Received : May, 2011; Accepted : June, 2011

Effect of mechanization with different land configuration on growth and growth attributes of soybean

J.A. JADHAV, D.B. PATIL AND P.G. INGOLE

See end of the article for authors' affiliations

Research

Paper

Correspondence to :

D.B. PATIL

Department of Agronomy, College of Agriculture, NAGPUR (M.S.) INDIA Email : dino2011@rediffmail. com

ABSTRACT

An experiment was conducted during the *Kharif* season of 2009-10 to study the effect of mechanization with different land configuration on growth and growth attributes of soybean with Randomized Block Design. The treatment consisted of six land configuration treatments. *viz.*, T_1 (Flat bed layout), T_2 (BBF layout), T_3 (Ridges and furrow), T_4 (Flat bet + opening of furrow after every two rows at 30 DAS), T_5 (Flat bet + opening of furrow after every two rows at 30 DAS), T_5 (Flat bet + opening of furrow after every 5 rows at 30 DAS), T_6 (Conventional / farmer's practice) and replicated four times.Result showed that, mechanized culture with broad bed furrow increased significantly plat height at 80, 100 and at harvest, number of functional leaves at 40 and 60 days, leaf area plant⁻¹, number of branches plant⁻¹ at all growth stages, number of developing pods plant⁻¹, dry matter accumulation plant⁻¹ at 80 DAS, AGR for dry matter and plant height in between 40-60 DAS, PGR in between 40-60 DAS, leaf area index, it also increased NAR between 40,60 and 80 DAS

Jadhav, J.A., Patil, D.B. and Ingole, P.G. (2011). Effect of mechanization with different land configuration on growth and growth attributes of soybean. *Adv. Res. J. Crop Improv.*, 2(1): 112-114.

Key words : Soybean, land configuration, mechanization Growth attributes

INTRODUCTION

Soybean (Glycine max. L.) is one of the important oilseed as well as leguminous crop. It is the cheapest and richest source of high quality protein. It supplies most of the nutritional constituents essential for human health. Hence, soybean is called as "Wonder Crop" or "Golden bean" or "Miracle bean". This crop in fact has made revolution in the agricultural economy with its immense potential, quality of Food, Feed, numerous industrial production commodity. Symbiotically soybean fixes 125-150 kg N ha⁻¹ (Chandel and Bhatia, 1989) and leaves about 30-40 kg N ha⁻¹ for succeeding crop (Sexena and chandel, 1992). In India soybean is grown over an area of 7.46 m ha with a production of 8.35 m tonnes and with average productivity of 1007 kg ha-1. Madhya Pradesh, Uttar Pradesh and Maharashtra are the major soybean producing states. (Anonymous, 2006). To improve growth potential of soybean it is necessary to use mechanization with different land configurations. Patil (2005) reported that in soybean all growth attributes viz., plant height,

number of leaves plant⁻¹, leaf area plant⁻¹, dry matter accumulation plant⁻¹, were significantly higher under ridges and furrow method of planting over flat bed method of planting. Considering the above facts, attempt was made to study the effect of mechanization with different land configuration on growth attributes of soybean.

MATERIALS AND METHODS

An experiment was carried out during *Kharif* 2009-10 at Gadadhi Block, Central Research station, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola (M.S.). The experiment was laid out in Randomized Block Design in Four replication with six land configuration treatment *i.e.* T_1 (Flat bed layout), T_2 (BBF layout), T_3 (Ridges and furrows), T_4 (Flat bet + opening of furrow after every two rows, at 30 DAS), T_5 (Flat bed + opening of furrow after every 5 rows at 30 DAS), T_6 (Conventional / Farmers practice). In treatments T_1 to T_5 are mechanized culture with tractor. Gross plot size was of 15 m x 4.5m with net plot size of 13.0m x 3.6m. The experimental site was

clayey in texture, low in nitrogen content, medium in phosphorus and rich in potash, soil reaction was found to be slightly alkaline. Observations on growth and growth attributes viz., plant height, number of functional leaves plant⁻¹, number of branches plant⁻¹, leaf area plant⁻¹, dry matter accumulation plant⁻¹, absolute growth rate, relative growth rate, net assimilation rate were recorded.

RESULTS AND DISCUSSION

The results obtained from the present investigation have been discussed in the following sub heads :

Effect of mechanization with different land configuration on growth attributes:

The growth component was influenced due to various treatments of land configurations. The plant height, number of branches plant⁻¹ and dry matter accumulation plant⁻¹, at 60DAS, 80 DAS and at harvest treatment broad bed furrow (T_2) recorded maximum followed by the treatment ridges and furrow (T_2) . The treatment opening of furrow after every two rows (T_{4}) and opening of furrow after five row (T_5) showed its superiority over treatment flat bed (T_1) and farmers practice (T_6) at 60 DAS, 80 DAS and at harvest.

The number of functional leaves plant⁻¹ and leaf area plant⁻¹ was influenced significantly by different land configuration treatment at 60 DAS and 80 DAS. BBF (T_2) recorded significantly maximum number of leaves and leaf area plant⁻¹ followed by the treatment ridges and furrow (T_2) , opening of furrow after every two rows (T_2) , opening of furrow after every Five rows (T_5) and significantly superior over treatment flat bed (T_1) and farmers practice (T_6) . These results are in the line with the results of Ralli and Dhingra (2003). They conducted a field experiment at Ludhiana on loamy soil and revealed that growth attributes *i.e.* plant height, number of branches, dry matter accumulation, leaf area was higher in BBF as compared to flat bed sowing in soybean.

Effect of mechanization with different land configuration on growth analysis:

The absolute growth rate and relative growth rate in between 20-40 DAS and 40-60 DAS, broad bed furrow (T_2) recorded higher values followed by ridges and furrow. T_4 and T_5 recorded high AGR and RGR over the treatment flat bed (T_1) and farmers practice (T_6) . In between 60-80 DAS values of AGR and RGR were not influenced due to different treatments of land configuration.

In case of net assimilation rate in between 20-40 and 40-60 DAS, treatment BBF (T_2) recorded higher values

E.J. C			8.00.00.2	90. "EX. OP OP 9. "ONY - EX 20.00	J.C. COS								
Services and the service of the serv	Voer pier	Noem plant holgin (nm) plant -) w mar	Vicen muniser of Eurofionel joeves	mioar o." Ei jaevas	. Alter Contract		V.cz	Noen number of Standicos Diant		Voe	Noen (ølei čry mellar ecommiktion (B) pient	and a second
	SAC 00	SAC 08		08 SVC 09	50 DAS	SAC 00	SAC 08	SAC 00	SVC 08		SAC 02	SAC 08	"
Dore Eyon	0.777	21:0	58.0	10.50	16.01	.5.65	.9.65		907.	9.06	6.2	9.2	
3. 3.3.2 'EYDal		26.20	63.20	19.03	55.91	20. 3	25.9	6.99	.0.93	18.6	9.66	3.66	.8.66
3. This work in the second of the second sec	11.53	2.1.2	5.5	561.1	53.33	: 9.23	21 23	5,86	9,888	98°	8.76	31.16	97.7.
, it is son opening of another and	16.83	56.93	60.93	16.5	52		11.86	2.21	9.05	. w	1.39		
overy two tows of 30 DAS													
's lielow opening of impw else		55.95	29,90	15.0			22,53	1.59	8,53	\$5.0.	90 Y		90'9'
CACLY TAGE DAYS EL 30 DAAS													
a the second state of the	13.3/	53,30	51.30	39,30	8/11	507.	508.	50'02	6,86	80°.08	202	808	3.05
	900	\$ 184 am	1 15 15	0.22	50.03	0.03	20.0	12.03	0.03	10.0	50° 0	90.0	0.03
	0.18	0.22.	0.22	0.55	0.0	50.0	Sam	0.3	En ar		\$ 575 675 \$ 44.4 4.19		0.08
. W.	16.16	56.55	60.16	11.55	50.50	997.	22.23	2.01	8.73	150.		03	.0.9

Adv. Res. J. Crop Improv.; Vol. 2 (1); (June, 2011) 113 ●HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE●

EFFECT OF MECHANIZATION WITH DIFFERENT LAND CONFIGURATION ON GROWTH & GROWTH ATTRIBUTES OF SOYBEAN

63	ికపి రి.సిహిద్ది, బారాకా ిశనించి అనిం చేదిం అంగి కండ రరిగి క్రి		ເຂັ້ວ≏ ພາ ອະໜ√້າ ຂາຂັງຮື§ ≜ັກໜ້າ ຈາກການໄດ້ຂາວັດ		T on the strength of the	in the second		The second of the	See and see and a set of the second set of the second seco	
3	na na Statemana Stateman 1. sa	07 02 20 / 02	Days allor sowing 2000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000	60 80	20 / 0 20 / 0	ve power and to wing Days aller sowing 7 0 60		20 / 0	Days alone with the source of	50 80
	and the second strength of the second strengt	560.0	0.27.3	the Same	8°. '9'	6778000	98.44°4	6.000	0 0003	1. Satur a
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	333. ⁷ 2.90 m	50°. °	0.327	1. Y. a	61100	5100	German in	12/ 12/2 12/2 20/ 12/2 22	n. 10. 10 10	0.000
× : **1	Ridgas end Turrow Lyou.	0.078	0.3	5020	n. Va. w	65%n n	" Strange "	Scon'n	0.02	ar parts ar
1.	. Mel sol opening of Cinow else every two	0.058	0.265	n Sur.	0.0.78	North Contraction of the contrac	15 march	de Abarde	)	. / was in
	DAVE OU 30 UNS									
3	an the tool opening of Currow elser cvery Evo	0.030	0.27	Dave a	0.0.37	680%	660000	1 Low is	n semi	1 Para an
	tows at 50 DAS									
( ¹⁰	and the second	9.00	0,202	the the	0.6082	0.3/ 9	et et av . 42 . 42 .	0.00.2	0.0082	n An O

over ridges and furrow  $(T_3)$ . Treatment  $T_4$  and  $T_5$  recorded higher NAR over flat bed  $(T_1)$  and farmers practice  $(T_6)$ . In between 60-80 DAS, treatment opening of furrow after every five rows  $(T_5)$  recorded higher values of NAR over rest of the treatments.

#### Authors' affiliations:

**J.A. JADHAV AND P.G. INGOLE,** Department of Agronomy, College of Agriculture, Dr. Panjabrao Deshmukh Krishi Vidhyapeeth, AKOLA (M.S.) INDIA

## LITERATURE CITED

- Anonymous (2006). Area and production of soybean in India and Maharashtra. *http://www.agricoop.nic.in.*
- Chandel, S.L. and Bhatia, P.C. (1989). Ridge planted *Kharif* pulses yield high despite water logging. *Indian Frmg.*, **21**(3): 8-9.
- Ralli, S. and Dhingra, K.K. (2003). Response of soybean to different planting methods. *Ann. Biology*, **19**(2): 151-155.

Saxena, S.C. and Chandel, A.S. (1992). Effect of N fertilization on different varieties of soybean (*Glycine max* L.). *Indian J. Agric. Sci.*, **62**(10): 695-697.

 Adv. Res. J. Crop Improv.;
 Vol. 2 (1); (June, 2011)

 •HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE•