Received : November, 2010; Accepted : December, 2010

Combining ability analysis for green fodder yield and quality attributes in sorghum [*Sorghum bicolor* (L.) Moench] over environments

K.V. PATEL AND A.D. PATEL

ABSTRACT

Sorghum is one of the most important food and fodder crop of dry land agriculture. In order to make forage sorghum as an enterprising and remunerative crop, there is urgent need to develop varieties and hybrids having early maturity, fast growth habit and higher yield coupled with high protein content and safe limit of toxic constituents like HCN for animal. Combining ability analysis is a powerful tool to discriminate good as well as poor combiners and choose appropriate parental material in breeding programme. Combining ability for green fodder yield and quality attributes was studied using three male sterile lines, sixteen male parents and 48 hybrids in RBD with three replications in three environments created by different dates of sowing. Highly significant mean squares for males and females indicated the presence of sufficient variability in the parental material. The ratio of general combining ability to specific combining ability variance indicated the non additive gene action. Parent showed difference in their combining ability effects for same traits under different environments. Indore 9A from female and PB 22, ASF 7, PB 181 and PB 45 from male parents were identified as good combiner for green fodder yield per plant, dry matter yield per plant and majority of yield components. Estimates of specific combining ability effects did not reveal any specific pattern but varied from cross to cross in individual environment. The pooled data showed that Indore 9A x PB 22, 3660 A x Sholapari, 3660 A x PB 45 exhibited positive and significant sca effect for green fodder yield per plant and majority of its components in overall environmental conditions. On the basis of gca : sca ratio preponderance of non-additive gene action for green fodder per plant suggested heterosis breeding programme could be useful for developing superior genotype/hybrids.

Patel, K.V. and Patel, A.D. (2010). Combining ability analysis for green fodder yield and quality attributes in sorghum *[Sorghum bicolor* (L.) Moench] over environments, *Adv. Res. J. Crop Improv.*, **1** (2) : 187-193.

Key words : Sorghum, Combining ability, Environment, Hybrid

INTRODUCTION

Sorghum [Sorghum bicolor (L.) Moench] is a major fodder crop among cereal fodder. Green fodder is the cheapest source of feed for milky, meat and draft animals. Therefore, development of fodder resources of the country becomes a high priority national programme. This could be achieved through covering more area under cultivation of high productivity coupled with quality of fodder crop. There is need to improve the crop by identifying good combiner for development of high yielding hybrid. Combining ability analysis is being used in crop plants for identifying the superior parents for obtaining superior hybrid combinations. On the basis gca/sca ratio, also help in characterization of nature and magnitude of gene action for various characters of economic importance.

The concept of general and specific combining ability is an especially useful in testing procedure that involves the study and comparison of the performance of homozygous inbred lines in cross combinations. The knowledge of gene action for characters helps in employing suitable breeding methodology for their improvement. Forage yield is basically a function of many morphological and physiological characters; therefore, breeding for high fodder yield depends on one or more other characters. For improvement of yield basically involved the exploitation of genetic diversity present in population. Development of hybrids provides a good avenue for quicker exploitation of both additive and non-additive genetic variances through such alterations.

See end of the article for authors' affiliations

Correspondence to :

K.V.PATEL, Regional Research Station, Anand Agricultural University, ANAND (GUJARAT) INDIA

MATERIALS AND METHODS

The experiment was laid down at the plant breeding farm, Anand Agricultural University, Anand during Kharif 2006 with the objective to study combining ability and nature of gene action for fodder yield and its component characters in individual environment as well as on pooled basis in sorghum. The experiment material comprised with three male sterile lines as a female parent, sixteen male parents and 48 F₁s was planted in RBD with three replications in three different dates of sowing viz., 15^{th} June (E₁), 1st August (E_2) and 15^{th} September (E_2) during *Kharif* 2005. Each net plot had single row of 4.5 m each, the inter row spacing 30 cm apart. Five plants were selected at random from each plot and tagged. Observations for each plant was recorded separately and average value per plot was computed. Observations for various characters viz., days to 50% flowering, plant height, number of tillers per plant, number of leaves per plant, leaf length, leaf width, leaf: stem ratio, number of nodes per plant, stem thickness, green fodder yield, dry matter content, dry matter yield, crude protein content, crude protein yield per plant, hydrocyanic acid (HCN), neutral detergent fiber content (NDF). Estimation of combining effects were made as per Kempthorne (1957). Analysis of variance for combining ability for sixteen characters in all environments calculated as suggested by Arunachalam (1974).

RESULTS AND DISCUSSION

188

The mean sum of squares due

. జపాదే : Areys's దిvజాిజాయిరా యాయి ాాణ జపి‴ిy రారా రా	S.S.A. 3-	s 0. ve: "e.c	ລີ້ວ່າ ເວັກັງ	. C.3 6	o Joan Kr.	~\`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	?		ECC. O.	D. 2520 SO.							
Saurrages		Days to 50% Cowaring	J' gan'. 		Number of Geves ber piert		W. C.		Number an aist	S.c.	Croon Data Vicia par Vicia par	Dry 1964 1964	Dry mella Volé par vezel	Orudo protori coritori	Oralo pratar y'alé par		
Smy ramman.		**038880.		0.3730**	7.5.50**	. 8552, 50**	1558.08**	**859"	N. N. 1 ##	** 165	, 96303##	7/1.83##	**0.7.2555.	. 27. 833**	**	15376.30**	**/./0/5.
1000,200,002		11.08	7:58.51 **	0.0383	18.0	61.1.		0.000		0000	357.93	5.57.*	38.77			1 000 75844	32,203*
Jud walk with																	
.'ame'c		61.9%;	9788.77 ##	0.0/ 69		19,78	788.08	0.053	0.73	0.103*	1866.52	13.01	17,736	7.19.	1.19%	7,758,833	715.07
N.E.O		580.57 ##	32.19.3	5.50.0	* 7, 33'/ ##	7.13.7.144	755.07 *	0.082	9.11 ##	*5000	6537,00	67,78	69, 63	**///		22/9/13	203.75
. C. E. C. X.		**S/.E.1	, 66Y,65**	*******	3.38##	26.38**	***.5.3*	**/90°0	**0°C``	0.037.	6088.77##	3°. 81 ##	**//54.1	***1.	57.5144	2066. 144	1.57.76##
V.E.O																	
Come C X		0.01	2.83.2.7	0.075/	3.37	9.17.	CL 1	180.0	2.06	0.032	1756.5		3/ 9.17.		37.80	1.1.7281.	1.16
and an and and																	
V.E.C X	90	. 59. **	6.2.8.	0.035/ #	3.6	**01'15°,	\$1.58.	0.05/	2,58	**:50.0	15.3.6.	\$\$ Cm. / .	18:307	**55%		3001.08**	80.03
Carlo and and																	
7 × V. ×	20	13.035##	** .80.	0.05314*	7.5.44	55.31 ##	**8	0.0/ 5**	**/.8' .	52000	5753.8.**	6.9. **	131.96**	2. O##	1.1.5**	** //. 33	16.51 ##
Jun & Marian Con																	
and the second spectrum of the second spectru	233%			0.07/ 6		\$65.33	86 28	0.008		0.078	50 14.8	3.56	36.17.			67%22	7.57.
~~o			367.5	000	dh. dh. c 42.42.	6. 6.°. W. W.		0.00	0.0	11. 11. 11. 11. 11. 11.	23	0.09					0.73
0. ²		585	98 11.	000	0.33	14.2		0.00	56.0	471. ATA.	5.73	180		dh. dh. 4,9,4,9		30.1	. G.
and the second		0.75	21.8.62	13-13-13- 12-12-12		39°2″,		0.00	100 100 V 120 120	and an	151 31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5/%.		1.5.		35.21
0 ^{%,} x 0				ሙጭ ለካ መለጉ ለካ	12 42 42 -	55.0	10.0	00° 0	ብት ብትብት ህይ-ህይ	an ante	7. 52			10.00	0.30	20 20 20	8 and "
0. ⁷ X G				1343° 43	30 V		2.23	0.00°	an ans	47479 475 1974 - 1976	86.69	51.0	3.67	0,00	90.0	707.78	ange -
0 [%] ×0		5.78	303.91	dh dh "	1.50		35.185	0.0.	35.0	10 . 10 . 10	1.539.5%		33.85	0.51		356.72	18
0 ⁷ 502.			60.96	çanaa a	0,0560	6470	S9	$\mathcal{S}_{\mathcal{W}\mathcal{W}\mathcal{W}}^{\mathcal{M}\mathcal{M}}\mathcal{W}^{\mathcal{M}}$	500 0	20000	05.0.	9000	0.35	500°0	0.075	6.06	5/0
0. ⁷ 202.		56.0	7.8.67	000		398.	m/ .	0.0.	172 AV."	10. 10. 10. 10. 10.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6/%.		1.2.	.38' /6%	35.31
0 ⁷ 502/0 ⁷ 302.		111.2.	01160	ው ው	0.35	. C.V. V		w.m.s.m w.m.s.m	3,700	10 M. W.	10.0	5	. En n	0.0	0.0%	Sur.	0.0.7

to gca were found significant for plant height, stem thickness in female over environments. The mean sum of squares due to male were significant for days to 50% flowering, number of leaves per plant, leaf length, leaf width, number of nodes per plant, stem thickness and crude protein content on pooled basis. The mean sum of square due to female x male was significant for all the characters except for stem thickness. Among the components of source of variation of combining ability analysis with environment interaction, female x environment interaction was non significant for all the characters under study. It means the female performed consistently over range of environment. The mean square due to male x environment were significant for days to 50% flowering, number of tillers per plant, leaf length, stem thickness, dry matter content, crude protein and HCN content which revealed that performance of the male were vulnerable to change in different environmental condition for these characters. Mean sum of squares due to female x male x environment were significant for all the traits except stem thickness. Analysis of variance for combining ability presented in Table 1 shows that the magnitude of sca variances were higher than gca variance for all the characters except days to 50% flowering, leaf width, number of nodes per plant and stem thickness on individual as well as pooled basis indicating pre dominance of non-additive gene action for these characters. From overall, we can say both additive non-additive genetic variances were important for the inheritance of various traits under study. Higher magnitude of sca

Guild W 19 4800	- 4210 (Such 20)			and the second				100000 0 M A M - M - M - M - M - M - M - M - M -									
The second second is					No of Lozvos Bor pierí	ر دروس روسه کرد.	Weit		Number of notes year yierd	کریں۔ ````````````````````````````````````	jar Li v Dec	ليتر سکن مرز 100 (مرز		Cruto protein sontent	Diana an	,	
(C E. D.S. ((30)																
Tréarc 9A		0.30		000	0.19**	0.13*	**1.5 .	00'0	0.03**	00.0	3.73	0.35	0.59	0.08	0.12**	3.52*	***6/``;
VI. SAXV	(23)	非非分い。.	6.55 ^{##}	0.02	0. G ^{##}	0.23	0.38	0.02	0.03*	0.03**	3.10	6.0	0.78	0.15	## // ⁰	1.30*	0.93
3660 A	(23)	0.15**	% 36 **	2000	10.0	0.66**	***&	0.02	**9000	0.03##	0.2.		6.0	1.0.0	0.02	81.0	0.56
S.R. (2)		0.22.	0.52	0.01	0.06	1.0	0.18	.00	0.02	00.0		60.09	0.35	0.02		.90	0.20
W.E.CS ("cs(crs)	(2)																
		101	. 63	0.02	0.25	2.21 **	6.9/	1.0.0	1.0	dhe dhe fakake uperet f	1.1.6	0.05		0.28**	¢./?*	2.03	2.05**
1.SUSV	(35)	* 36*	** 15%.	0.02.	0.22.	3.2**	0.6/	0.05	0.3/ **	0.03##	6.39*	****	1.010	0.1*	** /0' "	. 0.05**	0.83
	(30)	8. /O **	66	0.05*	0.98**	0.93	1.33**	0.09	0°86**	90°0	. 8. / 3##	2.67 ^{ww}	**1.5%	0.59**	**500.		3.12**
(S.D	(2π)	1 * 5 **	**057.	0.01	0.91**	0.16	0.15	0.03	0.93**	20.0		0.03	2.0*	0.5/ **	*≉/.0°.		0.80
C.78 5	(33)	3.07***	22.374#	0.00	0.32**	2.6. **	0.30	100	0.Y. ##	\$ 30° 30	. 6.09 ^{**}	* / * ###	5.69**	0.87 **	0.62*	1.53**	69.0
	(3)	3.85**	1 - 4 V	80.0	0.57 ##		**06.	10.0	6.75**	an anan	1.52.	* 如冬季率	. 35	0.66**	**67.	1 95***	* . 97 ##
	(0; c)	*** (N/ * *	5.62,**	0.06 ^{##}		2.05**	10	0.05	0.0	\$C.02*	. 2.90**	0.0.	3.1.**	0.09		5.52.##	· .5/ ##
		3.00**	1.52.**	12. 22. 2 m th		2.28**	12. 14	0.03	0.80**	13 (B) ##		3.1 * ##	2.2. *	0. O**	60.0	**97°0°,	0.3
	(3.2)	6.33**	3.114	0.07 #		1,38**	0.93	20'0	0.32 **	0.00 ¥*	21.03##	, Asam	**/.19	C. SQ ##	3.01 ##	0.89	**/.5
337S	(2,3)	5.11 **	** 11.1.	6. S##		5.31 **	1 2. ##	0.0	小人の奉奉	0.008##	26.27 **		** 1.1.	0.28**	2.28 **	3.19*	0.69
			5. 2 **	800	0.5/ ##	0.0	3.50**	0.05	0.63**	17 W.	0.6	1.12	0.08	0.30**		2.50	2.05**
	(2, 5)	8.11 **	**025.	1242 22		6.07**	0.81	Can an	. O##	本本 人口 い	29.16 ^{**}	and an	8 2° **	0.5*	2.1/2.**	8.200**	0.28
S. 88 S.SC	(2; 6)	· //8**		0.01	0.00	2.36**		12:0	0.02	0.02.*	. 2.98**	非非公告"	2,16*	0.33**	0.99##	22,09**	1.5.0
8/. E.C.	$\langle 2, 2 \rangle$	1 22 23	.0.58**	20.02	0.35*	**SQ.	0.36	00.00	0.33**	0.03##	* 1.50**	0.39	1 30 **	50° 00	. 39**	· 0.8° ##	3.3° ##
	(2.8)	3.30**	*** 000 / .	0°07 #	0.5.**	3.87/**	2.9° **	0.06	0.57 ##	12 42 S	90°.	1 化率率		** 16 .	* 18**	. 0.83**	5.9° ***
	(5.0)	S.00**	8.13**	Com an	36**	3.28**	5.38^{**}	20.02	** 1.0	44 100	20.2. **	2.1G**	8.66**	0.3.**	2.39**	** /8'	6.05**
S.L. (B)		0.60		0.02	1. 0	1.10	6/0	0.0	0.06	.0.0	3.05	0.25	6.95	0.06	0.29	1.9";	0.56

Adv. Res. J. Crop Improv.; Vol. 1 (2); (Dec., 2010) •HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE• variances, which is important for green fodder yield per plant. Same results were reported by Agarwal *et al.* (2005) and Sumalini *et al.* (2005).

The information regarding gca effects of the parents is a prime importance as this would help in identification of suitable parental line, the parental line have been identified on the basis of high per se performance and desirable gca effects with respect to different characters. Parents showed differences in their general combining ability effects for the same traits under different environments (Table 2). Indore 9A from female, and PB 22, ASFS 7, PB 78, DSIS 8315, PB 181 and PB 45 from male were good general combiner for green fodder yield per plant, dry matter yield per plant and majority of yield components.

Indore 9A from female showed significantly negative gca effects for HCN content NDF content, among the male parents GSF 5 and HC 308 showed negating gca effect for HCN and NDF content on pooled basis for these two characters negative gca affects is desirable one in crop improvement. Similar results were observed earlier by Boora and Lodhi (1982) and Grewal et al. (1994).

The estimates of *sca* effects for green fodder yield ranged from -35.69 to 55.25. Among the cross combination $P_1 \times P_{19}$, $P_2 \times P_{14}$, $P_3 \times P_{13}$, $P_1 \times P_7$ and $P_3 \times P_9$ on pooled basis gave superior performance for *sca* effect for green fodder yield per plant and majority of yield components. Hybrids showed differences in their specific combining ability effects for the

Adv. Res. J. Crop Improv.;Vol. 1 (2); (Dec., 2010)●HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE●

A LE CONTRA CONTRACTOR OF CONTRACTOR CONTRACTOR CONTRACTOR	D Courses and the	23 . W 50	W	a all the way and	and my	Se turner	1 0000 mm	a was into any a	VZ. No.S el	6. K. 4D						
Second and the second se	Days to 5036 Towering	To prairie	A mar of the	Number of Leeves per pierd	and the second s			Nunder of notes yer yier	S. proceeding	Cross Locise Visié per		Dry me//ar yisisi par pieri	Cruico graíoin coníoní	Orico grafin Vicié per		
Comma as																
Licare 9.A		A			C							V		0		
VI. SAXV	Ċ	Ċ		0	V	A		Ð	C		A				V	Ŵ
3660 A			V	V		0		0		×	Ŷ	V	V			V
W.E.CS																
6.00. 8		V			Û					W	W	V	Ċ		V	Ċ
1. S. SV	V	Ç		V	Ċ			0	C	Ċ		V	Ċ	Û		V
SSC 59 3	E)	W											0		V	
CUS /	Ċ	Ç	W		V		V			W	V	C			V	
C. 3 2	Ð												0			
Stolen	Û	V									0				Û	
1. 5.	\lor		0	V						Ċ		0	W	0	0	
808 0		Ċ	Ċ	S	Ç			C	U	¥				V		
31.1.28	3						C				23		3		A	3
2375			0	3	IJ	3		U	Ð	Ç	U	0	0	Û	Û	
.S. 31. 12.	V	Ċ		3	V			Q			V	V	0	A	A	0
.1S 32/60				V		V		Ð	0		W					W
JS. 88 83. 2	V	V		V					Ð	Û		0		0	C	
8/. E.C.	V	0		3		V		S	0	0		ij		Ð		3
.8. fr.				C	Ü	3		U		W	0	V			Û	
23.22		Ş		S	Ð	1	V		ij	Ç	23	0	3			3
* C Coot, A	A AVCERC, 3	3, 2 200°														

COMBINING ABILITY ANALYSIS FOR GREEN FODDER YIELD & QUALITY ATTRIBUTES IN SORGHUM OVER ENVIRONMENTS

Table 4 : Es	stimates of specif	ic combinin	σ ability (sca) effe	cts of hybrids for v	arious trait	s		
	Days to 50%	Plant	Number of	Number of	Leaf	Leaf	Leaf: stem	Number of
Hybrids	flowering	height	tillers per plant	leaves per plant	length	width	ratio	nodes per plant
$P_1 x P_4$	0.26	10.04**	-0.04	0.48*	-1.59*	-4.89**	-0.07**	0.34**
$P_1 \times P_5$	0.70	8.18**	-0.04	0.43	0.08	0.29	-0.03*	0.41**
$P_1 x P_6$	5.04**	-10.37**	0.00	0.43	-0.53	-0.59	-0.04*	0.47**
$P_1 \times P_7$	0.93	18.62**	0.02	0.47*	0.59	-1.16	-0.04*	0.33**
$P_1 \times P_8$	1.63	7.32**	-0.05*	0.11	3.84**	3.77**	-0.05**	0.13
$P_1 \times P_9$	-0.04	10.55**	-0.02	-0.45	-0.55	3.67**	-0.04*	-0.62**
$P_1 x P_{10}$	-2.04*	-3.18	0.16**	0.47*	-0.95	1.08	0.00	0.27**
$P_1 x P_{11}$	-2.33**	-4.11*	-0.12**	-0.26	0.73	1.02	0.12**	-0.16*
$P_1 \times P_{12}$	0.67	-3.11	0.02	0.00	2.92**	-0.69	0.11**	-0.01
$P_1 x P_{13}$	0.67	1.10	0.18**	0.05	-0.22	0.62	-0.05**	0.07
P ₁ x P ₁₄	-2.37**	-3.21	-0.02	0.02	2.22**	1.47	-0.03*	0.10
$P_{1} x P_{15}$	-1.00	-35.93**	-0.05*	-0.95**	-7.23**	-1.81	0.03*	-0.86**
P ₁ x P ₁₆	-1.67	-4.22*	0.00	-0.01	3.12*	-3.60**	-0.01	-0.12
P ₁ x P ₁₇	-1.26	-0.92	-0.01	0.28	-1.72*	-2.61**	0.03*	0.24**
P ₁ x P ₁₈	-0.07	1.18	0.01	0.02	0.11	-2.32**	0.08**	-0.15*
$P_{1} x P_{19}$	0.89	8.06**	-0.03	-1.11**	-0.83	5.76**	-0.01	-0.45**
$P_2 \times P_4$	1.27	0.12	0.00	-0.45	4.77**	2.40**	0.00	-0.19*
$P_2 \times P_5$	-1.62	-0.49	0.07*	-0.52	2.24**	-3.46**	0.10**	-0.36**
$P_2 \times P_6$	-1.95*	12.84**	0.02	-0.28	1.69*	3.97**	0.03*	-0.10
$P_2 \times P_7$	-0.73	-21.08**	-0.05*	-0.73**	-0.70	-2.87**	0.07**	-0.76**
$P_2 \times P_8$	-1.91*	-8.31**	-0.01	-0.51	-4.87**	-3.00**	0.08**	-0.38**
$P_2 \times P_9$	-3.58**	-19.70**	0.00	-0.18	-4.88**	-7.46**	0.11**	-0.11
$P_2 x P_{10}$	3.64**	12.25**	-0.07**	-0.06	-0.93	2.56**	-0.01	0.06
P ₂ x P ₁₁	0.68	2.92	0.03	-0.23	-1.20	-0.82	-0.09**	-0.22**
$P_2 \times P_{12}$	-0.10	2.28	0.01	0.32	-1.74*	-1.90**	-0.09**	0.42**
$P_2 x P_{13}$	0.79	-4.09*	-0.16**	-0.17	-0.39	1.76*	0.07**	-0.11
$P_2 \times P_{14}$	1.64	4.38*	0.06*	0.54	-2.33**	0.85	0.05*	0.63**
P ₂ x P ₁₅	0.13	9.08**	0.05*	0.57*	4.32**	1.44*	-0.02	0.52**
P ₂ x P ₁₆	-0.76	21.05**	-0.03	-0.17	2.79**	5.13**	-0.03*	-0.05
P ₂ x P ₁₇	2.53**	-8.29**	0.00	-0.12	-0.76	2.04**	-0.21**	-0.02
$P_2 \times P_{18}$	0.94	1.79	0.00	0.18	0.96	3.35**	-0.05**	0.21**
P ₂ x P ₁₉	-0.99	-4.77*	0.08**	1.81**	1.02	-3.99**	-0.01	0.44**
$P_3 x P_4$	-1.53	-10.16**	0.03	-0.04	-3.18**	2.49**	0.07**	-0.15*
$P_3 \ge P_5$	0.91	-7.69**	-0.03	0.09	-2.33**	3.17**	-0.07**	-0.06
P ₃ x P ₆	-3.09**	-2.47	-0.02	-0.16	-1.16	-3.38**	0.01	-0.37**
$P_3 \ge P_7$	-0.20	2.46	0.03	0.26	0.11	4.03**	-0.03*	0.43**
$P_3 \ge P_8$	0.28	0.98	0.06*	0.39	1.03	-0.77	-0.03*	0.26**
P ₃ x P ₉	3.62**	9.15**	0.03	0.63**	5.44**	3.79**	-0.07**	0.73**
$P_3 \mathrel{x} P_{10}$	-1.61	-9.08**	-0.09**	-0.41	1.88**	-3.64**	0.01	-0.33**
$P_3 \mathrel{x} P_{11}$	1.65	1.19	0.10**	0.49*	0.47	-0.20	-0.02	0.37**
$P_3 \mathrel{x} P_{12}$	-0.57	0.84	-0.03	-0.32	-1.18	2.59**	-0.01	-0.41**
$P_3 \ge P_{13}$	-1.46	2.98	-0.02	0.13	0.61	-2.37**	-0.02	0.04
$P_3 \mathrel{x} P_{14}$	0.73	-1.17	-0.04	-0.56*	0.12	-2.32**	-0.02	-0.73**
$P_3 \mathrel{x} P_{15}$	0.88	26.84**	0.00	0.38	2.91**	0.37	-0.01	0.34**
$P_3 \mathrel{x} P_{16}$	2.43**	-16.83**	0.03	0.18	-5.91**	-1.53*	0.04*	0.17*
$P_3 \ge P_{17}$	-1.27	9.21**	0.01	-0.16	2.47**	0.57	0.18**	-0.23**
$P_3 \ge P_{18}$	-0.87	-2.96	-0.01	-0.21	-1.08	-1.03	-0.03*	-0.06
P ₃ x P ₁₉	0.10	-3.28	-0.05*	-0.70**	-0.19	-1.77*	0.01	0.01
S.E.(Sij)	0.85	2.02	0.03	0.24	0.67	0.69	0.02	0.08
								Contd Table 4

Adv. Res. J. Crop Improv.; Vol. 1 (2); (Dec., 2010) •HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE• 191

Table 4 conta	<i>l</i>							
$P_1 x P_4$	0.03**	-5.90	-0.67	-2.73*	0.58**	-0.01	0.91	-1.03
$P_1 \times P_5$	0.05**	8.95*	3.22**	5.81**	0.14	0.98*	1.39	-2.69**
$P_1 x P_6$	-0.09**	-9.20*	-0.46	-2.77*	-0.33**	-1.08**	20.43**	7.08**
$P_1 \ge P_7$	0.01	33.66**	0.53	10.85**	-0.08	1.86**	-5.93*	-1.18
P ₁ x P ₈	0.00	-3.37	1.12**	-0.20	-0.40**	-0.71	-6.68**	2.60**
$P_1 \times P_9$	0.03**	0.73	1.28**	1.79	0.35**	0.16	5.88*	-2.69**
P ₁ x P ₁₀	0.01	-26.69**	1.67**	-5.74**	0.63**	-1.65**	4.44	-0.21
$P_1 x P_{11}$	-0.05**	-10.57*	0.17	-2.52	-0.28	-1.40**	-8.48**	-1.44
$P_1 x P_{12}$	-0.07**	-5.25	1.59**	0.39	-0.08	-0.39	16.39**	-4.88**
$P_1 x P_{13}$	-0.06**	-32.34**	1.67**	-8.16**	-0.30**	-3.61**	2.22	0.94
$P_1 \times P_{14}$	0.06**	-7.27	-1.82**	-3.73**	0.40**	-0.17	4.78*	-1.25
$P_1 \times P_{15}$	0.03**	-17.79**	-0.76	-5.37**	-0.12	-1.53**	2.08	-0.92
$P_1 \times P_{16}$	0.02**	4.47	-0.59	-0.08	0.65**	1.32**	-24.99**	3.16**
$P_1 \times P_{17}$	0.00	19.48**	-1.45**	3.71**	-0.47**	1.43**	-4.86*	1.94*
$P_1 \times P_{18}$	0.03**	-4.16	-3.44**	-4.85**	-0.53**	-0.97*	-3.98	-1.18
$P_1 \times P_{19}$	0.00	55.25**	-2.06**	13.60**	-0.16	5.77**	-3.60	1.75*
$P_2 \times P_4$	0.03**	-0.38	0.84*	0.73	0.05	-0.43	3.66	-2.12**
$P_2 \times P_4$ $P_2 \times P_5$	-0.02*	-15.41**	-2.45**	-6.80**	-0.40**	-1.97**	13.75**	-5.01**
$P_2 \times P_6$	0.07**	7.70	0.51	2.51	0.18*	0.85*	-15.07**	-6.56**
$P_2 \times P_7$	-0.10**	-28.39**	1.07**	-7.06**	-0.23**	-2.27**	13.43**	-0.16
$P_2 \times P_8$	-0.03**	-13.38**	-1.20**	-4.48**	0.43**	-10.2**	5.86*	-4.82**
$P_2 \times P_9$	-0.06**	-27.88**	0.90*	-7.11**	-0.37**	-2.35**	-11.77**	-1.12
$P_2 \times P_1$	0.03**	-4.59	-1.04**	-2.60	0.28**	-0.29	-14.89**	-2.19**
$P_2 \times P_{10}$ $P_2 \times P_{11}$	0.02*	20.85**	0.47	5.78**	0.23*	2.41**	-1.35	2.47**
$P_2 \times P_{12}$	0.02	0.57	-0.08	31	0.22	-0.09	0.90	1.59*
$P_2 \times P_{12}$ $P_2 \times P_{13}$	-0.02	-1.82	-0.34	-0.35	0.08	0.16	6.24**	4.18**
$P_2 \times P_{13}$ $P_2 \times P_{14}$	-0.02	40.59**	0.10	11.69**	-0.40**	3.23**	-11.95**	2.77**
$P_2 \times P_{14}$ $P_2 \times P_{15}$	-0.05	13.51**	-2.32**	1.64	0.01	1.09**	0.18	2.22**
$P_2 \times P_{15}$ $P_2 \times P_{16}$	0.06**	31.22**	2.13**	11.40**	-0.35**	2.20**	41.47**	1.07
$P_2 \times P_{16}$ $P_2 \times P_{17}$	0.05**	3.71	-0.06	1.18	0.52**	0.99*	-16.75**	3.18**
$P_2 \times P_{18}$	-0.02**	1.14	1.08**	1.13	0.30**	0.51	-3.95	0.40
$P_2 \times P_{19}$	0.03**	-27.45**	0.38	-7.52**	-0.32**	-3.01**	-9.76**	4.10**
$P_3 \times P_4$	-0.06**	6.28	-0.17	2.00	-0.62**	0.44	-4.57	3.15**
$P_3 \times P_5$	-0.03**	6.46	-0.77*	0.99	0.26**	1.00*	-15.14**	5.15 7.70**
$P_3 \times P_6$	0.02**	1.50	-0.05	0.26	0.20	0.23	-5.36*	-0.52
$P_3 \times P_7$	0.10**	-5.27	-1.60**	-3.79**	0.31**	0.23	-7.50**	-0.52
	0.10**	-5.27 16.74**	0.08	4.68**	-0.04	1.73**	0.82	2.22**
$\begin{array}{c} \mathbf{P}_3 \mathbf{x} \mathbf{P}_8 \\ \mathbf{P}_3 \mathbf{x} \mathbf{P}_9 \end{array}$	0.02**	27.15**	-2.18**	4.08*** 5.32**	-0.04	1.73** 2.20**	0.82 5.90*	3.81**
$P_3 \times P_9$ $P_3 \times P_{10}$	-0.03**	31.28**	-0.63	8.34**	-0.91**	2.20** 1.94**	3.90** 10.45**	2.41**
$P_3 \times P_{10}$ $P_3 \times P_{11}$	0.03**	-10.28*	-0.63 -0.64	-3.27*	0.06	-1.02*	9.83**	-1.04
$P_3 \times P_{11}$ $P_3 \times P_{12}$	0.00	4.68	-0.04 -1.51**	-0.08	0.00	0.48	-17.29**	-1.04 3.29**
$P_3 \times P_{12}$ $P_3 \times P_{13}$	0.00	4.08 34.16**	-1.31** -1.33**	-0.08 8.51**	0.08	0.48 3.45**	-17.29444 -8.46**	-5.11**
	-0.02**		-1.33*** 1.72**	8.51*** -7.95**		3.45*** -3.05**	-8.40*** 7.17**	-5.11***
$P_3 \times P_{14}$	-0.02*** 0.04**	-33.32**	3.07**	-7.95*** 3.73**	0.00 0.12		-2.25	-1.32
$P_3 \times P_{15}$	0.04** -0.08**	4.28 -35.69**		-11.32**	-0.30**	0.44 -3.52**	-2.25 -16.48**	-1.30 -4.22**
$P_3 \times P_{16}$			-1.54**					
$P_3 \times P_{17}$	-0.06**	-23.19**	1.51**	-4.89** 2.54**	-0.05	-2.42**	21.61**	-5.11**
$P_3 \times P_{18}$	-0.01	3.02	2.36**	3.54**	0.23**	0.46	7.93**	0.78
$P_3 \times P_{19}$	-0.03**	-27.80**	1.68**	-6.08**	0.48**	-2.76**	13.35**	-5.85**
S.E.(Sij)	0.01	4.31	0.36	1.35	0.09	0.41	2.37	0.79

192 *Adv. Res. J. Crop Improv.;* Vol. 1 (2); (Dec., 2010) •HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE• same traits under different environments (Table 4). Similar results were observed by Patil and Mistry (1997), Katiyar *et al.* (1999) and Agrawal *et al* (2005).

In combining ability analysis, significant *gca* and *sca* variance on pooled basis denotes importance of both additive and non additive gene action for characters studied. Preponderance of non additive gene action for green fodder yield per plant suggested heterosis breeding programme could be useful for developing superior genotypes for green fodder yield.

Authors' affiliations:

A.D. PATEL, Regional Research Station, Anand Agricultural University, ANAND (GUJARAT) INDIA

LITERATURE CITED

- Agarwal, M., Singh, R. and Shrotria, P.K. (2005). Combining ability analysis for forage and quality characters in sorghum [*Sorghum bicolor* (L.) Moench]. *Forage Res.*, **31** (1): 8-11.
- Arunachalam, V. (1974). The fallacy behind the use of modified L x T design. *Indian J. Genet.*, **24** (2): 280-287.

- Boora, K. S. and Lodhi, G. P. (1981). Combining ability analysis in forage sorghum. *Forage Res.*, **7** (1): 19-25.
- Grewal, R.P.S., Lodhi, G. P. and Ahlawat, T.R. (1994). Combining ability analysis for quality traits in forage sorghum. *Forage Res.*, **20** (2-3): 159-163.
- Katiyar, D.S., Prasad, S.V. Sia, Mishra, U.S. and Pandey, K.C. (1999). Combining ability analysis for forage yield and its components in sorghum. [Sorghum bicolor (L.) Moench]. Forage Res., 24 (2): 302-207.
- Kempthorne, O. (1957). An introduction to genetic statistics. John Willey and Sons Inc., New York.
- Patil, F. B. and Mistry, P.K. (1997). Combining ability for forage yield and its components in sorghum. J. Maharastra agric. Univ., 22(1): 10-13.
- Sumalini, K., Desale, J.S. and SGulia, S. K.(2005). Genetics of grain and forage traits in *Sorghum bicolor* (L.) Moench. *Forage Res.*, **31**(1): 30-32.