Agro-climatical zoning using temporal satellite data and GIS

Nisha Aravind^{*1}, Rakhesh. D²

¹Department of Agricultural Extension, KVK, Pathanamthitta (Kerala) India ²Soil Conservation Office, Tiruvalla (Kerala) India

(Accepted : March, 2006)

An Agro-climatic zone is a region with a characteristic inter-relationship between agronomy/farming systems and climate. In this study a modest attempt has been made to divide the study area into homogenous climatic zones. The study was conducted in Pathanamthitta district which is a part Western Ghat ecosystem and is situated between 76° 29' to 77° 01' E longitude and 9° 06' N to 9° 30' N latitude. Terra MODIS data products i.e., Terra/MODIS Surface Reflectance and Terra/MODIS Land Surface Temperature were used for the study other than ancillary data. Agro-climatic zones were based on criteria of agro-climatic parameters viz. Temperature, Rainfall, Potential Evapotranspiration, Thermal index and Moisture index. Regression analysis to assess the relationship between elevation and temperature indicates strong negative trend and the coefficients were found significant. The data clearly reveals that with increase in elevation there is corresponding decrease in temperature.

Key words : Agro-climatical, Zoning, Kerala gis.

INTRODUCTION

As a result sustainable agricultural development planning is increasingly being based on agro-ecological zones. In this process agro climate zoning has become very popular (Krishnan, A 1988). Agro-climatic zone is a region with a characteristic inter-relationship between agronomy/farming systems and climate.

Agro-climatic zones were based on criteria of agro-climatic parameters viz. Temperature, Rainfall, Potential Evapotranspiration, Thermal index and Moisture index. The agroclimatic regime map is prepared by GIS aided integration of thermal regimes, rainfall zone, moisture index zone and biomass regimes map layers.

The overall objective of the present effort was to demonstrate the usefulness of Remote Sensing and Geographical Information System technology for delineating agro climatic zones based on thermal index and moisture index and to assess elevation based spatial variation in climate over Pathanamthitta district of Kerala.

GENERAL DESCRIPTION OF STUDY AREA Geographical Setting :

The study area for Agro-climatical zoning is Pathanamthitta district which is a part Western Ghat ecosystem. The study area is situated between 76° 29' to 77° 01' E longitude and 9° 06' N to 9° 30' N latitude. The total area of the district is 2642 sq. km., of this 1390.73 sq.km., comes under forest. The study area extends to nearly 124498 Ha.

DATAUSED

Satellite Data:

Terra MODIS data products were used for the study and the details are given in the table1.

Meteorological data:

Minimum temperature, maximum temperature, rainfall, relative humidity, wind speed and sunshine hours of six met station within and surrounding the study area were collected and used for the study purpose.

 Table1 : Data used for the study

Data	Period	Spatial Resolution
Terra/MODIS Surface Reflectance	January to December (8 daily composite)	250m
Terra/MODIS Land Surface Temperature	January to December (8 daily composite)	1000m

Table 2 : Terra MODIS surface reflectance data set

EDG Data Set Name G					ranule Shortname	
MODIS/Terra Surface Reflectance	8-Day L3 Glob	al 250m SIN Grid		MO	D09Q1	
SDS	Units	Data Type-bit	Fill Value	Valid Range	Multiply by Scale Factor	
Surface Reflectance for band 1 (620-670 nm)	reflectance	16-bit signed integer	-28672	-100 - 16000	0.0001	
Surface Reflectance for band 2 (841-876 nm)	reflectance	16-bit signed integer	-28672	-100 - 16000	0.0001	
*Surface reflectance 250m quality control flags	Bit field	16-bit unsigned integer	65535	0-4294966531		

Source: <u>http://edcimswww.cr.usgs.gov</u>

* Author for Correspondence

Table 3 : Terra/MODIS Land Surface Temperature data set

EDG Data Set Name Granule Short name						
MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid MOD11A2						
SDS	Units	Data Type-bit	Fill Value	Valid Range	Multiply by Scale Factor	Add Additional Offset
Daily daytime 1km grid Land-surface Temperature	Kelvin	16-bit unsigned integer	0	7500 - 65535	0.0200	na
*Quality control for daytime LST and emissivity	na	8-bit unsigned integer	0	0 - 255	na	na
Time of daytime Land- surface Temperature observation	Hrs	8-bit unsigned integer	0	0 - 240	0.1000	na
View zenith angle of daytime Land-surface Temperature	Degree	8-bit unsigned integer	255	0 - 130	1.0000	-65.0000
Daily nighttime 1km grid Land-surface Temperature	Kelvin	16-bit unsigned integer	0	7500 - 65535	0.0200	na
Quality control for nighttime LST and emissivity	na	8-bit unsigned integer	0	0 - 255	na	na
Time of nighttime Land- surface Temperature observation	Hrs	8-bit unsigned integer	0	1 - 240	0.1000	na
View zenith angle of nighttime Land-surface Temperature	Degree	8-bit unsigned integer	255	0 - 130	1.0000	-65.0000
Band 31 emissivity	na	8-bit unsigned integer	0	1 - 255	0.0020	0.4900
Band 32 emissivity	na	8-bit unsigned integer	0	1 - 255	0.0020	0.4900
Clear-sky Days	na	8-bit unsigned integer	0	0 - 255	na	na
Clear-sky Nights	na	8-bit unsigned integer	0	0 - 255	na	na

MATERIALS AND METHODS

The various procedures adopted in the present investigation consists of following important steps.

Creation of Agro-climatic parameters database:

- a. Annual temperature
- b. Annual rainfall
- c. Potential evapotranspiration (PET)
- d. Moisture Index (MI)
- e. Thermal Regimes
- f. Vegetation Biomass variability

a. Annual Temperature

Annual mean temperature is obtained from meteorological data and Land surface temperature is derived from Terra MODIS data product MOD11A2.

c. Potential Evapotranspiration (PET)

Mean monthly temperature was adopted for computing monthly potential evapotranspiration. The method was the mean monthly temperature, the latitude of the place and month of the year to compute the PET. It is calculated as:

T = Mean air temperature (°C)

i = Month of a year (i = Jan, Feb,Dec)

- j = Pixel value of i th row
- k = Pixel value of j th column

a = An empirical exponent computed by the following expression:

 $a_{ik} = 67.5 \times 10^{-8} (I_{ik})^3 - 7.71 \times 10^{-5} \times (I_{ik})^2 + 0.01792 (I_{ik}) + 0.4923$

For adjusted PET, the formula is modified as under:

PET = (K x e x 10) mm per month.

Where K value for meteorological stations of the study area is obtained from reference table (Michael, 1978). It is correction factor of the place.

PET = 1.6 (10 $T_{ijk}/I_{jk})^{a}_{jk}$

Fig. 1 : Location Map of Study Area

d. Moisture Index (MI)

The revised moisture index of Thornwaite and Mather (1955) method based on precipitation and potential evapotranspiration was used.

м	_	P – PEI
IVII	=	X 100
Where,		
М	=	Moisture Index
Р	=	Precipitation (mm)
PET	=	Potential Evapotranspiration (mm)

The moisture index with positive and negative values indicates moist or dry climate and seasonal variation of effective moisture. The assessment of moisture index (MI) which stands for a balance between moisture availability and extent of dryness and thermal efficiency indicative of radiation energy received and summer concentration, represents the percentage of solar radiation in summer. This information is vital to congenial biotic environment and has been used to classify the agro-climatic types.

To arrive at homogeneous zones, the limits of moisture index of the various agro-climatic types was scaled as:

Moisture index classifications:

Climatic type	Moisture Index	Classification
Semi arid	- 66.7 to – 33.3	D
Dry sub humid	- 33.3 to 0	C1
Moist sub humid	0 to 20	C2
Humid	20 to 100	B1, B2,
		B3 AND B4
Per humid	> 100	А

e. Thermal regimes

Temperature regime is important properties which controls the

soil formation as well as plant growth. The thermal index was calculated as :

Ti	$T_{max} + T_{min}$

2 Climate on the basis of thermal index (Ti)

Climate group	Thermal Index
Warm Temperate	10 to 15 °C
Sub - Equatorial	15 to 20 °C
Equatorial	> 20 °C

f. Vegetation Biomass variability

Using NDVI to estimate standing green biomass proved to be a reliable source of biomass data. A existing functional relationship between monthly cutting of green dry matter (DM) and the advanced Terra MODIS normalized difference vegetation index (NDVI) was used to derive the Max NDVI in a year is in order to retrieved biomass and the equation is:

DM=(1.615*NDVI_{max})^{1.318}; R²=0.90

Biomass (Kg/ha) = 1000*[(1.615*(NDVI_{max})^{1.318}]

Where : NDVImax= Maximum monthly

NDVI in year

NDVI= $(\rho 2 - \rho 1)/(\rho 2 + \rho 1)$

 $\rho 1,\,\rho 2\,$ are reflectances in Terra MODIS Band 1 and Band 2, respectively]

The biomass value : Biomass Class 1. 2.

3.

4.

Value (Kg/Ha) <1200 1200-1300 1300-1400 >1400

Creation of Physiographic-soil and Terrain Slope data base

The soil resource inventory was compiled from reports of Department of Soil Survey, Kerala and terrain slope map of study area was created using Digital Elevation Model (DEM) generated from the Survey of India toposheets

Agro-climatic zones (ACZ)

Agro-climatic zones is a region with a characteristic interrelationship between agronomy/farming systems and climate.

Agro-climatic zones were based on criteria of agro-climatic parameters viz. Temperature, Rainfall, Potential Evapotranspiration, Thermal index and Moisture index. The agroclimatic regime map was prepared by GIS aided integration of thermal regimes, rainfall zone, moisture index zone and biomass regimes map layers.

Agro- edaphic zones (AEdZ)

Agro-edhapic zones depicting soil and terrain potentiality for agriculture was generated by combining soil characteristics (physiography soil texture, and soil depth), and slope.

RESULTS AND DISCUSSION

Delineation of Agro Climatic Zones

The essential elements in demarcating of Agro-climatic zones are thermal regime and moisture regime. Thermal regimes indicate to the amount of heat available for plant growth and development during the growing period. Moisture regimes are the vital to classify the agro-climatic zones.

Table 6	:	Agro-Climatic	Zones
---------	---	---------------	-------

Moisture Regimes

Moisture regimes were derived from the PET maps generated from the surface temperature maps. The study area is predominantly humid with moisture index varying from 0 to 100. Maximum area is found in the Humid B1 region followed by moist subhumid as illustrated in the Table: 4 and Fig: 2.

Table: 4 Moisture Index variability

Thermal Index	Area (Ha)	Percentage	
Moist Sub Humid	48513	34%	
Humid B1	63625	45%	
Humid B2	23612	17%	
Humid B3	4637	3%	
Humid B4	1803	1%	

Fig. 2:

Bioclimate Regimes

Analysis indicates that entire study area comes in the equatorial region. The equatorial regimes indicates that the region is suitable for all field crops and two crops of rice can be grown in a year.

However, the study area could be categorized into five classes based on the observed variations in the bioclimate regimes as indicated in the Table: 5 and Fig: 3.

Table 5 : Thermal Index variability

Thermal Index	Area (Ha)	Percentage
Equatorial A	11162	8%
Equatorial B	20092	14%
Equatorial C	47397	33%
Equatorial D	32113	23%
Equatorial E	31426	22%

Ag-CI- Zone	Description	Area(Ha)	Percentage
1	Moist sub Humid – Low biomass	24756	20%
2	Moist sub Humid – High biomass	14612	12%
3	Humid(B1)-Low biomass	30618	25%
4	Humid(B1)- High biomass	27403	22%
5	Humid(B2) -Low biomass	8628	7%
6	Humid(B2) - High biomass	11676	9%
7	Humid(B3) -High biomass	2306	2%
8	Humid(B4) - High biomass	4409	4%

The agro-climatic database generated as shown in fig 4 was superimposed and reclassified to delineate eight Agro-Climatic Zones (ACZ I to VIII). Area extent and the percentage of each zone is given in the Table: 6 and Fig:6. The spatial extent of the different Agro-Climatic Zones are illustrated in the fig: 5

It can be inferred that quarter (25%) of the district comes under Humid (B1)- Low biomass followed by Humid(B2)-High biomass(22%), Moist sub Humid-Low biomass(20%).

Climate – Elevation relationship

The primary criterion that distinguishes mountains from other land surface is its significant positive relief and the complexity and heterogeneity of climate and land use distribution associated with mountains are all outcome of this primary factor relief. That is, temperature falls and rainfall increases with increasing

Fig. 4 : Agro-Climatic Data Base

elevation.

Regression analysis to assess the relationship between elevation and temperature indicates strong negative trend and the coefficients were found significant. Temperature data for March, September and Annual mean temperature were used for the analysis and the observations are illustrated in fig:7,8&9 and table:7. The data clearly reveals that with increase in elevation there is corresponding decrease in temperature.

CONCLUSION

Remote Sensing and Geographical Information System technology can be used for delineating agro climatic zones based on thermal index and moisture index. Total district was divided into eight

agroclimatic zones of which quarter i.e., (25%) comes under Humid (B1)- Low biomass followed by Humid(B2)-High biomass(22%), Moist sub Humid-Low biomass(20%). Study also

 Table 7 : Relation between Temperature & Elevation in March and October

SI. No.	Month	Mean Temperature (°C)
1.	March	Y=30.95-0.00764 x DEM R2=0.64
2.	October	Y = 29.15-0.00487 x DEM R2=0.53
3	Mean	Y= 29.64531-0.00557 x DEM R2=0.58

clearly reveals that with increase in elevation there is corresponding decrease in temperature over Pathanamthitta district.

Fig. 9 :

REFERENCE

Krishnan, A (1988), Delineation of soil climatic zones of India and its practical applications in Agriculture; *Fertilizer News*, 33 (4).

53