International Journal of Agricultural Sciences Volume 17 | Issue 2 | June, 2021 | 544-547

■ ISSN : 0973-130X

RESEARCH PAPER

Natural regeneration of flora in cultivated sandalwood

D. Srikantaprasad*, A.P. Mallikarjuna Gowda¹, T.N. Pushpa and K. Umesha² Department of PMA, KRCCH, Arabahvi (Karnataka) India (Email: srikantaprasad.d@gmail.com;pushpahort@gmail.com)

Abstract : Sandalwood is now became a component of agro forestry in Karnataka. A field survey was conducted in sandalwood plantation to know the influence of sandalwood and associated cultivation practice on enrichment of plant diversity. Till planting of sandalwood, farmer has followed clean cultivation later allowing the weeds to grow. Sample survey was conducted through grid method. The major biodiversity was contributed by naturally regereated plant species. Seventeen tree species, ten shrub species, five climbers and forty six herbs, mainly belonging to fabaceae, amaranthaceae and poacea were found in the studied plantation indicating positive association of local flora with sandalwood.

Key Words : Field survey, Sandalwood plantation, Bio diversity, Agro forestry

View Point Article : Srikantaprasad, D., Mallikarjuna Gowda, A.P., Pushpa, T.N. and Umesha, K. (2021). Natural regeneration of flora in cultivated sandalwood. Internat. J. agric. Sci., 17 (2): 544-547, DOI:10.15740/HAS/IJAS/17.2/544-547. Copyright@ 2021: Hind Agri-Horticultural Society.

Article History : Received : 02.03.2021; Revised : 04.03.2021; Accepted : 18.03.2021

INTRODUCTION

Santalum is an important genera of Santalaceae, among the 25 species of this genera, S. album (East Indian sandalwood) and S. spicatum (Australian sandalwood) are cultivated commercially. Highly valued heart wood of East Indian sandalwood, upon distillation is known to yield essential oil upto 6.36 per cent depending on many factors (Subasinghe et al., 2013), which is rich in santalol (α and β 90%). Though sandal seedlings initially obtain nutrients from its seed reserve, in later stages they are partly dependent on host species for water and nutrients. The tree is naturally seen in dry deciduous tracts of Karnataka and adjoining districts of Tamil Nadu, Kerala, Maharashtra and Andhra Pradesh. The earlier restrictive policies discouraged legitimate interest in sandal growing and brought the sandalwood to the verge of extinction (Rashkow, 2014). However, after the amendment to the Karnataka Forest Act, 1963 during 2001 the cultivation of sandalwood was liberalized and many enterprising farmers started cultivating the sandalwood. As it require forest like environment, the sandalwood cultivation is not similar to other tree crops and there will be scope for natural bio diversity enhancement with sandalwood. With this background, a survey was taken upto access the medicinal plant diversity in sandalwood ecosystem.

¹ICAR-KVK, Hadonahalli (Karnataka) India (Email: mallikarjuna.gowda@gmail.com) ²CoH, Bengaluru (Karnataka) India (Email: umesha_k@yahoo.co.in

^{*} Author for correspondence :

MATERIAL AND METHODS

The study was carried during March 2018 to March 2020 in pre established sandalwood plantation at Mandalmari village, Kushtagi talluk, Koppal district, Karnataka state. The study plantation is located in Zone-3 (Northern dry zone) of agro climatic zones of Karnataka and at 642 m above mean sea level. Before establishment of sandalwood, the farmer was growing pomegranate following clean cultivation and later sandalwood seedlings planted at 15 feet x 10 feet spacing during 2008. And allowed the self sown plants to grow. However, the farmer took up annual cleaning by rotavating in between the rows. The plantation was provided with protective irrigation during summer using previously installed drip irrigation system. The perennial plant species present in the plantation were identified and recorded. The annual plant species in the field were recorded using sample grid survey technique (Olsen et al., 1998). Imaginary grids of 10 m X 5 m were marked in the field in random direction. The plant species preset in the grids were sampled and identified. Total five grids were studied to assess the floral biodiversity in the study area. The plant species were identified referring 'Flora of Karnataka' (Saldanha and Ramesh, 1984).

RESULTS AND DISCUSSION

The various medicinal plants regenerated naturally in the sandalwood plantation of study area are tabulated in Table 1. Six different tree species were identified in the sandalwood plantation of which major diversity was contributed by Fabaceae family with.

There were seven shrub species and five climbers recorded in study area. Among the shrubs, curry leaf was planted by farmer, which further dispersed naturally.. All shrubs were of different families except Fabaceae, of which two species were recorded in the study plantation. All the climbers presented in the study plantation were naturally grown and of different families viz., Cucurbitaceae

Sr. No.	Common name	Botanical name	Family	Habit
1.	Flame of forest	Butea monosperma	Fabaceae	Tree
2.	Thorn mimosa	Acacia nilotica	Fabaceae	Tree
3.	Prosopis	Prosopis juliflora	Fabaceae	Tree
4.	Banni	Acacia ferruginea	Fabaceae	Tree
5.	Neem	Azadirachta indica	Meliaceae	Tree
6.	Simaruba	Simarouba glauca	Simaroubaceae	Tree

Sr. No.	Common name	Botanical name	Family	Mode of introduction
Shrubs				
1.	Yakka	Calotropis gigantea	Asclepiadacea	SS
2.	Ankole	Alangium salvifolium	Cornaceae	SS
3.	Lakki	Vitex negundo	Lamiaceae	SS
4.	Wild indigo	Teprosia purpurea	Fabaceae	SS
5.	Senna	Senna auriculata	Fabaceae	SS
6.	Curry leaf	Murraya koenigi	Rutaceae	F and SS
7.	Lantana	Lantana camara	Verbenaceae	SS
Climbers				
1.	Indian ipecac	Tylophora asthamatica	Asclepiadaceae	SS
2.	Wild ivy gourd	Coccinia grandis	Cucurbitaceae	SS
3.	Amrutha balli	Tinospora cordifolia	Menispermaceae	SS
4.	Broom creeper	Cocculus hirsutus	Menispermaceae	SS
5.	Balloon climber	Cardiospermum halicacabum	Sapindaceae	SS

Internat. J. agric. Sci. | June., 2021 | Vol. 17 | Issue 2 | 544-547

	Natural	regeneration	of flora	in	cultivated	sandalwood
--	---------	--------------	----------	----	------------	------------

Sr. No.	The list of annual herbs present in Common name	Botanical name	Family	Mode of introduction
1.	Ruellia	Ruellia bicalyculata	Acanthaceae	SS
	Kakajangha	Peristrophe bicalyculata	Acanthaceae	SS
3.	Malapudak	Peristrophe roxburghiana	Acanthaceae	SS
4.	Abrojo	Alternenthera spinosa	Amaranthaceae	SS
5.	Prickly chaff flower	Achyranthes aspera	Amaranthaceae	SS
ó.	Ox knee	Achyranthes bidentata	Amaranthaceae	SS
7.	Mountain knot grass	Aerva lanata	Amaranthaceae	SS
3.	Silver cockscomb	Celosia argentea	Amaranthaceae	SS
Э.	Creeping chaff weed	Alternanthera pungens	Amaranthaceae	SS
0.	Prickly amaranth	Amaranthus spinosus	Amaranthaceae	SS
1.	Green amaranth	Amaranthus viridis	Amaranthaceae	SS
3.	Tridax daisy	Tridox procumbance	Asteraceae	SS
4.	Carrot grass	Parthenium histeroporus	Asteraceae	SS
15.	Bristly starbur	Acathospermum hispidum	Asteraceae	SS
16.	Latin American fleabane	Erigeron mucronatus	Asteraceae	SS
17.	Indian heliotrope	Heliotropium indicum	Boraginaceae	SS
8.	Stinking cassia	Cassia tora	Caesalpinaceae	SS
19.	Sickle pod	Senna obtusifolia	Caesalpinaceae	SS
20.	Fringed spider flower	Cleome rutidosperma	Cleomaceae	SS
21.	Bengal dayflower	Commelina benghalensis	Commelinaceae	SS
22.	Morning glory	Ipomea obscura	Convolvulaceae	SS
23.	Spiny gourd	Momordica dioca	Cucurbitaceae	SS
24.	Grass like Fimbry	Fimbristylis milliaceae	Cyperaceae	SS
25.	Indian copper leaf	Acalypha indica	Euphorbiaceae	SS
26.	Asthma weed	Euphorbia hirta	Euphorbiaceae	SS
27.	Wild Poinsettia	Euphorbia geneculata	Euphorbiaceae	SS
.8.	Bana tulsi	Croton bonplandianum	Euphorbiaceae	SS
.9.	American basil	Ocimum americanum	Lamiaceae	SS
0.	Touch me not	Mimosa pudica	Mimosaceae	SS
1.	Broom weed	Malvestrum coromandelianum	Malvaceae	SS
32.	Common wire weed	Sida acuta	Malvaceae	SS
33.	Prickly Fan petals	Sida spinosa	Malvaceae	SS
4.	Purple Shamrock	Oxalis corniculata	Oxalidaceae	SS
5.	Mexican prickly pear	Argemone mexicana	Papaveraceae	SS
6.	Black honey shrub	Phyllanthes reticulates	Phyllanthaceae	SS
37.	Love grass	Ergrostis chinensis	Poaceae	SS
38.	Black spear grass	Heteropogon contortus	Poaceae	SS
9.	Torpedo grass	Panicum repens	Poaceae	SS
0.	Desho grass	Pennisetum pedicellatum	Poaceae	SS
1.	Mission grass	Pennisetum polystachion	Poaceae	SS
2.	Indian commet grass	Perotis indica	Poaceae	SS
3.	Swollen finger grass	Chloris barbata	Poaceae	SS
14.	Crowfoot grass	Dactylactenium aegyptium	Poaceae	SS
45.	Borreria Sp.	Borreria stricta	Rubiaceae	SS
46.	Wild cape gooseberry Planted by farmer SS – Self	Physalis minima	Solanaceae	SS

(*Coccinia grandis*), Asclepiadaceae (*Tylophora asthamatica*), Menispermaceae (*Tinospora cordifolia* and *Cocculus hirsutus*) and Sapindaceae (*Cardiospermum halicacabum*).

The herb biodiversity was rich in the study plantation with forty six species belonging to various botanical families. Most of the species listed are common weeds of dry land ecosystem. The maximum biodiversity was contributed by Amaranthaceae and Poaceae. Eight species of each of these families were recorded in study plantation. The family Euphorbiaceae registered four entries in the plantation which was equal to the bio diversity contribution by Asteraceae. Three species were registered from Acanthaceae and Malvaceae while, two species were from Caesalpinaceae, one from each of Asphodelaceae, Boraginaceae, Cleomaceae, Commelinaceae, Convolvulaceae, Cucurbitaceae, Cyperaceae, Lamiaceae, Mimosaceae, Oxalidaceae, Papaveraceae, Phyllanthaceae, Rubiaceae and Solanaceae.

Even though sandalwood plantation was established in standing pomegranate orchard, the study location exhibited appreciable floral biodiversity with seventy seven plant species, of which seventeen were trees, ten were shrubs, four were climbers and forty six species were herbs. Such a varied biodiversity can be attributed to the minimum cultivation followed by the farmer, which provide equal opportunity for the plants to establish and multiply. High degree of species diversity associated with sandalwood is also reported by Durairaj and Kamaraj (2013) from Manmalai reserve forest.

The major contribution to biodiversity is from Fabaceae, Amaranthaceae and Poaceae. The members of these families are very common inhabitants of arid zones of Karnataka. They are also common weeds of dry land ecosystem. The maximum introduction of species by farmer is among trees as few were pre established before planting of sandalwood. However, the trees like teak, mahogany were planted by the farmer in view of alternate income generation. The self dispersal of most of the plant species can be attributed to the bird attracting sandalwood fruits produced in enormous quantity in early monsoon months (Ratnanigrum and Indrioko, 2014). The birds are attracted from far away locations due to fruit availability apart from other fruit eating and bird hunting animals in the area. Hence, there could be influence of sandalwood itself on associated biodiversity. Apart from sandalwood, the trees, climbers and shrubs also provide fruits for birds and stray animals.

Summary and Conclusion:

Seventeen different tree species, ten shrub species, five climbers and forty six herbs were found in the sandalwood plantation mainly belonging to fabaceae, amaranthaceae and poacea. The major biodiversity was contributed by naturally regenerated plant species. Hence, it can be concluded that, cultivating sandalwood can aid in increasing the local plant diversity.

Acknowledgment:

The authors are thankful to Mr Ramesh Balutagi for facilitating to take up the current research on his field.

REFERENCES

Anonymous (1972). *Santalum*. In: *Wealth of India*. Raw Materials Rh-SO-9. Pub: Publication and Information Directorate, CSIR, New-Delhi, India, pp. 208-224.

Durairaj, P. and Kamaraj, M. (2013). Assessment and conservation strategies for *Santalum album* in manmalai rf of thuraiyur range at Tiruchirappalli district. *International J. Humanities, Arts, Medicine & Sciences*, 1(1): 1-12.

Olsen, A., Stevens, D. and White, D. (1998). Application of global grids in environmental sampling. In: *Computing Science and Statistics (Proceedings of the 30th symposium on the interface, computing science and statistics.* Mineapolis, Minnesota, May 13-16. Interface Foundation of North America, Fairfax Station, Virginia), Ed: S. Weisberg, **30**: 279-284.

Rashkow, E. D. (2014). Perfumed the axe that laid it low: The endangerment of sandalwood in southern India. *Indian Economic Social History Review*, **51**: 41.

Ratnaningrum, Y. W. N. and Indrioko, S. (2014). Response of flowering and seed production of sandalwood (*Santalum album L.*) to climate changes, In: *Procedia Environmental Sciences*, **28**: 665–675.

Saldanha, C. J. and Ramesh, S. R. (1984). *Flora of Karnataka*. Oxford and IBH, New Delhi, India.