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Abstract : Rainfall holds critical significance for water resource applications, particularly in rainfed agricultural systems. This
study employs the Autoregre  ssive Integrated Moving Average (ARIMA) technique, a data mining approach commonly used for
time series analysis and future forecasting. Given the increasing importance of climate change forecasting in averting unexpected
natural hazards such as floods, frost, forest fires, and droughts, accurate weather data forecasting becomes imperative. The
objective of this study was to develop a Seasonal Auto-Regressive Integrative Moving Average (SARIMA) model for forecasting
monthly rainfall in Junagadh Station, Gujarat. Utilizing 50 years of historical data (1968 to 2016), the SARIMA model predicts
weekly rainfall for the subsequent five years (2018 to 2022). Through comprehensive evaluation using ACF and PACF plots, AIC,
SBC, MAPE, and MAE values, the study identifies SARIMA (1,0,0)(3,1,1)

12
 as the optimal model, offering the most accurate

prediction. The robust results affirm that the SARIMA model provides reliable and satisfactory weekly rainfall predictions. This
research contributes valuable insights into the precision and efficacy of SARIMA models for rainfall forecasting, aiding in
strategic water resource management in the Junagadh region.
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INTRODUCTION

Efficient water resource management relies heavily
on accurately forecasting rainfall for a given area or
station (Kumar et al., 2021; Kumar et al., 2021a and
Kumar et al., 2022). Rainfall, a critical hydrological
parameter, plays a crucial role in tasks such as irrigation
planning, runoff modeling, and drought and flood
management. The dynamic nature of rainfall patterns,

influenced by changing climatic conditions, poses
challenges such as flooding, landslides, and drought
(Shivhare et al., 2017), significantly impacting agriculture
and farming. In the context of Indian agriculture, the
southwest monsoon (June-September) holds a pivotal
role in the agrarian economy, with adequate rainfall being
essential for robust crop production (Kumar et al., 2021).
The nonlinear and complicated nature of rainfall makes
accurate prediction challenging. The accuracy and
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adequacy of rainfall data serve as the cornerstone for
determining the ultimate success of any progressive
endeavors in natural resource management. Runoff
characteristics, in terms of both quantity and quality, in
the majority of watersheds across micro to macro scales,
are significantly shaped and controlled by spatiotemporal
variations in rainfall (Ram, Bhavin et al., 2023a). Due to
the adverse effects of climate change, rainfall patterns
are rapidly changing, and short-term and long-term
forecasts of rainfall hold significant relevance for
agriculture, tourism, flood prevention and management
strategies, and water body management, all of which
influence a country’s economy. Accurately predicting
future climate data is a challenging task (Nikam and
Meshram, 2013). Various techniques, including numerical
and machine learning processes based on historical time
series and radar data, have been adopted for rainfall
prediction (Chander et al., 2002; Ingsrisawang et al.,
2008). Currently, the most common methodology for
rainfall prediction involves using radar image data from
various organizations and analyzing them. However,
various statistical methods are often useful for predicting
rainfall (Bisgaard and Kulahci, 2011).

Among these methods, one of the most effective
approaches for analyzing time series data is the model
introduced by Box and Jenkins (1976) and modified by
Box et al. (1994), also known as ARIMA (Autoregressive
Integrated Moving Average). ARIMA has been widely
employed over the years to predict rainfall trends (Mahsin
et al., 2012; Kaushik and Singh, 2008; Shamsnia et al.,
2011; Thapaliyal, 1981; Momani et al., 2009), as well as
for reservoir and river modeling (Dizon, 2007; Cui, 2011;
Peng et al., 2000 and Valipour et al., 2012), economics
and production (Nochai et al., 2006) and
evapotranspiration (Valipour, 2012). Forecasting involves
predicting future values using this ordered data.
Stochastic models evolving over time (Box and Jenkins,
1994) encompass autoregressive (AR) models, moving
average (MA) models of different orders (Gupta and
Kumar, 1994, and Verma, 2004) and autoregressive
moving average (ARMA) models of discrete orders
(Katz and Skaggs, 1981; Chhajed, 2004 and Katimon
and Demon, 2004) for annual streamflow.

To address the forecasting challenge, two widely
used algorithms, ARIMA and SARIMA, come into play.
ARIMA considers past values (autoregressive, moving
average) to predict future values, while SARIMA
incorporates seasonality patterns, making it more potent

for forecasting complex data spaces containing cycles.
The ARIMA model emerges as a valuable tool, handling
various dimensions related to univariate time series model
selection, parameter optimization, and prediction. In the
current study, our focus was on developing a seasonal
rainfall forecasting model to predict the monthly rainfall
time series for Junagadh city in Gujarat, India, utilizing
55 years (1965-2022) of monthly rainfall data.

MATERIAL  AND  METHODS

Study location :
Junagadh is located between latitude 21°31’23.29"

N and longitude 70°27’17.90" E, situated at an altitude
of 86 meters above mean sea level in the South
Saurashtra region of Gujarat state. The climate in this
area is characterized as subtropical and semi-arid, with
an average annual rainfall of 929.81 mm, primarily
concentrated between mid-June and mid-October. The
average annual pan evaporation is 5.6 mm/day. In terms
of temperature, January is the coldest month, with a mean
monthly temperature ranging from 7°C to 15°C. The
peak of maximum monthly temperatures occurs in May,
ranging between 29.50°C to 39.40°C. Relative humidity
in the region fluctuates between 45% and 89%, and wind
speeds vary from 2 to 9.70 km/h.

Data :
This study utilized monthly rainfall data covering a

period of 55 years (1965-2022), sourced from the
Agrometeorology Department of Junagadh Agricultural
University, Junagadh. Predictive modeling was conducted
for the five-year span (2018-2022) employing a seasonal
ARIMA model, leveraging historical data from the
preceding 50 years.

Methodological description :
Auto Regressive Integrated Moving Average (ARIMA)
model :

In general, an ARIMA model is characterized by
the notation ARIMA (p, d, q) where, p, d, and q denote
orders of auto-regression, integration (differencing) and
moving average, respectively. In ARIMA parlance, time
series is a linear function of past actual values and random
shocks. For instance, given a time series process y

t
, a

first order auto-regressive process is denoted by ARIMA
(1, 0, 0) or simply AR (1) and is given by
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and a first order moving average process is denoted
by ARIMA (0,0,1) or simply MA(1) and is given by

Alternatively, the model ultimately derived, may be
mixture of these processes and of higher orders as well.
Thus a stationary ARMA (p, q) process is defined by
the equation :

Where 
t
 are independently and normally distributed

with zero mean and constant variance 2 for t = 1, 2,….
n.

Seasonal ARIMA modelling :
Identification of relevant models and inclusion of

suitable seasonal variables are necessary for seasonal.
The Seasonal ARIMA i.e. ARIMA (p, d, q) (P, D, Q)

s

model is defined by :

 

where,

 = N o n - s e a s o n a l

autoregressive (AR) operator

  =Non -seasonal moving

average operator (MA) operator

 = Seasonal auto

regressive (SAR) operator
= Seasonal moving

average operator (SMA)
Here,
 B is the backshift operator (i.e. B1y

t
= y

t-1
, B2y

t
=y

t-2 
and

so on) s is the seasonal lag and 
t
 is sequence of

independent normal error variables with mean zero and
variance ‘2’.

p and q are orders of non-seasonal auto-regression
and moving average parameters respectively and P and
Q are that of the seasonal auto regression and moving
average parameter respectively.

d and D denote the non-seasonal and seasonal
differences, respectively.

Art of ARIMA Model building :
Identification :

The first step in the process of modelling is to check
for the stationarity of the series, as the estimation
procedure are available only for stationary series. There
are two kinds of stationarity, viz., stationarity in ‘mean’
and stationarity in ‘variance’. The chief tool in

identification is auto-correlation function, partial
autocorrelation function and the resulting correlogram.
A cursory look at the graph of the data and structure of
autocorrelation and partial correlation coefficients may
provide clues for the presence of stationarity. Another
way of checking for stationarity is to fit first order
autoregressive model for the raw data and test whether
the co-efficient ‘1’ is less than one. If the model is
found to be non-stationary, stationarity could be achieved
mostly by differencing the series.

Thus if ‘y
t
’ denotes the original series, the non-

seasonal difference of first order is :

and the seasonal difference of the first order is :

where,
S is the length of season.
The next step in the identification process is to find

the initial values for the orders of seasonal and non-
seasonal parameters, p, q, and P, Q. They could be
obtained by looking for significant autocorrelation and
partial autocorrelation co-efficients.

Estimation :
At the identification stage one or more models are

tentatively chosen that seem to provide statistically
adequate representations of the available data. Then we
attempt to obtained precise estimates of parameters of
the model by least squares as advocated by Box and
Jenkins. Standard computer packages like SAS, SPSS
etc. are available for finding the estimates of relevant
parameters using iterative procedures.

Diagnostics :
Different models can be obtained for various

combinations of AR and MA individually and collectively.
The best model is obtained with the following diagnostics.

– Low Akaike Information Criteria (AIC)
Bayesian Information Criteria (BIC)
Schwarz-Bayesian Criteria (SBC)
– Plot of residual ACF
– MAPE
– MAE

Evaluation criteria :
The other statistical criteria adopted in the study
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are:

Akaike Information Criterion (AIC) :
The AIC is given by

                     (1)

Where n is the size of the sample used for fitting, k
is the number of parameters excluding constant terms,
and 2 ( )   is the maximum likelihood estimate of the
residual variance.

Schwarz information criterion (SIC) :
The SIC is given by

                         (2)
Where n, k and are defined in the same way as for

the AIC statistic.

Mean absolute percentage error (MAPE):

                          (3)

Where X
t
= forecast value at time t; O

t
= actual value

at time t; N= number of weeks considered for
forecasting.

Mean absolute error (MAE) :

                                   (4)
Where X

t
= forecast value at time t; O

t
= actual value

at time t; N= number of weeks considered for
forecasting.

RESULTS  AND  DISCUSSION

In the present study the time series of monthly
rainfall data from 1968 to 2017 (50 years) were used to
develop the Seasonal ARIMA (SARIMA) model and

the prediction was made for next five years (2018-2022)
using the developed model. The forecasted values than
used for validation of developed SARIMA model.

Analysis of monthly rainfall time series used for
model development :

Data of monthly rainfalls were analysed using
Statistical Analysis System (SAS) software. Auto
correlation function (ACF) and Partial Auto correlation
function (PACF) of the original time series of monthly
rainfall are shown in Fig. 1.

A comprehensive analysis of the monthly rainfall
time series data, covering the years 1968 to 2017, was
undertaken, yielding key statistical insights. The mean
monthly rainfall was computed at 78.39, accompanied
by a substantial standard deviation of 156.56, indicating
noteworthy variability in the dataset. With a total of 600
observations (N), the Augmented Dickey-Fuller (ADF)
test results were noteworthy, revealing significant
negative values for the Zero Mean ADF (-14.29), Single
Mean ADF (-16.70), and Trend ADF (-16.69).

These ADF test statistics strongly suggest a high
likelihood of non-stationarity in the time series data.
Consistently low p-values associated with the ADF tests
indicate a rejection of the Null hypothesis of non-
stationarity. The negative values further underscore the
presence of a stable trend in the data, establishing a solid
foundation for the application of time series forecasting
models. Table 1 presents diagnostic measures for the
time series, featuring autocorrelation (AutoCorr) and
partial correlation (Partial) co-efficients at different lags.
The Ljung-Box Q statistic, along with associated p-values,
is employed to test the Null hypothesis of no
autocorrelation in the residuals. Notably, all
autocorrelation co-efficients at various lags are deemed
significant, evident from the low p-values (<0.0001). The

Fig. 1 : Graph of monthly rainfall data series from 1968 to 2012
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Table 1: Autocorrelation (Auto Corr) and partial correlation (Partial) co-efficients at different lags 
Lag Auto Corr Ljung-Box Q p-Value Lag Partial 
0 1   0 1 

1 0.362773234 79.35812375 5.181E-19 1 0.36277323 

2 0.104241467 85.92150433 2.2E-19 2 -0.0315098 

3 -0.08575626 90.3709415 1.823E-19 3 -0.1306381 

4 -0.21458977 118.2783508 1.245E-24 4 -0.1609795 

5 -0.23929058 153.0385272 3.01E-31 5 -0.1165981 

6 -0.24279555 188.8846944 4.392E-38 6 -0.1370198 

7 -0.21103434 216.0115402 4.632E-43 7 -0.1313705 

8 -0.20151928 240.7891393 1.541E-47 8 -0.1784623 

9 -0.10637934 247.7054558 3.043E-48 9 -0.0976508 

10 0.125032667 257.2761342 1.6E-49 10 0.10175041 

11 0.292593218 309.7763342 7.618E-60 11 0.14314757 

12 0.445781499 431.8478948 6.728E-85 12 0.25989312 

13 0.355190448 509.4783615 1.42E-100 13 0.12967677 

14 0.082195966 513.642749 1.19E-100 14 -0.0717863 

15 -0.08876629 518.5078064 6.85E-101 15 -0.0422185 

16 -0.19790737 542.7325302 3.1E-105 16 -0.0383614 

17 -0.23059581 575.6769615 2E-111 17 -0.0320043 

18 -0.23662321 610.425732 5.38E-118 18 -0.0446573 

19 -0.22543324 642.0199419 6.72E-124 19 -0.0586822 

20 -0.20193839 667.4154872 1.72E-128 20 -0.0890756 

21 -0.09270129 672.776425 7.44E-129 21 -0.0356056 

22 0.074300497 676.2262999 8E-129 22 -0.027988 

23 0.386031829 769.512662 9.62E-148 23 0.22149892 

24 0.378157771 859.1876478 6.36E-166 24 0.02726229 

25 0.362085604 941.5450073 1.44E-182 25 0.13170636 

 

Fig.2:  Spectral density plots of monthly rainfall time series

decreasing pattern in autocorrelation co-efficients with
increasing lags indicates a diminishing influence of past
observations on the current one. Moreover, the negative
partial correlation co-efficients suggest that the model
adequately captures the effect of past observations.

These findings affirm the suitability of the model for
forecasting, aligning with the assumption of white noise
residuals—a crucial element for robust time series
modeling. This robust analysis provides a solid basis for
confident predictions and insights into the underlying
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patterns of the monthly rainfall time series.

Model development and parameter estimation :
Fig. 3 and 4 intricately illustrate the Autocorrelation

Function (ACF) and Partial Autocorrelation Function
(PACF), offering deep insights into the periodic nature
of variables associated with monthly rainfall. These visual
representations consistently unveil patterns suggestive
of seasonal variations within the time series. Based on
these observations, we posit a yearly period of 12 months
for the monthly rainfall time series.

Transitioning to Fig. 5 and 6, they succinctly present
an overview of the SARIMA (1,0,0) (3,1,1)12 model’s
performance in predicting monthly rainfall. Fig. 5 visually
portrays the model’s predictions, highlighting its
proficiency in capturing both non-seasonal and seasonal
components. The parameters (1,0,0) denote the presence
of non-seasonal autoregressive effects and the absence

of non-seasonal moving average effects. Meanwhile,
(3,1,1) signifies first-order differencing, third-order
autoregression, and first-order moving average in the
seasonal part for achieving stationarity. This visualization
provides a clear understanding of how well the SARIMA
model aligns with observed monthly rainfall trends.

Moving to Fig. 6, the Residual Plot for SARIMA
(1,0,0) (3,1,1)12 facilitates a rapid assessment of model
residuals. A well-behaved residual plot indicates a well-
fitted model. Analyzing this plot offers insights into the
accuracy and reliability of the SARIMA model in
predicting monthly rainfall, enhancing our confidence in
the model’s forecasting capabilities.

Fig. 3 and 4 intricately illustrate the Autocorrelation
Function (ACF) and Partial Autocorrelation Function
(PACF), offering deep insights into the periodic nature
of variables associated with monthly rainfall. These visual
representations consistently unveil patterns suggestive

Fig. 3: ACF plot of monthly rainfall time series

Fig. 4 : PACF plot of monthly rainfall time series
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Fig. 5 : Prediction of monthly rainfall using SARIMA SARIMA (1,0,0) (3,1,1)
12

Fig. 6 : Residual plot for SARIMA SARIMA (1,0,0) (3,1,1)
12

of seasonal variations within the time series. Based on
these observations, we posit a yearly period of 12 months
for the monthly rainfall time series. Transitioning to Fig.
5 and 6, they succinctly present an overview of the
SARIMA (1,0,0) (3,1,1)12 model’s performance in
predicting monthly rainfall. Fig. 5 visually portrays the

model’s predictions, highlighting its proficiency in
capturing both non-seasonal and seasonal components.
The parameters (1,0,0) denote the presence of non-
seasonal autoregressive effects and the absence of non-
seasonal moving average effects. Meanwhile, (3,1,1)
signifies first-order differencing, third-order

Fig. 7: ACF plot for SARIMA (1,0,0) (3,1,1)
12
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Table 2 : SARIMA (1,0,0) (3,1,1)12 Model summary 
DF 582 

Sum of Squared Innovations 6637600.919 

Sum of Squared Residuals 7123072.847 

Variance Estimate 11404.81258 

Standard Deviation 106.7933171 

Akaike's 'A' Information Criterion 7215.142629 

Schwarz's Bayesian Criterion 7241.402991 

R Square 0.510830092 

R Square Adj 0.506627601 

MAPE  

MAE 51.42976052 

-2LogLikelihood 7203.142629 

 

Fig. 8 : PACF plot for SARIMA  (1,0,0) (3,1,1)
12

Fig. 9: Comparison of actual and predicted monthly rainfall value of five years (2018-2022)

 

autoregression, and first-order moving average in the
seasonal part for achieving stationarity. This visualization
provides a clear understanding of how well the SARIMA
model aligns with observed monthly rainfall trends.
Moving to Fig. 6, the Residual Plot for SARIMA (1,0,0)
(3,1,1)12 facilitates a rapid assessment of model residuals.
A well-behaved residual plot indicates a well-fitted model.
Analyzing this plot offers insights into the accuracy and
reliability of the SARIMA model in predicting monthly
rainfall, enhancing our confidence in the model’s
forecasting capabilities.

Comparison of actual and predicted monthly rainfall
value:

Fig. 9 acts as a visual benchmark for comparing
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Table 3:  SARIMA (1,0,0) (3,1,1)12 parameter estimates 
Term Factor Lag Estimate Std Error t Ratio Prob>|t| 

AR1,1 1 1 0.101395 0.042153 2.405389 0.016466 

AR2,12 2 12 0.010925 0.04172 0.261858 0.793524 

AR2,24 2 24 -0.16084 0.040183 -4.00278 7.07E-05 

AR2,36 2 36 0.294941 0.040286 7.3211 8.22E-13 

MA2,12 2 12 1 0.025375 39.40842 2.1E-166 

Intercept 1 0 0.273369 0.381115 0.717287 0.473485 

 

actual and predicted values of monthly rainfall throughout
the five-year period from 2018 to 2022. The graph
meticulously scrutinizes the efficacy of the SARIMA
model in forecasting monthly rainfall, revealing a striking
alignment between the predicted time series and the
actual data series. A close examination underscores the
noteworthy proximity, showcasing the SARIMA model’s
exceptional ability to offer precise and reliable forecasts
of rainfall patterns. The visual coherence observed in
Fig. 9 is indicative of the model’s adeptness in capturing
the subtle nuances and fluctuations inherent in the
observed data. This underscores the SARIMA model’s
effectiveness as a valuable forecasting tool. The visual
representation not only provides a comprehensive
endorsement but also serves as a compelling testament
to the robust performance of the SARIMA model in
predicting monthly rainfall values. This visual evidence
reinforces our confidence in the model’s accuracy and
reinforces its practical utility in anticipating future rainfall
trends.

Conclusion :
In this study, a thorough examination of 50 years of

monthly rainfall data (1968-2017) led to the development
and validation of a Seasonal Autoregressive Integrated
Moving Average (SARIMA) model. The model
successfully predicted monthly rainfall for the subsequent
five years (2018-2022). Key statistical insights revealed
a mean monthly rainfall of 78.39 with a notable standard
deviation of 156.56, emphasizing dataset variability.The
Augmented Dickey-Fuller (ADF) test indicated non-
stationarity in the time series data, supported by
consistently low p-values and negative ADF test values,
confirming a stable trend. Autocorrelation and partial
correlation analyses demonstrated significant values with
diminishing influences of past observations.Spectral
density plots, ACF, and PACF plots guided the
identification of seasonal variations, leading to the
selection of a 12-month period for the SARIMA (1,0,0)

(3,1,1) model. The model adeptly captured both non-
seasonal and seasonal components, as validated by
Figures 5 and 6 and further supported by a well-behaved
Residual Plot.

The SARIMA model, anchored in extensive monthly
rainfall data, proves to be a robust forecasting tool. Its
precision and reliability make it invaluable for anticipating
future rainfall trends, providing essential insights for
effective water resource management and planning in
the Junagadh region. The study highlights the SARIMA
model’s efficacy within the Box-Jenkins methodology,
empowering decision-makers with strategic foresight to
navigate the dynamic nature of climatic conditions and
fortify water resources against uncertainties.
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