010(SrCr); + 0.001(Succ)i

"Degree of freedom for each intercept is 1
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Table5: Survival functionsby usng Gamma and I nver se Gaussian gener alized linear model and Kaplan M eier

Survival curves using Gamma and Inverse

Gaussian generalized linear model and Kaplan
Meier Method

the gamma and inverse Gaussian distributions are used
to estimatethe survival functions. Thesurvival estimates
obtained by Kaplan Meier method, gamma and inverse
Gaussian distributions areshown in Table 5. Fig. 1 shows
the survival curve plotted using the gamma and inverse
Gaussian generalized linear modds and Kaplan Meier.
The mean duration of diabetes of patients who develop
diabetic nephropathy under gamma andinverse Gaussian
distributionsis 10.3 while under Kaplan Meier is 9.9.
Diabetic nephropathy istheleading cause of chronic
kidney diseases and end stage renal failure. Throughout
the world the number of the people developing type 2-
DM isincreased dramatically (WHO). In the course of
diabetes mdlitus diabetic nephropathy occurs in 30%-
40% in patients with type 1 diabetes (USRDS) and in
25%-40% in patients with type 2-diabetes (Hall, 2006).
So researchers are making different efforts to apply
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Duration of diabetes Seamma () Sinverse Gaussian (1) Skm ()
7 0.9075 0.9287 0.8333
8 0.7500 0.7245 0.6852
9 0.6019 0.6298 05370
10 0.4630 0.4595 04074
11 0.3703 0.3989 0.3519
12 0.3056 0.3220 0.2778
13 0.2407 0.2540 02222
14 0.1852 0.1755 0.1667
15 0.1019 0.0683 0.0556
19 0.0370 0.0370 0.0370
20 0.0185 0.0185 0.0185
25 0.0000 0.0000 0.0000

Survival curves technologies to come up with results which are helpful

1 to the medical field. We have also made a contribution

97 in this regard by obtaining the survival functions of the

type 2 diabetic patients. Gamma distribution comes out

to be the best fit for moddl | and inverse Gaussian

——SM distribution is best fit for modd 11 on comparing their

o | AIC,BIC and AIC, values. Survival function of type 2

diabetic patients are obtained based on gamma and

... inverse Gaussian distributions. And these survival

7 8 9 10 11 12 13 14 15 19 20 25 functions are compared with the estimates obtained by

Duration of diabetes the Kaplan Meer method. The survival function based

on gamma and inverse Gaussian distributions and those
obtained by the Kaplan Meer method are approximately
same. Modd 11 (proposed modd) provides an alternative
approach to obtain the survival function of type2 diabetic
patients.
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