International Journal of Plant Protection, Vol. 1 No. 2: 61-62 (Oct. 2008)

Effect of bioagents on *Colletotrichum gloeosporioides* causing anthracnose of jasmine

P.D. POTPHODE AND S.G. TAMBAT

Accepted: August, 2008

See end of the article for authors' affiliations

Correspondence to:

P.D. POTPHODE

G.N. College of Agriculture, Mandki-Palvan, Chiplun, RATNAGIRI (M.S.) INDIA

ABSTRACT

Studies conducted on the effect of *Trichoderma viride* and *T. harzianum* on *C. gloeosporioides* causing anthracnose of jasmine indicated that the mycelial growth and sporulation of the pathogen was significantly inhibited by *T. harzianum* followed by *T. viride*.

Key words: Bio agent, Calletotrichum gloeosporioides, Anthracnose, Jasmine.

Jasmine is an economically important flowering crop, which is severely affected by anthracnose caused by *Colletotrichum gloeosporioides* Penz. The growth of the pathogen is inhibited controlled by using fungal bioagents like *T. viride* and *T. harzianum in vitro* conditions.

MATERIALS AND METHODS

The study on the effectiveness of fungal bioagents viz., T. viride and T. harzianum against Colletotrichum gloeosporioides in vitro was carried out in Petri plates. For this experiment, these bioagents were separately grown on PDA in Petri plate. The fungal discs of 5 mm diameter were placed in such a way that both the bioagents could get equal opportunity for their growth. The

placement details are given (Table 1).

The experiment was conducted with five treatments replicated four times. Treatment No. 5 served as control. Observations were recorded for colony diameter and sporulation after incubating plates at temperature (27 \pm 1^{0} C) when Petri plate in control was fully covered with mycelial growth.

RESULTS AND DISCUSSION

The antagonistic effect of fungal bio-agents *viz.*, *T. viride* and *T. harzianum* singly on growth and sporulation of *C. gloeosporioides* was recorded and the data obtained are presented in Table 2.

It was revealed from Table 2 that *T. viride* and *T. harzianum* significantly inhibition the mycelial growth of

Table	Table 1: Placement of bioagents and fungus													
	T_1			T_2			T_3			T_4			T_5	
Tv		Tv	Cg		Cg	T_4		T_4	Cg		Cg	Cg		Cg
	Cg			Tv			Cg			T_4			Cg	
	Tv			Cg			Th			Cg			Cg	

where,

 $Tv = Trichoderma\ viride$

Th = T. harzianum

Cg = Colletotrichum gloeosporioides

Table 2: Efficacy of bioagents against C. gloeosporioides								
Tr. No.	Mean colony dia. (cm)	Per cent inhibition	Sporulation					
T_1	1.33	83.22	-					
T_2	1.13	87.40	+					
T_3	1.53	82.96	+					
T_4	0.73	91.85	+					
T_5	9.00		++++					

S.E. $\pm = 0.16$ C.D. (P=0.05) = 0.49

Sporulation:- Nil, + Poor, ++ Moderate, +++ Good,++++ Excellent

C. gloeosporioides when compared to check. Maximum inhibited of the test fungus (91.85) was recorded when *T. harzianum* was used in T_4 placed at the centre followed by T_2 and T_1 .

The observations regarding sporulation in these treatments indicated poor sporulation in T_2 , T_3 and T_4 . While no sporulation was observed in T_1 . Excellent sporulation was observed in control *i.e.* T_5 .

Authors' affiliations:

S.G. TAMBAT, S.P. College of Agriculture, Kharawate-Dahiwali, Chiplun, RATNAGIRI (M.S.) INDIA

REFERENCES

Bhuvaneshwari, V. and Subbarao, M. (2001). Evaluation of *Trichoderma viride*, antagonistic to post harvest pathogen of mango. *Indian Phytopath.*, **54(4):** 493-494.

Morshed, M.S. (1985). *In vitro* antagonism of different species of *Trichoderma* on some seed borne fungi of bean (*Phaseolus vulgaris* L.). *Bangladesh J. Bot.*, **14** (2): 119-126.

Singh, Narendra (1997). Biocontrol of red rot disease of sugarcane. *Indian Phytopath*, **48(4)**: 64.
