Received: May, 2011; Accepted : Aug., 2011

Surve of automation irrigation systems in Maharashtra

V.T. BOMBALE, P.G. POPALE , A.P. MAGAR AND M.L. CHAVAN

Bombale, V.T., Popale, P.G., Magar, A.P. and Chavan, M.L. (2011). Surve of automation systems in Maharashtra. *Engg. & Tech. in India*, **2** (1&2): 58-60.

Key words : Automation irrigation systems

Water is prime source required for all biological activities of the plant and is most valuable input particularly in irrigated agriculture. Water saving and efficient irrigation methods have great scope in irrigated agriculture with help of automation. Comparative study between micro-irrigation and traditional irrigation methods had been conducted several times but once the 'automation irrigation system's is installed farmer seldom get chance in production. But he does not get any feedback regarding its operation and maintenance from the manufacturer. In order to asses the actual situation in regards with the 'automation irrigation system's and its adoption on the field of farmer and Govt. Hence it is necessary to survey of 'automation irrigation system's.

There are three basic automation systems namely time based system, volume based system and sensor based system.

Time based system :

In time based system, time is the basis of irrigation.

Address for correspondence : V.T.BOMBALE, Department of Soil and Water Conservation Engineering Adity College of Agricultural Engineering and Technology, BEED, (M.S.) INDIA E.mail : bombale4@gmail.com

Authors' affiliations :

P.G. POPALE AND M.L.CHAVAN, Department of Irrigation and Drainage Engineering, Adity College of Agricultural Engineering and Technology, BEED (M.S.) INDIA E.mail : pramod.popale@gmail.com

A.P. MAGAR, Department of farm pawar and Machinery, Adity College of Agricultural Engineering and Technology, BEED (M.S.) INDIA E.mail : ajitmagar@indiatimes.com Time of operation is calculated according to volume of water required and the average flow rate of water. The duration of individual valves has to be fed in the controller along with system start time; also the controller clock is to be set with the current day and time. As the clock of the controller knocks the start time of programmed, it starts sending signals to the first automatic valve in the programme sequence; the pump also starts up at the same time. As soon as duration of first valve is over the controller either stops or switches ON to next valve. When the operation of last valve is over, controller stops sending signals to valves and pump. The same process is repeated at next run time.

Volume based system :

In volume based system, the preset amount of water can be applied in the field segments by using automatic volume controlled metering valves. Automation using volume based systems are of two types. In first type of system, automatic metering valve with pulse output provides one pulse after completing one dial of the automatic metering valve. Thus, by counting the number of pulses received by the controller, it can count the volume of water passed through. After providing required volume of water through first valve, it closes down and controller switches on the next valve in the sequence. In second type of system, no controller is required. Automatic metering valves are positioned near each field segment. All automatic metering valves are interconnected in series with the help of control tube. For automatic closing and opening of the metering valves with the help of water pressure signal, components like t-connector, shuttle valve and a three way relay (called Shastomit) are also installed along the circuit. During sequential operation only one automatic metering valve remains open. The next valve

V.T. BOMBALE, P.G. POPALE, A.P. MAGAR AND M.L. CHAVAN

Specification	P_1	P_2	P ₃	P_4	P ₅	P ₆	\mathbf{P}_7	P ₈	P ₉
Districts	Ahmend	Auran	Kolha	Nas	Nas	Osamana	Osamana	Pune	Pune
	nagar	gabad	pur	hik	hik	bad	bad		
Place	M.P.K.V.	M.G.M	AG	At/Post-	At/Post-	At/Post-	At/Post-	At/Post-	At/Post
	Rahuri	College	College	VandderB	Khedgoan	Ieet	Ieet	Rajguru	Manjr
		Padegoan		hairo	Tal-	Tal-	Tal-Bhoom	Nagar,	Farm
				Tal-	Dindori	Bhoom		Pune	(Solapı
				Chandvad					road)
									Pune.
Name of	ICAR	NBRI	ICAR	Mr.Rajan	Mr.Sharad	Mr. Anil	Mr. Anand	ICAR	ICAR
farmer and	Project	Project	Project	dra D.	Р.	Deshmukh	Deshmukh.	Project	Projec
institute				Bhalerao.	Dhokare				
Total	10	25	12	65	50	25	28	44	46.78
area	acres	acres	acres	acres	acres	acres	acres	acres	acres
Automation	0.20 acre	0.10 acre(0.576acre	6 acre	44 acre	8 acre	10 acre	40 acre	38 acr
area	(Poly	Poly-house	(Green-						
	house	6m x 6m –	house						
	28m x	10 plot)	18 x 32m						
	28m)	1 /	- 10 plot)						
Soil type	Heavy	Medium	Heavy	Medium	Medium/	Medium	Medium	Light/	Light/
2 000 0 5 F 0	j.				Heavy			Medium	Mediu
Water source	Canal	Open	Open	Open	Storage	Farm	Farm	River	Farm
	Cultu	well	well	well	tank	pond	pond	10.01	pond
Pump (hp)	3	3	5	7.5	15	5	7.5	15	10
Type of	Volume	Time/	Volume	Time base	Time/	Time	Time base	Time	Volum
system	base	volume	base	Time base	volume	base	Time base	base	base
system	Uase	/sensor base	base		base	base		Uase	base
Controller	Galstar	Galstar	Galileo	Galcon	Galstar	Galileo	Galileo	Galstar	Galsta
used	Gaistai	Gaistai	WEXX	Galcoli	Gaistai	WEX	WEX	Gaistai	Gaista
	Solenoid	Solenoid	Solenoid	Solenoid	Solenoid	Solenoid	Solenoid	Solenoid	Soleno
Valve used									Valve
	Valve	valve	valve	valve	valve	valve	valve	Valve	varve
	Hydrulic		Hydrulic					,Hydrulic	
.	valve	T	valve	D	F	D '	D	valve	ъ.
Fertigation	Dozzing	Fertijet	Fertijet	Fertilizer	Fertijet	Dozzing	Fertilizer	Fertilizer	Dozzin
equipment	pump	machine	machine	tank	machine	pump	tank	tank	pump
Computer	Yes	Yes	Yes	No	Yes	No	No	No	Yes
used									
Filter system	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Field	Poly-	Poly-	Green-	Open	Open	Open	Open	Open	Open
	house	house	house	field	field	field	field	field	field
Crop	Chilly	Cotton	Cotton	Grapes	Grapes	Sugar	Sugar	Onion/	Grape
crop	Chiny	Cotton	Cotton	Grapes	Orapes	cane	cane	Garlic	Grape
Cost of	Rs. 9	Rs. 8	Rs. 10	Rs. 3.5	Rs. 8	Rs. 3.8	Rs. 3.5	Rs. 10	Rs. 25
automation	Lakh	Lakh	Lakh	Lakh	Lakh	Lakh	Lakh	Lakh	Lakh
Name of	Jain	Jain	Jain	Jain	Netafim	Jain	Jain	Jain	Jain
				Jain Irrigation	Irrigation				
Company	Irrigation	Irrigation	Irrigation		e	Irrigation	Irrigation	Irrigation	Irrigatio
	system	system	system	system	system	system	system	system	system
	Ltd.	Ltd.	Ltd.	Ltd.	Ltd.	Ltd.	Ltd.	Ltd.	Ltd.
	1. Wiring	1. Wiring	1.Wiring	1.Wiring	1.Voltage	1. Wiring	1.Wiring	1.Wiring	1. Wiri
	damage	damage	damage	damage	problem	damage	damage	damage	damag
	2.Valve	2.Sensor	2.Valve	2.Voltage	2.Valve	2.Voltage	2.Valve	2.Valve	2.Valv
	brakeage	damged	brakeage	problem	brakeage	problem.	brakeage	brakeage	brakeag
Difficu-	3. Skilled	3. Skilled	3.Skilled	3. Skilled	3. Skilled	3. Skilled	3.Skilled	3.Skilled	3. Skill
lties	person	person	person	person	person	person	person	person	persor
	required	required	required	required	required	required	required	required	require

Engg. & Tech. in India; Vol. 2 (1&2); April & Oct., 2011

•HIND INSTITUTE OF SCIENCE AND TECHNOLOGY•

in the series opens after the first valve closes. Shut down of the irrigation pump can be made automatic after closure of the last valve in series by connecting the spare end of the last valve T-connector to a micro-switch with the help of control tube. Micro-switch is connected to the pump motor starter's magnetic coil. After the last automatic metering valve closes, it transmits pressure signal to the micro-switch with the help of pressure which in turn activates a pressure switch and terminates the motor starter circuit resulting in automatic shutdown of irrigation pump.

Sensors based system :

Sensors based system is the application of irrigation based on actual dynamic demand of the plant itself, plant root zone effectively reflecting all environmental factors acting upon the plant. Operating within controlled parameters, the plant itself determines the degree of irrigation required. Various sensors viz., tensiometers, relative humidity sensors, rain sensors, temperature sensors etc. control the irrigation scheduling. These sensors provide feedback to the controller to control its operation. A research study was conducted at Maharashtra state of nine places in the selected six districts namely Ahmednagar (P_1) , Aurangabad (P_2) , Kolhapur (P_3), Nashik (P_4 and P_5), Osmanabad (P_6 and P_{γ}) and Pune (P_{8} and P_{9}). From each place all the necessary data were collected according to the questionnaire form (prepared before) and are tabulated in Table 1.

Based on the collected information the data were analyzed for area under automation, water source, pump Hp, type of system, controller, valve, type fertigation equipment, crop cultivated, automation company, automation cost, difficulties/ problem arised.

The automation area ranged from 0.10 acres to 44 acres in minimum area required for poly house and green house and the area of open field was comparatively large.

Farm pond and open well was used for irrigation. Farm pond is cheaper water source compared to other source. The pump Hp also ranged from 3 to 15 Hp. In poly house minimum Hp of pump was required as compared to open field.

Time based system was comparatively cheaper and hence gaining more popularity than the volume based system. Most places 'time based system' was used. Sensor based (real time) system was cheaper than time base system. But due to environmental condition sensor was damaged and system was broken and this reason farmer not used sensor base system.

Most of automation system galstar controller was used. All automation systems were found to be operated on solenoid type valve.

Fertijet machine or fertilizer tanks were found to be used for most of the automation systems.

As per the crop under cultivation, sugarcane and grapes were usually crops that were irrigated by using automation irrigation system. In green house vegetables was the main crop.

Most of the installations were of Jain Irrigation Privet Ltd. and rarely of Netafim Irrigation Ltd.

Costs of automation ranged form Rs. 3.5 to 25 Lakhs. Wiring damage, voltage problem, valve brakeage, lack of skilled operator were the few of the problems faced by the farmers while irrigating by the automation system.

REFERENCES

Clemmens, A.J. (1990). Feedback Control for Surface Irrigation Management. In: Visions of the Future. *ASAE Publication 04-90. American Society of Agricultural Engineers, St. Joseph, Michigan, Pp. 255-260.*

Fangmeier, D.D., Garrot, D.J., Mancino, C.F. and S.H. Husman. (1990). Automated Irrigation Systems Using Plant & Soil Sensors. In: Visions of the Future. ASAE Publication 04-90. American Society of Agricultural Engineers, St. Joseph, Michigan, Pp. 533-537

Madala, H. R., (1982)."Self-organization GMDH Computer Aided Design for Modeling of Cyclic Processes", Proceedings of IFAC Symposium on Computer Aided Design, W Lafayette, IN, USA,
