NON-TIMBER PRODUCTS OF MAMANDUR FOREST OF TIRUPATI, CUDDAPAH – NALLAMALAI HOTSPOT IN EASTERN GHATS, INDIA

N. SAVITHRAMMA AND J. SARADVATHI

Asian Journal of Environmental Science, Vol. 3 No. 1 : 10-13 (June, 2008)

See end of the article for

authors' affiliations

Correspondence to :

S.V. University,

N. SAVITHRAMMA

Department of Botany,

TIRUPATI (A.P.) INDIA

Accepted : February, 2008

SUMMARY

The Mamandur forest situated between Chittor and Cuddapah districts consists of high degree of phytodiversity along with some highly valuable endemic and endangered species. The area receives water from Thumbura Thirtham of Tirumala Forest. Forest is deciduous type but evergreen plants are mixed together. The forest covered with epiphytes and climbers; and lower group plants like algae, bryophytes, pteridophytes are plenty in water logging areas. The forest is a source of non wood forest products (NWFP) like fibre, fuel wood, gum, resin, vegetable dyes, oil., honey, medicinal plants, bamboo products etc. A large numbers of edible fruits with varietal variation are available in this forest. Highly economic value *Pterocarpus santalinus* is growing luxuriantly in this area. Hedge of elephants are crossing this forest when they are passing from Kuppam to Nallamalai forest areas. The forest is providing food, shelter to wild animals like deer, cats, dogs, birds and leopards to maintain the ecosystem stability and they are providing sustainable environments. Department of forestry of Andhra Pradesh is taking steps to protect this area and improving bio-diversity, by developing check dams and plantations and preventing forest fire along with digging water ditches to the animals and birds in summer.

Key words : Phytodiversity, Mamandur forest, Non–wood forest products.

Natural resources play an important role in the economic growth and development of the region. Sustainable utilization of the natural resources is needed to meet the demands of future generations. Plants have tremendous potential to become a renewable source of high quality raw materials for industry as well as providing a wealth of genetic diversity which can be lead to the discovery of new things (Bartle, 1997). Sacred grove is a track of virgin forest, harbouring rich bio-diversity and provided a good deal of ecological and genetic services by protecting and conserving the primitive cultivators and other wild flora and fauna. Besides these, sacred groves play an important role in maintaining the micro-climate of the region. Cosnservation of groves located in different ecological units helps in the conserved water, soil and nutrient, and facilitates the regeneration of plant species (Khumbongamayam et al., 2005). However, these natural resources are not only limited but some of them are also non-renewable. The important ecological and economic keystone species are naturally conserved in this area. With the increasing human population, there is an increasing pressure on the natural resources, as a result of which they are getting depleted at a faster rate. Over exploitation and mismanagement practices are also causing threat to natural resources and biological diversity. The forests are the important source of genetic diversity through which some of the basic requirements of food, fuel, fodder and shelter are realized. A number of plants have been

disappearing every day unknowing their potentialities. Domestication of any wild species of plant by bringing into cultivation is not an easy task. The potentially useful plants of Mamandur are poorly known. Therefore, identification of under- utilized plant resources is primary important. Hence, in the present paper an attempt has been made to list the plant resources available in this forest and utilized by the local people especially by tribals.

MATERIALS AND METHODS

Intensive field works in different seasons were carried out in Mamandur with the help of forest department in such a way to cover the different development stages of plant species like vegetative, flowering and fruiting. Preliminary identification of plants was made with the help of Flora of the presidency of Madras (Gamble and Fischer, 1916; 1920). During the field work, the specimens collected for the preparation of herbarium were processed in accordance with the methodology adopted by Jain and Rao (1977). The Herbaria were preserved in the Department of Botany, S. V. University, Tirupati.

RESULTS AND DISCUSSION

Pieces of vegetation existing at present as consequence of religious refugia offered to them are called sacred groves. In Andhra Pradesh about 800 sacred groves have been enumerated so far (Bhandary and Chandrasekhar, 2003). Sacred grove in Mamandur is dedicated to God Brahma. The local villagers and tribal people Nakkalas, Sugalis and Chenchus worship the God for their livelihood on these immediate natural resources. Mamandur forest is one of the richest floristic phytogeographical regions in Eastern Ghats of India. On the basis of herbarium collections, a short account of different plant resources was prepared. Number of plant taxa of legume family are available which are rich in protein and keep the soil alive and productive and serve as excellent forage and cattle feed. There are non wood forest products like fibre (Table 1), edible fruits (Table

Table 1 : Fibre yielding from plant sources of Mamandur forest

Plant name	Family	Part
Abutilon indicum G. Don.	Malvaceae	Stem
Agave americana L.	Agavaceae	Leaf
Borassus flabellifer L.	Palmaceae	Petiole
Calotropis gigantea (L). R.Br.	Asclepiadaceae	Bark
Corchorus aestuans L.	Tiliaceae	Stem
C. trilocularis L.	Tiliaceae	Stem
Crotalaria laburnifolia L.	Fabaceae	Stem
C. pulcherrima Roxb.	Fabaceae	Stem
<i>C. retusa</i> L.	Fabaceae	Stem
C. verrucosa L.	Fabaceae	Stem
Decaschistia crotonifolia	Malvaceae	Stem
Wt. & Arn. Grewia hirsuta Vahl.	Tiliaceae	Stem
G. obtusa Wall	Tiliaceae	Stem
G. tiliaefolia Vahl.	Tiliaceae	Stem
Guazuma tomentosa Kunth.	Sterculiaceae	Stem
Hardwickia binata Roxb.	Caesalpiniaceae	Bark
Helicteres isora L.	Sterculiaceae	Bark
Hibiscus vitifolius L.	Malvaceae	Stem
Phoenix sylvestris L.Roxb.	Palmaceae	Petiole
Sansevieria roxburghiana Schult f.	Agavaceae	Leaf
Sida cordifolia L.	Malvaceae	Stem
Urena sinuata L.	Malvaceae	Stem
Waltheria indica L.	Sterculiaceae	Stem
Yucca gloriosa L.	Agavaceae	Leaf

2), dyes (Table 3), gum and resin (Table 4), nondomesticated species of oil yielding plants (Table 5) and medicinal plants (Table 6). Highly important endemic and endangered medicinal plants (Table 7) of Seshachalam hills of Eastern Ghats of India are common in this grove, (Savithramma and Sulochana, 1998; Nair, 1996; Savithramma, 2003).

Along with the higher plants, the lower groups of bryophytes like *Riccia*, *Marchantia*, *Plageochasma*, *Fimbriaria*, *Anthoceros*, *Polytrichum*, *Funaria* and *Dumontiera* species and Pteridophytes like *Sellaginella*, *Actinopteris*, *Glychenia*, *Nephrolepis*, *Lygodium*, *Pteris*, *Osmunda*, *Isoetes*, *Marsilea*, *Salvenia* and *Hemaeonatis* species are commonly available around

[Asian J. Envl. Sci., Vol. 3 (1) (June, 2008)]

 Table 2 : Edible fruits of Mamandur forest

Plant name	Family
Aglaia elaeagnoidea Juss.	Meliaceae
Alangium salvifolium (L.f.) Wang	Alangiaceae
Anacardium occidentale L.	Anacardiaceae
Ananas comosus Merr.	Bromeliaceae
Annona reticulate L.	Annonaceae
A. squamosa L.	Annonaceae
Artocarpus heterophyllus Lam.	Ulmaceae
Calophyllum inophyllum L.	Guttiferae
Carica papaya L.	Caricaceae
Carissa spinarum L.	Apocynaceae
Cucumis melo L.	Cucurbitaceae
C. sativus L.	Cucurbitaceae
Cucurbita maxima Duch.ex Lam	Cucurbitaceae
Ehretia pubescens Benth.	Ehretiaceae
Luffa cylindrica (L.) Roem.	Cucurbitaceae
Mangifera indica L.	Anacardiaceae
Manilkara zapota (Miller) Fosb	Sapotaceae
Memecylon umbellatum Burm.f.	Lecythidaceae
Mimusops elengi L.	Sapotaceae
Momardica charantia L.	Cucurbitaceae
Passiflora edulis Sims.	Passifloraceae
Pithecellobium dulce (Roxb.) Benth.	Mimosaceae
Punica granatum L.	Punicaceae
Scutia myrtina (Burm) Kurz.	Rhamnaceae
Syzygium cumini (L.) Skeels.	Myrtaceae
Terminalia catappa L.	Combretaceae
Trichosanthes anguina L.	Cucurbitaceae

Table 3 : Dye yielding plant taxa from Mamandur forest

Plant name	Family	Part
Bauhinia purpurea L.	Caesalpiniaceae	Bark
Bixa orellana L.	Bixaceae	Pericarp
Butea monosperma (Lam.)Taub.	Fabaceae	Flowers
Erythrina variegata L.	Fabaceae	Bark & leaves
Mallotus philippensis (Lam.)	Euphorbiaceae	Seed
Muell-Arg.		
Oxalis corniculata L.	Oxalidaceae	Leaves
Peltophorum pterocarpum	Caesalpiniaceae	Bark
D.C.Baker		
Pterocarpus santalinus L.f	Fabaceae	Bark
Pterocarpus marsupium	Fabaceae	Wood
Semecarpus anacardium L.f.	Anacardiaceae	Seed
Terminalia arjuna D.C.Wight &	Combretaceae	Bark
Arn.		
T.pallida Brandis	Combretaceae	Fruit
Thespesia populnea Cav.	Malvaceae	Bark & fruits
Ventilago maderaspatana	Rhamnaceae	Bark
Gaertn.		
Vitex altissima L.f.	Verbenaceae	Bark
V. negundo L.	Verbenaceae	Bark
Wrightia tinctoria R.Br.	Apocynaceae	Leaves

•HIND INSTITUTE OF SCIENCE AND TECHNOLOGY•

Plant name

Acacia arabica (Lam)Willd

A. leucophloea (Roxb)Willd

Boswellia ovalifoliolata Bal & Hanry

Cochlospermum religiosum (L.) Alston

Commiphora caudata (Wt & Arn.)Engl

Lannea coromandelica (Houtt)Merr Macaranga peltata (Roxb) Muell-Arg

Butea monosperma (Lam). Taub

Cyamopsis tetragonoloba Taub Gardenia gummifera L.f

Pterocarpus marsupium Roxb.

Hardwickia binata Roxb

Shorea robusta Gaertn.

Ziziphus jujuba Lam

S. talura Roxb Sterculia urens Roxb

A. nilotica L.Willd.ex Del

A. chundra (Rottl)Willd

Table 4 : Gum and resin yielding plant sources of Mamandur forest

Anogeissus latifolia (Roxb.ex.Dc)Wall.Ex.Guill Combretaceae

Table 5 : Oil yielding plant taxa of Mamandur forest

<u></u>	Plant Name	Family
Family	Anacardium occidentalis L.	Anacardiaceae
Mimosaceae Mimosaceae	Atylosia scarabaeoides (L.)Benth.	Fabaceae
Mimosaceae	Azadirachta indica A. Juss.	Meliaceae
Mimosaceae	Bassia longifolia L.	Anacardiaceae
Combretaceae	Canavalia virosa Wt. & Arn.	Fabaceae
Fabaceae	Hiptage benghalensis (L.)Kurz.	Malpighiaceae
Cochlospermaceae	H. madablota Gaertn.	Malpighiaceae
Burseraceae	Jatropha curcas L.	Euphorbiaceae
Fabaceae Rubiaceae	J. gossypifolia L.	Euphorbiaceae
Caesalpiniaceae	Macroptilium atropurpureum D.C.Urban	Fabaceae
Anacardiaceae	Phaseolus aconitifolius Jacq.	Fabaceae
Euphorbiaceae	Pongamia pinnata L.	Fabaceae
Fabaceae Dipterocarpaceae	Rhynchosia cana D.C.	Fabaceae
Dipterocarpaceae	R. minima (L.)D.C.	Fabaceae
Sterculiaceae	Sesamum alatum Thonn	Pedaliaceae
Rhamnaceae	Tinospora cordifolia Miers.	Menispermaceae

Table 6 : Medicinal plants used by the tribals and villagers from Mamandur forest

Plant name	Family	Part	Uses
Abrus precatorius L.	Fabaceae	Roots & leaves	Cough & cold
Argemone mexicana L.	Papaveraceae	Leaves	Leucoderma
Azadirachta indica A. Juss.	Meliaceae	Leaves	Ulcers & wounds
Centella asiatica Urban.	Apiaceae	Leaves	Memory
Ceropegia bulbosa Roxb.	Asclepiadaceae	Leaves	Dysentery & diarohoea
Cissampelos pareira L.	Menispermaceae	Leaves	Itching
Clematis gouriana Roxb.	Ranunculaceae	Leaves and stem	Killing of lice
Cocculus hirsutus Diels.	Menispermaceae	Root & leaves	Eczema
Corallocarpus epigaeus Hk.f.	Cucurbitaceae	Root	Rheumatism
Decalepis hamiltonii W.& A.	Asclepiadaceae	Root	Cooling agent
Dillenia indica L.	Dilleniaceae	Fruit	Abdominal pains
Dioscorea oppositifolia L.	Dioscoreaceae	Tubers	Snake bite
Lippia nodiflora Mich.	Verbenaceae	Leaves	Anti bacterial
Plumbago zeylanica L.	Plumbaginaceae	Root	Skin diseases
Santalum album L.	Santalaceae	Oil	Gonorrhoea
Tinospora cordifolia Miers.	Menispermaceae	Stem bark & root	Dysentery

Table 7 . Engline and chuangered plant species of Mamanuul 1010	Tał	ble 7	: Endemic and	endangered	plant species of	Mamandur f	orest
---	-----	-------	---------------	------------	------------------	------------	-------

			C.
Plant name	Family	Part	Uses
Boswellia ovalifoliolata Bal. & Hanry	Burseraceae	Gum	Rheumatism
Cycas beddomei L.	Cycadaceae	Starch	Dysentery
Decaschistia cuddapahensis T.K.Paul & Nayar	Malvaceae	Plant	Stomach ulcer
Indigofera barberi Gamble	Fabaceae	Plant	Hydroceal
Leucas lavanduliifolia (Rees) Chand	Labiatae	Leaves	Nervous disorder
Pimpinella tirupatiensis Bal. & Sub.	Umbelliferae	Tuber	Asthma
Pterocarpus santalinus L.f.	Fabaceae	Bark	Asthma
Rhynchosia beddomei Baker	Fabaceae	Leaves	Diabetes
Shorea tumbaggaia Roxb.	Dipterocarpaceae	Bark	Diabetes
Syzigium alternifolium Wt.Walp.	Myrtaceae	Bark	Diabetes
Terminalia pallida Brandis	Combretaceae	Fruit	Diabetes
Waltheria indica L.	Sterculiaceae	Plant	Bites of dogs

[Asian J. Envl. Sci., Vol. 3 (1) (June, 2008)]

•HIND INSTITUTE OF SCIENCE AND TECHNOLOGY•

water fall region near this grove. High degree of diversity has been found in the size, colour and taste of fruits of Syzygium jambolanaum and Emblica officinalis. There are numbers of under utilized plant species which have an important role to play as new promising crops in lesser farming situations. In the name of modernization and for easy access to vehicles to the Tirumala hills, the forest is poaching and cutting the trees ruthlessly. Creating awareness for conservation of known useful taxa and proper exploitation of under-utilized plant species is inevitable. Accumulation of resource base information and domestication of new plants are necessary for the future use in order to meet the ever increasing requirements of growing human population and maintain the species diversity along with strategies for conservation of biodiversity and sustainable utilization of phyto resources of Mamandur forest for ecological balance and environmental stability.

ACKNOWLEDGEMENT

The authors are highly grateful to the officials of the Forest Department, to Sri Bullaiah, IFS, Conservator; Sri Rama Rao, DFO and other tribals and local people for their help and information for this study.

Authors' affiliations

J. SARAKVATHI, Department of Botany, S.V. University, TIRUPATI (A.P.) INDIA

References

Bartle, I. (1997). Why do we need new crops as alternative sources for Industrial and medicinal material?. In: Smart, J. and Haq, N. (Eds.). *Domestication, production and utilization of new crops* by *Colorline Printers*, Bangladesh.

Bhandary, M. J. and Chandrashekar, K. R. (2003). Sacred groves of Dakshina Kannada and Udupi districts of Karnataka, *Curr. Sci.*, **85**: 1655-1656.

Gamble, J. S. and Fischer, C. E. C. (1916; 1920). Flora of the Presidency of Madras. In: Adlard and Son, W.O. (Eds.). Published under the authority of the secretariat of state for India in counsil (I to III).

Jain, S. K. and Rao, R. R. (1977). A hand book of field herbarium methods. Today and Tomorrow Printers and Publishers, New Delhi. pp 1-157.

Khumbongamayam, A. D., Khan, M. L. and Tripati, R. S. (2005). Survival and growth of seedlings of few tree species in four sacred groves of Manipur, India. *Curr. Sci.*, **88** (11): 1781-1788. Nair, M. P. (1996). *Hotspot of endemic plants of India, Nepal and Bhutan.* Published by TBGRI, Palode, Kerala, pp 30.

Savithramma, N. and Sulochana, C. H. (1998). Endemic medicinal plants from Tirumala hills, Andhra Pradesh, India. *Fitotherapia*, **69** (3): 253-254.

Savithramma, N. (2003). Sacred and protected Grooves of Andhra Pradesh, World Wide Fund (WWF) for Nature, A.P. State Office, India.