

Influence of storage containers on storability of china aster genotypes

■GNYANDEV, B. KURDIKERI, SHARN KUMAR AND VISHAL KUMAR

SUMMARY: The storage experiment on storage potential of china aster varieties was conducted in the Department of Seed Science and Technology, AC, Dharwad. Among four china aster varieties, Kamini was found relatively better in storability with high germination and seedling vigour with low electrical conductivity up to six months of storage. Among containers, seeds stored in aluminium foil and polythene bags maintained higher germination and seedling vigour parameters compared to seeds stored in paper and cloth bag.

KEY WORDS: Storage containers, Storability, China aster, Genotypes

How to cite this paper: Gnyandev, Kurdikeri, B., Kumar, Sharn and Kumar, Vishal (2012). Influence of storage containers on storability of china aster genotypes. *Internat. J. Proc. & Post Harvest Technol.*, 3 (2): 215-219.

Research chronicle: Received: 12.06.2012; Revised: 06.08.2012; Accepted: 22.09.2012

hina aster [Callistephus chinensis (L.) Nees] belongs to the family Asteraceae native of china is an important commercial ornamental annual crop grown in many parts of the world for cut and stock flower. The wide spectrum of colour ranges of flowers viz., pink, blue, violet, purple and white makes people more attractive which are used for garlands bouquets etc. Further, due to long shelf-life of cut flowers they are being wider decorative purpose. In India and Karnataka china aster is increasing every year but the availability of high quality seed in adequate quantity has become a major problem for cultivation of china aster crop. Further the china aster seeds are found to have lesser period of viability which also is a limiting factor for availability of quality seeds for sowing. Hence, there is need to extend the longevity of china aster seeds by storing in appropriate storage containers. Storage potential of seed is basically under genetic control and it differs with species and cultivars it is also influenced by number of other environmental factors viz., moisture content, RH,

- MEMBERS OF THE RESEARCH FORUM -

Author for Correspondence:

GNYANDEV, Department of Seed Science and Technology, University of Agricultural Sciences, DHARWAD (KARNATAKA) INDIA

Email: gdev_2716@rediffmail.com

Coopted Authors:

B. KURDIKERI, SHARNKUMAR AND VISHALKUMAR, Department of Seed Science and Technology, University of Agricultural Sciences, DHARWAD (KARNATAKA) INDIA

temperature, storage containers, provinence etc. generally seeds stored in sealed moisture impervious containers store for longer period compared to those stored in moisture pervious containers as they act as effective barriers against moisture fluctuation (Thomson, 1979).

EXPERIMENTAL METHODS

The storage experiment was conducted in the department of Seed Science and Technology, College of Agriculture, University of Agricultural Sciences, Dharwad involving four china aster varieties *viz.*, Kamini, Phule ganesh white, Phule ganesh purple and phule ganesh violet and four container *viz.*, cloth bag, paper bag, polythene bag and aluminium foil. The fresh seeds of china aster varieties with initial 8.0 per cent moisture content were stored in different containers. The polythene and aluminium foil containers were heat sealed. The seeds required for months observations were obtained from separate containers. The monthly observation were made on germination, speed of germination, shoot length, seedling dry weight, vigour index, moisture content and electrical conductivity as per ISTA rules (Anonymous, 1996).

EXPERIMENTAL FINDINGS AND ANALYSIS

The present study revealed significant variation among

			Germination percentage	percentage					Speed of germination	germinatic	n	
Treatments			Storage months	months					Storage	Storage months		
	-	2	m	4	5	9	_	2	3	4	5	9
Varieties (V)												
V - Kamini	90.12 (71.71)*	(92.59) 00.88	84.37 (67.47)	81.62 (64.64)	76.50 (61.03)	70.87 (57.36)	16.17	15.64	14.92	14.12	13.66	12.45
V_2 – FG white	86.37 (68.36)	84.37 (66.74)	8025 (63.64)	76.87 (628)	60.87 (57.36)	66.62 (54.73	15.78	15.30	14.66	13.70	12.87	11.94
V ₃ – FG voilet	87.75 (69.54)	85.00 (67.24)	80.87 (64.09)	77.25 (61.54)	71.50 (57.76)	67.12 (55.03)	15.93	15.46	14.88	13.86	13.04	12.15
V_4 – FG purple	84.87 (67.14)	81.87 (64.83)	77.37 61.62)	74.50 (59.70)	69.25 (56.35)	64.37 (53.37)	15.65	15.14	14.44	13.42	12.66	11.70
Mean	87.28 (69.12)	84.01 (67.05)	80.84 (61.01)	77.56 (61.75)	72.03 (58.05)	67.25 (55.06)	15.88	15.38	14.73	13.78	13.06	12.06
S.E.+	0.36	0.34	0.43	0.36	0.76	0.47	0.05	C.04	80.0	0.04	0.12	90.0
C.D. at 5%	1.07	1.02	87.1	1.07	1.38	1.41	0.14	0.13	0.25	02	0.36	0.18
Containers (C)												
C ₁ – Cloth bag	85.62 (67.74)	81.75 (64.74)	76.62 (61.11)	73.00 (53.72)	65.00 (53.75)	59.37 (50.42)	15.70	15.06	14.35	1320	12.63	11.51
C. Paper bag	86.62 (68.57)	85.72 (67.85)	79.62 (63.19)	15.37 (60.27)	67.75 (55.42)	62.62 (52.36)	15.81	15.25	14.52	13.19	12.81	11.77
C_5 – Polythene	87.62 (69.43)	(56.79) 78.28	82.25 (65.11)	79.62 (63.19)	76.12 (60.77)	71.50 (57.76)	16.00	15.58	14.73	1420	13.31	12.40
C Aluminium foil	89.25 (70.89)	(62.39) 28.98	84.87 (67.14)	\$2.25 (65.11)	79.25 (62.96)	75.50 (60.36)	16.03	15.63	15.30	1423	13.49	12.55
Mean	87.28 (69.12)	84.01 (67.05)	80.84 (61.01)	77.56 (61.75)	72.03 (58.05)	67.25 (55.06)	15.88	15.38	14.73	13.78	13.06	12.08
S.E.+	0.36	0.34	0.43	0.36	0.76	0.47	0.05	0.04	0.08	0.04	0.12	90.0
C.D. at 5%	1.07	1.02	1.28	1.07	1.38	1.41	0.14	0.13	0.25	0.2	0.36	0.18
Interactions (VxC)												
V,C ₁	88.50 (70.21)	84.50 (66.84)	80.50 (63.82)	76.50 (61.03)	(9.50 (56.50)	63.50 (52.87)	16.05	15.37	14.37	13.55	13.80	11.85
V _C 2	89.50 (71.12)	87.50 (69.33)	83.00 (65.68)	79.50 (63.11)	71.50 (57.76)	66.50 (54.66)	16.15	15.55	14.77	13.85	13.45	12.25
V.C ₃	91.00 (72.57)	89.50 (71.12)	87.50 (69.33)	84.50 (66.84)	81.50 (64.55)	74.50 (59.70)	1625	15.75	15.05	1455	13.65	12.80
V ₁ C ₄	91.50 (73.08)	50.50 (72.02)	88.50 (70.21)	86.00 (68.06)	83.50 (66.06)	79.00 (62.79)	1625	15.90	15.50	1455	13.75	12.90
V_2C_1	85.00 (67.24)	81.50 (64.55)	75.50 (60.36)	72.00 (58.08)	63.00 (52.56)	55.88 (50.21)	15.55	14.95	14.40	13.15	12.32	11.37
V_2C_2	85.50 (67.65)	85.00 (67.24)	80.50 (63.82)	75.50 (60.36)	68.50 (55.88)	62.50 (52.26)	15.72	14.11	14.42	13.47	12.60	11.65
V_zC_s	86.50 (68.47)	85.00 (67.24)	81.00 (64.19)	77.50 (61.71)	73.50 (59.04)	(05.35) (56.50)	15.90	15.55	14.60	14.05	13.17	12.27
V;C4	88.50 (70.21)	(90.39) 00.98	84.00 (66.45)	82.50 (65.30)	78.50 (62.40)	75.50 (60.36)	15.95	15.57	15.22	14.15	13.40	12.47
V_3C_1	86.00 (68.06)	82.00 (64.92)	(75 19) 00 22	74 00 (59 37)	65.50 (54.05)	(80-15) (5-09)	1575	15.15	14.60	13.25	12.35	11.65
V_3C_2	87.50 (69.33)	(90.39) 00.93	80.50 (63.82)	75.50 (60.36)	67.00 (54.96)	62.00 (51.96)	15.85	15.35	14.62	13.60	12.75	11.90
V ₃ C ₃	87.50 (69.33)	85.50 (67.65)	81.50 (64.55)	79.00 (62.75)	76.00 (60.69)	57.75 (71.50)	16.05	15.65	14.90	1430	13.45	12.45
V ₃ C ₄	90.00 (71.60)	86.50 (68.47)	84.50 (66.84)	80.50 (63.82)	77.50 (61.71)	74.50 (59.70)	16.00	15.70	15.42	1432	13.62	12.60
V_4C_1	83.00 (65.68)	79.00 (62.75)	73.50 (59.04)	69.50 (56.50)	62.00 (51.96)	54.50 (47.60)	15.45	15.80	14.05	12.85	12.05	11.17
V ₄ C ₂	84.00 (66.45)	80.50 (63.82)	74.50 (59.70)	71.00 (57.44)	64.00 (53.15)	59.50 (50.50)	15.55	15.00	14.27	13.05	12.45	11.30
V ₄ C ₃	85.50 (67.65)	83.50 (66.06)	79.00 (62.75)	77.50 (61.71)	73.50 (59.04)	70.50 (57.13)	15.80	15.40	14.40	13.90	12.97	12.07
V ₄ C ₄	87.00 (68.90)	84.50 (66.84)	82.50 (65.30)	80.00 (63.46)	77.50 (61.71)	73.00 (58.72)	15.82	15.37	15.05	13.90	13.20	12.25
Mean	87.28 (69.12)	84.01 (67.05)	80.84 (61.01)	77.56 (675)	72.03 (58.05)	67.25 (55.06)	15.88	15.38	14.73	13.78	13.49	12.06
S.E.+	0.72	0.68	0.86	0.73	1.52	0.93	60.0	0.08	0.17	0.08	0.24	0.12
/05 to CL C	NC	SN	<u>u</u> Z	NS	07	NG	DIN	OD	Z	OI V	MG	NG

Table 2: Effect of varieties and containers on seedling	eties and	containe	Seading length		length, seed	length, seedling vigour index and seedling dry weight during storage of china asker	ır index a	nd seedli	ng dry w	ling dry weight durin	ring stora	ge of chin	a aster	Cool	Saadling dry waight (mg)	m) thoise	-	
Treatments	1/4		Storage	Storage months	dilly			2	Storage	Storage months	V			3	Storage months	non'hs	2	
	-	2	3	4	5	9	1	2	3	4	5	9		2	3	4	5	9
Varieties (V)																		
$V_1 - Kamini$	4.82	4.80	471	4.50	4.42	4.23	434	424	400	364	338	301	16.89	16.75	16.57	16.38	10.91	15.65
V_2 – PG white	4.65	4.61	451	4.30	4.17	4.03	408	388	362	338	296	270	15.81	15.61	15.44	15.15	14.73	14.42
$V_3 - PG$ voilet	4.67	4.63	457	4.40	4.30	4.10	410	394	369	342	310	276	16.08	15.89	15.75	15.49	15.05	14.71
V ₄ – PG purple	4.64	4.53	444	4.26	4.16	4.01	394	372	343	321	289	261	15.63	15.35	15.15	14.95	14.58	14.20
Mean	4.69	4.64	456	4.37	4.26	4.09	412	394	369	341	308	277	16.10	15.90	15.73	15.49	15.09	14.75
S.E.+	0.03	0.03	0.03	0.03	0.03	0.05	236	2.10	2.63	3.00	4.43	2.54	90.0	0.07	90.0	0.06	90.0	90.0
C.D. at 5%	0.08	0.10	800	0.08	0.07	0.07	707	6.30	7.90	00.6	13.58	7.58	0.17	0.18	0.19	0.18	0.19	0.18
Containers (C)																		
C ₁ – Cloth bag	4.50	4.44	432	4.09	3.95	3.75	391	362	330	300	250	224	15.14	14.95	14.73	14.47	13.98	13.53
C_2 – Paper bag	4.66	4.55	444	4.25	4.10	3.87	404	389	353	321	276	242	15.43	15.16	14.92	14.63	14.12	13.72
C_3 – Polythene	4.75	4.71	466	4.44	4.40	4.25	416	405	384	361	335	304	16.40	16.21	16.06	15.84	15.51	15.24
C ₄ - Aluminium foil	4.87	4.85	481	4.70	4.61	4.49	436	421	408	384	361	339	17.43	17.28	17.18	17.02	16.76	16.49
Mean	4.69	4.64	456	4.37	4.26	4.09	412	394	369	341	308	277	16.10	15.90	15.73	15.49	15.09	14.75
S.E.±	0.03	0.03	0.03	0.03	0.03	0.05	236	2.10	2.63	3.00	4.53	2.54	90.0	90.0	90.0	90.0	90.0	90.0
C.D. at 5%	0.08	0.10	800	0.08	0.07	0.07	707	6.30	7.90	00.6	13.58	7.58	0.17	0.18	0.19	0.18	0.19	0.18
Interactions (VxC)																		
V ₁ C ₁	4.72	4.71	457	4.22	4.15	3.95	418	399	368	323	288	250	1633	16.05	15.80	15.55	15.05	14.45
V_1C_2	4.75	4.72	462	4.45	4.32	4.05	425	415	383	353	303	569	1637	16.15	15.85	15.67	15.17	14.70
V_1C_3	4.85	4.82	477	4.57	4.47	4.35	4	431	417	382	364	324	17.32	17.32	17.17	17.05	16.85	16.62
V ₁ C ₄	4.97	4.97	490	4.77	4.75	4.60	455	450	433	397	396	363	17.52	17.50	17.47	17.25	17.00	16.85
V_2C_1	4.36	4.37	417	4.05	3.90	3.75	393	351	309	307	247	221	14.52	14.42	14.25	13.95	13.55	13.25
V_2C_2	4.65	4.52	442	4.22	4.00	3.82	399	386	357	322	276	239	15.15	14.90	14.70	14.25	13.67	13.32
V_2C_3	4.77	4.75	465	4.30	4.27	4.12	410	403	379	353	316	286	16.10	15.90	15.70	15.45	15.05	14.75
V_2C_4	4.82	4.82	480	4.65	4.52	4.45	431	412	402	370	346	336	17.47	17.22	17.12	16.95	16.67	16.37
V_3C_1	4.52	4.47	440	4.15	4.00	3.77	389	366	338	295	272	228	1527	15.15	14.95	14.65	14.05	13.60
V ₃ C ₂	4.62	4.57	450	4.27	4.17	3.85	404	395	360	320	278	238	15.55	15.22	15.07	14.75	14.20	13.82
V_3C_3	4.67	4.62	460	4.47	4.42	4.27	409	395	372	358	336	305	16.05	15.85	15.75	15.52	15.12	14.85
V_3C_4	4.87	4.85	480	4.72	4.60	4.50	438	419	405	393	256	335	17.45	17.35	17.22	17.05	16.82	16.57
V ₄ C ₁	4.40	4.22	415	3.95	3.75	3.60	365	333	304	274	232	196	14.45	14.17	13.95	13.75	13.30	12.85
V_4C_2	4.62	4.45	422	4.05	3.90	3.77	388	358	311	287	350	224	14.65	14.40	14.07	13.85	13.45	13.05
V_4C_3	4.72	4.67	465	4.42	4.42	4.27	404	390	367	350	325	301	16.15	15.80	15.65	15.35	15.05	14.75
V_4C_4	4.82	4.80	475	4.65	4.57	4.45	419	405	391	374	347	323	1730	17.05	16.92	16.85	16.55	16.17
Mean	4.69	4.64	456	4.37	4.26	4.09	412	394	369	34]	308	277	16.10	15.90	15.73	15.49	15.09	14.75
S.E.+	0.03	0.07	900	0.05	0.05	0.02	472	4.20	5.27	10.9	90.6	30.5	0.12	0.12	0.13	0.12	0.13	0.12
C.D. at 5%	NS	SN	NS	SN	SN	NS	NS	NS	SZ	SN	NS	NS	2	SN	SN	NS	SZ	NS
NS - Non Significant	+																	

NS - Non Significant

varieties for per cent germination and other seed quality parameters at first and subsequent months of storage. The germination percentage of china aster seeds declined progressively with increase in storage period in all the varieties irrespective of containers. The mean germination gradually decreased from 87.28 to 67.25 per cent, speed of germination from 15.88 to 12.6 (Table 1), seedling length from 4.69 to 4.09, vigour index from 412 to 277, seedling dry weight 16.10 to 14.75 mg (Table 2) while EC increased from 1.48 to 2.34 dSm-1, moisture content varied between 8.14 to 8.02 from first month

after storage to end of six month of storage, respectively. Such varietal differences on storability of seeds and other seedling parameters may be attributed mainly to genetic differences of china aster varieties and due to storage environments (Roberts, 1972; Agarwal, 1974 and Bharati, 2002).

Among china aster varieties Kamini recorded significantly maximum (70.87%) germination while it was less (64.37%) in PG purple irrespective of container. All the varieties were found to maintain satisfactory germination (60%) above the minimum seed certification standards up to end of six months of storage.

Treatments		Elect	trical cond		Sm ⁻¹)		Moisture content (%)					
Treatments				months					Storage			
	1	2	3	4	5	6	1	2	3	4		6
Varieties (V)												
V ₁ – Kamini	1.38	1.50	1.65	1.83	2.02	2.17	8.08	8.03	7.86	7.79	7.82	8.00
V ₂ – PG white	1.46	1.56	1.78	2.04	2.20	2.43	8.10	8.05	7.90	7.80	7.78	8.06
V ₃ – PG voilet	1.44	1.55	1.69	1.91	2.10	2.25	8.11	8.10	7.98	7.91	7.85	8.01
V ₄ – PG purple	1.66	1.67	1.81	2.13	2.37	2.53	8.18	8.13	8.01	7.91	7.86	8.01
Mean	1.48	1.57	1.73	1.98	2.17	2.34	8.14	8.08	7.90	7.89	8.03	8.02
S.E. <u>+</u>	0.02	0.02	0.02	0.01	0.02	0.03	0.02	0.01	0.02	0.02	0.01	1.02
C.D. at 5%	0.05	0.06	0.07	0.04	0.06	0.08	0.06	0.03	0.06	0.06	0.03	NS
Containers (C)												
C ₁ – Cloth bag	1.58	1.72	1.93	2.19	2.41	2.62	8.20	8.18	7.95	7.85	7.82	8.24
C ₂ – Paper bag	1.52	1.63	1.81	2.06	2.25	2.48	8.17	8.09	7.94	7.84	7.83	8.21
C ₃ – Polythene	1.44	1.50	1.66	1.89	2.16	2.25	8.06	8.02	7.90	7.83	7.78	7.87
C ₄ – Aluminium foil	1.39	1.44	1.53	1.77	1.87	2.03	8.02	8.01	7.96	7.90	7.87	7.80
Mean	1.48	1.57	1.73	1.98	2.17	2.34	8.10	8.06	7.94	7.85	7.83	8.01
S.E. <u>+</u>	0.02	0.02	0.02	0.01	0.02	0.03	0.02	0.01	0.02	0.02	0.01	0.02
C.D. at 5%	0.05	0.06	0.07	0.04	0.06	0.08	0.06	0.03	NS	NS	0.03	0.06
Interactions (VxC)												
V_1C_1	1.47	1.67	1.87	2.05	2.27	2.47	8.21	8.17	7.87	7.77	7.90	8.25
V_1C_2	1.37	1.55	1.77	1.87	2.10	2.22	8.12	7.99	7.85	7.77	7.85	8.22
V_1C_3	1.37	1.42	1.55	1.77	2.00	2.12	8.00	7.98	7.80	7.72	7.67	7.87
V_1C_4	1.30	1.36	1.43	1.62	1.72	1.87	8.00	8.00	7.95	7.90	7.87	7.89
V_2C_1	1.35	1.72	1.95	2.27	2.45	2.70	8.22	8.17	7.82	7.72	7.67	8.27
V_2C_2	1.50	1.62	1.85	2.15	2.27	2.65	8.15	8.05	7.85	7.77	7.77	8.30
V_2C_3	1.42	1.47	1.75	1.92	2.22	2.27	8.05	7.97	7.92	7.85	7.82	7.88
V_2C_4	1.37	1.45	1.57	1.82	1.87	2.10	8.00	8.00	8.00	7.87	7.85	7.87
V_3C_1	1.57	1.67	1.87	2.12	2.37	2.55	8.20	8.17	8.07	8.00	7.87	8.20
V_3C_2	1.50	1.62	1.77	2.00	2.15	2.35	8.17	8.12	8.00	7.87	7.82	8.15
V_3C_3	1.37	1.50	1.62	1.82	2.12	2.17	8.05	8.05	7.95	7.87	7.82	7.91
V_3C_4	1.32	1.42	1.50	1.72	1.77	1.95	8.05	8.05	7.92	7.90	7.87	7.88
V_4C_1	1.75	1.82	2.02	2.32	2.57	2.77	8.027	8.22	8.06	7.92	7.85	8.25
V_4C_2	1.72	1.75	1.87	2.22	2.47	2.70	8.25	8.00	8.07	7.95	7.90	8.17
V_4C_3	1.60	1.60	1.72	2.05	2.32	2.42	8.15	8.10	7.95	7.85	7.90	7.83
V_4C_4	1.57	1.52	1.62	1.92	2.12	2.22	8.05	8.00	8.00	7.92	7.90	7.90
Mean	1.48	1.57	1.73	1.98	2.17	2.34	8.12	8.07	7.94	7.85	7.83	8.02
S.E.±	0.04	0.04	0.04	0.03	0.04	0.05	0.03	0.03	0.04	0.04	0.03	0.04
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

NS = Non-significant

^{*} Figures in the parenthesis are arcsine transformed values

Most of the previous studies on influence of containers on storage potential have indicated the beneficial influence of moisture impervious containers over pervious containers in the present study also. Among the containers significantly maximum germination (75.5%) was seen in aluminium foil followed by polythene bag (71.50%) and was minimum (59.37%) in cloth bag at the end of six months of storage. The seed viability was maintained as per seeds standards in all the containers except in cloth bag. The results of the present study are in conformity with the reports of Kumbar (1999) and Bharati (2002). Likewise, containers also showed significant differences on speed of germination, seedling length, seedling vigour index, seedling dry weight which were found to decrease with the increase in storage period except electrical conductivity on account of age induced deterioration (Roberts, 1972 and Delouche, 1973).

The interaction effect due to varieties and containers though not differed significantly, all the china aster varieties stored in different containers maintained satisfactory germination (60%) except PG white and PG purple stored in cloth bag and P.G purple stored in paper bag.

Likewise, the various seedling parameters such as speed of germination. Seedling length, seedling dry weight, seedling vigour index also did not show any significant differences due to the interaction effects based on the results of the study, it may be concluded that china aster seeds may be stored in aluminium foil or polythene bag containers satisfactorily above six months of storage without any loss of germination and seedling vigour parameters.

LITERATURE CITED

Agarwal, P.K. (1974). Storage studies on maize seeds. Bull. Grain Technol., 12 (2): 109-112.

Anonymous (1996). International rules for seed testing. Seed Sci. & Technol., 29 (supplement): 1-335.

Bharathi, D. (2002). Influence of seed treatments and picking material in storability of gaillardia cv. DGS-1. M.Sc. (Ag.) Thesis, University of Agricultural Sciences, Dharwad, KARNATAKA (INDIA).

Delouche, J.C. (1973). Percepts of seed storage (revised). South Canada Proc. Mississippi, State University, SOUTH CANADA.

Kumbar, R.I. (1999). Influence seed treatment and containers on seed quality during storage in chickpea. M.Sc. (Ag.) Thesis, University of Agricultural Sciences, Dharwad, KARNATAKA (INDIA).

Roberts, E.H.(1972). *Viability of seeds*, Champman and Hill, Londan, pp. 307-320.

Thomson, J.R. (1979). An introduction to seed technology, Leonart Hills, GLASGOW.

