Studies on forms of Potassium and Nutrients status of soil in central and Eastern Vidarbha region of Maharashtra

SHILPA BABAR, P.K.RATHOD*, A.H.NARKHEDE, S.D.RATHOD AND A.C.YEWALE Dept. of Soil Science and Agricultural Chemistry, Agricultural Research Station, K.Digraj, SANGLI (M.S.) INDIA

(Accepted : August, 2007)

Forms of potassium, nutrients status and their interrelationship with total and available nutrient were investigated in forty-five soil samples representing fourteen profiles from five districts (Typic Haplusterts) of Central and Western Vidarbha region of Maharashtra. The available, water soluble, exchangeable, non exchangeable and lattice K contributed 1.97, 0.12, 1.88, 11.25 and 86.76 per cent towards total soil K in the given soils. The soils of Wardha, Nagpur, Chandrapur and Bhandara districts were slightly calcarious neutral to alkaline in reaction and the soils of Gondia district was non calcarious and sightly acidic in reaction. The Central Vidarbha soils are clay in texture having high CEC and organic carbon content. Where as the soils of Eastern Vidarbha is clay loam, sandy clay loam, low in CEC and organic carbon content. No definite trend was observed in the forms of potassium except exchangeable and available K they are decreased with increase in depth. The available K, exchangeable K, total K and lattice K, influenced by total N (r= 0.3268° , r= 0.3122° , r= 0.2950, r= 0.3079°) respectively. The available K and exchangeable K is also affected by available N (r= 0.9784^{**} , r= 0.9773^{**}) respectively, in Vidarbha region. In Central Vidarbha available and exchangeable K influenced by total and available N respectively. In eastern Vidarbha the available K and exchangeable K influenced by total S and available N respectively. In eastern Vidarbha the available K and exchangeable K influenced by total S and available N respectively. In eastern Vidarbha the available K and exchangeable K influenced by total S and available N.

Key words : Forms of soil K, Soil depth, Relationship with total and Available nutrients.

INTRODUCTION

Soil potassium is believed to exist in dynamic equilibrium in four forms, viz... water soluble, exchangeable, nonexchangeable and lattice K, of which the first two are important for the growth of higher plants and microbes. The various forms of potassium in soil exist in equilibrium with one another and depletion of one form is replenished by other forms (Chandel *et al.*, 1976). The release of K from a soil depends on the interaction of soil properties and thus, all the forms of this nutrient present in soil and relationships with soil nutrients. Studies were carried out on these aspects in typic haplustarts of Central and Eastern Vidarbha Region of Maharashtra.

Materials and Methods

The fourteen soil profiles were collected from Central and Eastern Vidarbha region. Eight profile samples were collected from Nagpur, two from Wardha, two from Chandrapur, one each from Bhandara and Gondia district as per the procedure laid down by Piper (1996). The soil samples were analysed for their particle size distribution by international pipette method, calcium carbonate and exchangeable K by standard method of Piper (1996) pH, EC (1:2.5), organic carbon, CEC, Total N, available P, K

* Author for Correspondence

and S by the procedure of Jackson (1967). Available N estimated by Subbiah and Asija (1956) total P and K estimated by Hesse (1971), total S by Chopra and Kanwar (1976), non exchangeable K by Wood and De Turk (1941), water soluble K determined by Dhawan *et al.*, (1968) and lattice K by Ranganathan and Satyanarayana (1980). Stastical analysis involved simple correlations between forms of potassium and soil properties as per the procedurd of Panse and Sukhatme (1978).

RESULTS AND DISCUSSION

Total and available major nutrient status of soil: The results showed the higher availability of total N,P,K and S (Table 1)in all the profiles. The total N,P,K and S ranged from 0.022-0.103, 0.011-0.090, 0.2250.90 and 0.0109-0.084 per cent. The availability of total N,P,K and S decreases with an increases in depth of the soil. This might be related to the higher values of organic form of these nutrients in this layer. The results are inconformity with Trivedi et al., (2000). In Central and Eastern Vidarbha there is no trend of increase or decrease of total N,P,K and S except total P and S in Central Vidarbha it is consistently decreased with increase in depth. The alkaline permaganate extractable N in surface and subsurface of soil ranged from 218.4-430.08 and 100.8-378.06 kgha⁻¹.

Depth (cm)	Available major nutrients (kg ha ⁻¹)				Total major nutrients (%)			
-	Ν	Р	K	S	Ν	Р	K	S
Regional Fru	it Research S	Station Farm	, Katol Dist.	Nagpur				
0-20	306.10	23.60	496.80	38.75	0.094	0.067	0.775	0.0512
20-50	218.05	20.00	437.90	34.49	0.088	0.067	0.825	0.0476
50-80	141.10	14.00	440.00	36.73	0.077	0.054	0.900	0.0466
80 &	163.80	12.00	322.70	42.78	0.056	0.017	0.900	0.0366
above								
Department of	of Botany Fa	rm, Nagpur						
0-20	218.40	24.35	308.00	26.21	0.043	0.024	0.500	0.0512
20-50	188.20	25.40	252.00	29.19	0.031	0.017	0.400	0.0476
50-80	100.80	23.60	252.00	24.19	0.029	0.017	0.487	0.0183
Botanical gar	rden Farm, P	hutala (Deep	black soil),	Dist Nagpur				
0-20	290.70	21.50	420.00	25.09	0.065	0.090	0.250	0.0366
20-50	315.80	16.25	411.00	27.33	0.050	0.058	0.225	0.0183
50-80	336.00	11.00	392.00	26.21	0.049	0.054	0.225	0.0109
College of A	griculture Fa	rm, Nagpur						
0-20	393.10	19.65	388.00	35.39	0.072	0.034	0.475	0.0439
20-50	378.06	14.82	364.00	43.01	0.067	0.027	0.400	0.0256
50-80	342.65	15.12	280.00	36.23	0.058	0.018	0.525	0.0183
C.I.C.R.Panji	ri Farm (Dee	p black soil)	, Dist. Nagp	ur				
0-20	423.35	25.21	336.00	29.79	0.102	0.035	0.475	0.0439
20-50	302.40	15.75	268.00	39.20	0.050	0.024	0.400	0.0256
50-80	262.05	12.58	246.40	28.0	0.050	0.013	0.252	0.0183
C.I.C.R.Panji	ri Farm (Med	lium black s	oil), Dist. Na	agpur				
0-20	403.2	36.55	392.00	29.79	0.091	0.035	0.550	0.0402
20-50	372.95	28.70	296.80	33.60	0.065	0.016	0.500	0.0366
50-80	268.80	17.20	257.60	28.45	0.052	0.013	0.475	0.0256
C.I.C.R.Panji	ri Farm (Shal	llow black so	oil), Dist. Na	ıgpur				
0-20	337.60	16.41	268.80	29.79	0.103	0.044	0.600	0.0356
20-50	203.20	9.46	201.60	32.93	0.078	0.011	0.575	0.0183
Agricultural	Research Sta	tion Farm, T	harsa, Dist.	Nagpur				
0-20	427.80	28.00	223.30	31.81	0.077	0.064	0.675	0.0842
20-50	269.50	15.30	110.10	33.15	0.047	0.056	0.700	0.0366
50-80	250.85	13.15	156.80	33.60	0.045	0.041	0.700	0.0356
80 &	189.90	13.90	142.80	22.40	0.043	0.015	0.676	0.0293
above								
Agricultural	Research Sta	tion Farm, K	Kutki, Dist. V	Wardha				
0-20	313.64	9.86	354.25	19.94	0.096	0.070	0.675	0.046
20-50	194.04	7.75	290.00	19.49	0.085	0.038	0.700	0.036
Agricultural	Research Sta	tion Farm, S	elsura, Dist.	Wardha				
0-20	347.20	16.12	612.00	21.50	0.0748	0.047	0.375	0.038
20-50	302.40	11.25	556.00	20.83	0.0650	0.051	0.425	0.031
								Contd

Table 1 : Total and available nutrient status of soil.

Asian J. Bio Sci. (2007) **2** (1&2)

				1					
Depth (cm)	Available major nutrients (kg ha ⁻¹)				Т	Total major nutrients (%)			
	Ν	Р	K	S	Ν	Р	K	S	
50-80	179.20	9.25	586.00	21.28	0.0595	0.031	0.375	0.029	
Agricultural	Research Sta	ation Farm, E	Ekarjuna, Dis	st. Chandrap	ur				
0-20	336.10	14.38	273.20	21.50	0.096	0.028	0.650	0.0546	
20-50	330.20	12.50	273.10	21.95	0.055	0.028	0.750	0.0539	
50-80	235.20	9.41	149.70	21.28	0.039	0.019	0.750	0.0545	
80 &	168.05	7.48	123.80	21.06	0.096	0.016	0.800	0.0450	
above									
Agricultural	Research Sta	ation Farm, S	Sindewahi, D	ist. Chandra	pur				
0-20	235.20	15.25	410.00	19.71	0.0470	0.032	0.750	0.0528	
20-50	199.20	13.30	393.70	19.26	0.0306	0.019	0.725	0.0420	
50-80	123.30	10.77	341.00	17.92	0.0215	0.019	0.700	0.0180	
Agricultural	Research Sta	ation Farm, S	akoli, Dist. 1	Bhandara					
0-20	246.42	19.96	506.50	19.94	0.0974	0.080	0.825	0.0419	
20-50	213.32	16.80	449.20	21.06	0.0925	0.080	0.825	0.0380	
50-80	148.54	13.44	404.10	20.83	0.0896	0.078	0.825	0.0290	
80 &	126.22	12.32	301.10	20.16	0.0866	0.078	0.850	0.0160	
above									
Agricultural	Research Sta	ation Farm, H	łiwara, Dist.	Gondia					
0-20	293.21	21.40	325.97	19.26	0.067	0.087	0.725	0.048	
20-50	241.47	17.80	319.70	19.27	0.058	0.076	0.725	0.039	
50-80	189.72	13.08	319.70	18.82	0.050	0.054	0.500	0.034	
80 &	137.98	09.51	307.16	18.14	0.028	0.054	0.450	0.0335	
above									

Table 1 Contd.....

The sodium bicarbonate extractable P in surface and subsurface of soil ranged from 9.86-36.55 and 7.48-28.70 kgha-1. The neutral normal ammonium acetate extractable K in surface soil ranged from 110.10-586.00 kgha⁻¹ this showed very low to very high availability of NPK in these soils. In surface soil the availability of these nutrients were higher. It was observed that, the soils of Vidarbha are low to medium in KMnO₄-N, medium in NaHCO₃ -P and very high in NH₄OAc-K alkaline. The availability of N and K decreased with the increase of depth, while the availability of P just slightly and slowly decreased with the depth. The available S ranged from 17.26-43.01 kg ha-1 in profile samples and in control surface samples it ranged from 19.26-38.75 kgha⁻¹. The highest S being recorded in Katol district Nagpur soil and lowest in Sindewahi soil. It is observed that, the soils of Central Vidarbha are low to medium in available S and soils of Eastern are very low to low medium in available S and soils of Eastern Vidarbha are very low to low in available sulphur.

Forms of potassium :

The total K content in profiles of central Vidarbha soils ranged from 2333.3 to 9000 mgkg⁻¹ (Table 2). The maximum content of total K in surface and subsurface soil in Katol soil and minimum in Phutala soil of Nagpur district. In eastern Vidarbha total potassium in profile ranged from 4500to 8250 mg kg-1 and in surface soil it ranged from 7250 to 8250 mg kg⁻¹ This value of total potassium is slightly higher than the range 1900 to 5500 mg kg⁻¹ reported by Deshmukh et al.,(1991) of Vidarbha soil. Definite trend of distribution of total K was not observed in profiles possibly because of active peudoterbation process operating in pedons (Raskar and Pharande, 1997). The mineral potassium is bound within the crystal structure of soil mineral particles but it holds between adjacent tetrahedral layer of micas, Vermiculites and integrate clay minerals (Sparks, 1987). The contents of lattice K in soil profile ranged from 1783.52-8181.9 mgkg⁻¹ and in surface soil it ranges from 2121.93-7478.5 mgkg-1. The maximum content of lattice K was observed

Depth (cm)	Available	Water	Exchangeable K	Non	Total	Lattice
	K	soluble		Exchangeable	K	K
D : 1E :	D 1044	<u>K</u>	1D' / N	K		
0-20	erch Stati	on Farm, Kate 7 4	ol Dist. Nagpur 84 6	653.25	7750	7004 74
20-50	97 34	65	90.86	738.91	8250	7413 75
20 90 50-80	62 99	6.5	56.46	755.11	9000	8181.90
80 & above	73 125	5.5	67.63	749 57	9000	8177 30
Mean	81.36	6.5	74.89	724.21	8500	7694.42
Department of	Botany Farm.	Nagpur				
0-20	97.50	7.4	90.1	669.00	5000	4233.5
20-50	84.01	7.3	76.7	498.00	4000	3417.99
50-80	45.00	6.5	38.5	813.50	4875	4016.5
Mean	75.50	7.1	68.5	660.17	4625	3889.33
Botanical gard	len Farm, Phuta	la (Deep blac	k soil),Dist Nagpur			
0-20	129.77	3.7	126.07	242.30	2500	2127.9
20-50	140.98	3.7	137.28	325.50	2250	1783.5
50-80	150.00	4.5	145.50	242.60	2250	1857.4
Mean	140.25	3.97	136.28	270.13	2333.3	1922.95
College of Ag	riculture Farm,	Nagpur				
0-20	175.49	6.5	168.99	741.95	4750	3832.6
20-50	168.78	3.7	165.08	487.50	4000	3343.7
50-80	152.97	4.5	148.47	522.50	5250	4574.5
Mean	165.75	4.9	160.84	583.98	4666.66	3916.9
C.I.C.R.I	Panjri Farm (De	ep black soil)	, Dist. Nagpur			
0-20	188.99	5.5	183.49	881.55	5000	3929.46
20-50	135.00	3.7	131.30	888.45	5500	4476.55
50-80	116.99	3.7	113.29	724.50	5750	4908.51
Mean	146.99	4.3	142.69	831.50	5416.66	4438.17
C.I.C.R.I	Panjri Farm (Me	edium black s	oil), Dist. Nagpur			
0-20	180.00	3.7	176.30	608.00	5500	4712.0
20-50	166.49	3.7	162.79	605.00	5000	4228.5
50-80	120.00	3.7	116.30	686.00	4750	3944.0
Mean	155.49	3.7	151.79	633.00	5083.33	4294.84
C.I.C.R.I	Panjri Farm (Sh	allow black so	oil), Dist. Nagpur			
0-20	150.71	10.15	140.56	490.00	6000	5359.29
20-50	120.00	12.05	107.95	478.36	5750	5151.64
Mean	135.36	11.10	124.26	484.18	5875	5255.47
Agricultural R	lesearch Station	Farm, Tharsa	a, Dist. Nagpur			
0-20	190.98	3.7	187.28	528.12	6750	6030.89
20-50	120.31	3.7	116.61	510.07	7000	6369.66
50-80	111.98	3.7	108.28	509.80	7000	6378.22
80 & above	84.78	3.7	81.08	479.50	6750	6185.72

Table 2 : Distribution of forms of potassium (mg kg^{-1}) in the soil profile

HIND AGRI-HORTICULTURAL SOCIETY

Contd.....

Depth (cm)	Available K	Water soluble K	Exchangeable K	Non Exchangeable K	Total K	Lattice K
Mean	127.01	3.7	123.31	506.87	6875	6241.13
Agricultural F	Research Station	n Farm, Kutki,	Dist. Wardha			
0-20	140.01	9.25	130.76	747.50	6750	5862.49
20-50	86.62	8.3	78.32	814.5	7000	6098.88
Mean	113.31	8.77	104.54	781.00	6875	5980.69
Agricultural F	Research Station	n Farm, Selsura	a, Dist. Wardha			
0-20	155.00	6.5	148.5	334.40	3750	3260.60
20-50	135.00	6.5	128.5	450.90	4250	3664.10
50-80	80.00	6.5	73.5	431.50	3750	3238.50
Mean	123.33	6.5	116.83	405.60	3916.67	3387.70
Agricultural F	Research Station	n Farm, Ekarju	na, Dist. Chandrapu	•		
0-20	150.04	12.95	137.09	942.50	6500	5407.46
20-50	147.41	12.05	135.36	879.50	7500	6473.09
50-80	105.00	13.85	91.15	807.50	7500	6587.50
80 & above	75.02	12.05	62.97	858.00	8000	7066.98
Mean	119.37	12.725	106.64	871.88	7375	6383.76
Agricultural F	Research Station	n Farm, Sindev	vahi, Dist. Chandrap	ur		
0-20	105.00	8.3	96.70	920.00	7500.00	6475.00
20-50	88.92	7.4	81.53	1020.50	7250.00	6140.57
50-80	55.02	9.25	47.77	1001.50	7000.00	5943.48
Mean	82.98	8.32	74.67	980.67	7250.00	6186.35
Agricultural F	Research Station	n Farm, Sakoli	, Dist. Bhandara			
0-20	110.00	5.5	104.5	661.50	8250	7478.5
20-50	95.23	9.25	85.98	681.50	8250	7473.27
50-80	66.31	5.5	60.81	754.50	8250	7429.19
80 & above	54.34	9.25	45.09	876.00	8500	7569.66
Mean	81.47	7.375	98.79	743.38	83120.50	7487.66
Agricultural F	Research Station	n Farm, Hiwar	a, Dist. Gondia			
0-20	130.89	16.65	111.24	919.50	7250	6199.61
20-50	107.79	11.10	96.69	878.00	7250	6264.21
50-80	84.67	13.85	70.82	948.00	5000	3967.33
80 & above	61.60	12.05	49.55	776.00	4500	3661.9
Mean	96.23	13.41	82.825	880.50	6000 5036 01	5023.26
i otar Mean	11/.40	1.50	111.71	000.00	5750.01	5150.19

Table 2 Contd.....

in Katol soil and minimum in botanical garden, Phutala soil. This is might be due to conversion of lattice K into exchangeable K because of its leaching in slopy soil. The contribution of lattice K towards total potassium is 86.76 % in general and about 86.81 %, 86.67% in Central and Eastern Vidarbha region respectively. Similar results were recorded by Pharande and Sonar (1996). In Central Vidarbha lattice K ranged from 1783.52-8177.30 mgkg⁻¹ in soil profile s and in surface layer it ranges from 2121.3-7004.5 mg kg⁻¹. Similarly in Eastern Vidarbha it ranges from 3661.9-7478.5 mg kg⁻¹. It was noticed that the range of lattice K in Eastern Vidarbha region is narrow than Central Vidarbha.

Asian J. Bio Sci. (2007) 2 (1&2)

The lowest and highest value of non-exchangeable

Parameters	Avail.K	Water soluble K	Exch. K	Non Exch. K	Total K	Lattice K
Total N	0.3268*	0.0707	0.3122	-0.0256	0.2950	0.3079*
Total P	-0.0058	0.1110	-0.0135	-0.1079	0.1548	0.1769
Total S	0.2699	0.2058	0.2487	0.2635	0.3457*	0.3279*
Avail. N	0.9784**	-0.2825	0.9773**	-0.3251*	-0.3702*	-0.3748*
Avail. P	0.2235	-0.0646	0.2250	0.0427	-0.0241	-0.0358
Avail. S	0.3290*	-0.5466*	0.3668*	-0.2966*	-0.0500	-0.0246

Table 3 : Correlation coefficient between forms of potassium and total and available major nutrientsof soil in Vidarbha region.

K being in Phutala and Sindewahi soils respectively. It recorded from 242.3-1020.5 mg kg⁻¹ in soils with a mean value of 668.36 mgkg⁻¹. In Central Vidarbha the non exchangeable K range from 242.6-8885.45 mg kg⁻¹ in surface. While the range of non exchangeable K in Eastern Vidarbha region was quit higher in surface sample (661.5-942.5 mgkg⁻¹) and (661.5-1020.5 mgkg⁻¹) in profile sample. This could be related to abundance of K fixing minerals in heavy rainfall area of Eastern Vidarbha. This form of K also did not exhibit any characteristics trend with depth. The variation in depth wise distribution pattern of non exchangeable K might be due to changes in particle size distribution in various layers (Brar and Sekhon, 1987). This highest content of non exchangeable K in surface horizon was related to clay content, which could fix the K in soils, due to the presence of illitic and other 2:1 type clay minerals. The exchangeable K in general range from 84.6-187.28 mg kg⁻¹ in surface and 38.5-187.28 mg kg⁻¹ in profile with the mean of 111.91 mg kg⁻¹ and which is 1.88% of total K. Central Vidarbha it ranged from 84.6-187.28 mg kg⁻¹ in profile with a mean of 120.39 mg kg⁻¹ which is 2.22% of total K. However as compared to Central Vidarbha and general range, Eastern Vidarbha soil recorded lower content of exchangeable K (1.25%) towards total K. where as, its range in surface sample (96.7-137.09 mg

kg⁻¹) and profile sample (4.09-137.09 mg kg⁻¹) is very narrow. Similar results were recorded by Pal and Sekhon, (1991). This clearly indicates that exchangeable K in soils related to organic carbon content.

The average water soluble K in soil of Central Vidarbha is 3.7-10.15 mg kg⁻¹ in surface layer and 3.7-12.05 mg⁻¹ in profile with average mean of 6.048 which is 0.11% of total K while in Eastern Vidarbha region its range from 5.5-16.65 mgkg⁻¹ in surface layer and profile samples with a mean of 10.46 mg kg⁻¹ which is 0.14% of total K, which shows its negligible contribution in forms of K. The maximum mean of water soluble K was recorded in Ekarjuna (12.73 mg kg⁻¹ and minimum in Tharsa and Panjri, medium black soil 3.7 mg kg⁻¹). In clay soils water soluble K decreased with depth, while in sandy clay and clay loam it increased with depth. This was possible due to leaching of K from surface layer to the lower layers. Similar results were reported by Mishra et al., (1993). The mean content of available K in Central Vidarbha region is highest (126.42 mg kg⁻¹) than Eastern Vidarbha (95.01 mg kg⁻¹) which is 2.33% and 1.3% respectively of total K. But the range of availability of total K is narrow in Eastern Vidarbha than Central Vidarbha considering 49.01 mg kg⁻¹ available soil K as the general critical limit for crops (Murthy and Hirekerur, 1980).

Table 4 : Correlation coefficient between forms of potassium and total and available major nutrientsof soil in Central Vidarbha.

Parameters	Avail.K	Water soluble K	Exch. K	Non Exch. K	Total K	Lattice K
Total N	0.4628*	0.3352	0.4371*	0.1472	0.2799	0.2654
Total P	0.1299	-0.1119	0.1367	-0.3759	-0.0098	0.0241
Total S	0.1662	0.0301	0.1664	0.2969	0.4087*	0.3914
Avail. N	0.9638**	-0.3110	0.9654**	-0.1568	-0.3488	-0.3683
Avail. P	0.2951	-0.1166	0.3021	0.1846	-0.1066	-0.1357
Avail. S	-0.0909	-0.0172	0.0873	0.3273	0.4715*	0.4549*

Asian J. Bio Sci. (2007) 2 (1&2)

Parameters	Avail.K	Water soluble K	Exch. K	Non Exch. K	Total K	Lattice K
Total N	0.2658	-0.2016	0.2874	0.3044	0.3044	0.3552
Total P	0.0327	-0.6410	0.0391	0.1941	0.1941	0.2287
Total S	0.6683**	0.4091	0.6339**	0.1740	0.1740	0.1467
Avail. N	0.9999**	0.1249	0.9952^{**}	-0.2066	-0.2066	-0.2053
Avail. P	0.1412	0.1182	0.1307	0.1251	0.1251	0.1151
Avail. S	0.4998*	-0.1376	0.5184^*	0.0194	0.0194	0.0710

Table 5: Correlation coefficient between forms of potassium and total and available major nutrientsof soil in Eastern Vidarbha.

Correlation between forms of potassium and total and available nutrients :

The available K was significantly correlated with total (r=0.9784*) and available (r=0.9784) nitrogen and available sulphur (r=0.3290^{*}) (Table 3). Similar results were found in Central Vidarbha, but in Eastern Vidarbha available K was positively significant with total sulphur ($r=0.6683^*$), available nitrogen (r= 0.9999**) and available sulphur (r=0.4998^{*}). With the increase in availability of sulphur the solubility of potassium in water decreases (r = -0.5466^{*}). Further water soluble K did not show any significant correlation with total and available nutrients in Central and Eastern Vidarbha region soil. Exchangeable K showed positively significant correlation with total nitrogen ($r=0.3122^*$), available nitrogen ($r=0.9773^*$) and available sulphur ($r=0.3668^*$). Similar results were also observed in Central Vidarbha and Eastern Vidarbha region of Maharashtra.

Non exchangeable K was significantly and negatively correlated with available nitrogen $(r = -0.3251^*)$ and available sulphur (r= -0.2966^{*}). It showed significant and negative correlation with available sulphur ($r = -0.4721^*$) in Eastern Vidarbha soil. The total K and lattice K showed significant positive with total sulphur ($r= 0.3457^*$, r=0.3279*) and lattice K showed significant and positive correlation with total nitrogen ($r=0.3079^*$). While it were significantly and negatively correlated with available nitrogen (r= -0.3702*, r= -0.3748**). In Central Vidarbha total K showed significant and positive correlation with total sulphur ($r = 0.4087^*$) and available sulphur (r=0.4715^{*}). Where as lattice K was significantly and positively correlated with sulphur ($r=0.4549^*$). In Eastern Vidarbha region total and lattice K both did not show any significant relation with and available nutrient status.

Thus the content of total NPK and S is high in all the districts and it decreased with depth. The soils of Central Vidarbha region are medium in available N, low to medium in available P and S, high in available K. While the Eastern Vidarbha region are low in available N, low to medium in *Asian J. Bio Sci.* (2007) **2** (1&2)

available P and S, high to very high in available K. The "r" values suggests that the actual amount of K present in he soil is not he sole factor such as potassium dynamic in soil, clay content, soil pH, CaCO₃, N,P,K and S also influence the availability of potassium.

RFERENCES

- Brar, M. S. and Sekhon, G. S. (1987). Vertical distribution of potassium in five benchmark soil series of Northern India. *Journal of Indian Society of Soil Science*, 35: 732-733.
- Chandel, A. S., Singh, M. and Singh, T.A. (1976). Bulletin. Indian Society of Soil Science, 13: 20.
- Chopra, S.R. and Kanwar, J. S.(1976). Analytical agricultural chemistry, Kalyani Publishers, New Delhi pp. 282.
- Deshmukh, V. N., Solanke, B. U., Rewatkar, S.S. and Gawande, S. M. (1991). Forms of potassium in soils of Vidarbha region. *Journal of Soils and Crops*, 1(2): 175-179.
- Dhawan, S., Pareek, B.L. and Mathur, C.M.(1968). Studies of forms of potassium in soils of Rajasthan. *Journal of Indian Society of Soil Science*, 16: 55-56.
- Hesse, P. R. (1971). A text book of soil chemical analysis. John Murry Pub. Pvt. Ltd., Landon pp. 377.
- Jackson, M.L.(1967). Soil chemical analysis, Prentice Hall of India Pvt. Ltd., New Delhi
- Mishra, M.K., Srivastava, P.C. and Ghosh, D.(1993). Forms of potassium in relation to soil properties and clay mineralogy in some profile of Chambal Command area of Rajasthan. *Journal of Potassium Research*, 9 (2):87-94.
- Murthy, R. S., and Hirekerur, L. R.(1980). Soils in Handbook of agricultural. ICAR, New Delhi 20-72.
- Pal, D. K. and Sekhon, G.S. (1981). Potassium status of five alluvial soil series from different geographical region of India. *Journal of Potassium Research*, 7: 1-8.
- Panse, V. G. and Sukhatme, P.V. (1978). Statical methods for agricultural workers, ICAR, New Delhi.
- Pharande, A. L. and Sonar, K. R .(1996). Depth wise distribution of different forms of potassium in important Vertisol soil series of Maharashtra. *Journal* of Potassium Research, 12 (2):127-134.

- Piper, C. S.(1966). Soil and plant analysis. Hans Publishers, Bombay pp. 135-136.
- Ranganathan, A. and Satyanarayan, T. (1980). Studies on potassium status of soils of Karnataka, *Journal of Indian Society of Soil Science*, 28 (2): 148-153.
- Raskar, B.N. and Pharande, A.L. (1997). Different forms of potassium and their distribution in some important soil series of Vertisols and Alfisols of Western Maharashtra. *Journal of Potassium Research*, **13** (1): 21-30.
- Sparks, (1987). Potassium dyanamics in soils. *Advances of Soil Science*, **6**: 1-23.
- Subbiah, B. V. and Asija, G. L.(1956). A rapid procedure for the estimation of available nitrogen in soils. *Current Sciences* 25: 259-260.

- Trivedi, S. K., Bansal, K.N., Tomar, R.A. and Verma, R.S. (2000). Vertical distribution of forms of sulphur in some profiles of Morena and Bhind districts of Madhya Pradesh. *Journal of Indian Society of Soil Science*, 48 (2): 338-341.
- Wood, L.K. and De Turk, E. E. (1940). The sbsorption of potassium in soils in non replaceable forms. *Soil Science Society of America Proceedings*, **5**: 152-161.

_