Physico-chemical factors influencing the growth of diatoms in two habitats of Mysore

J. MAHADEV, NAGARATHANAMMA AND AKHEEL SYED AHMED

Asian Journal of Environmental Science (June to November, 2009) Vol. 4 No. 1 : 12-14

See end of the article for authors' affiliations

SUMMARY

Correspondence to : J. MAHADEV Department of Studies in Environmental Science, University of Mysore, Manasa Gangothri, MYSORE (KARNATAKA) INDIA

Key words :

Mysore lakes

Diatoms, Physico-

chemical factors,

The paper attempts to give an account of the periodicity of algae in two fresh water lakes of Mysore (Mandakkhalli and Kukrahalli). Various physio-chemical parameters were analyzed at monthly intervals (2007-2008) and average values were calculated. Samples were screened for phytoplanktons and number of diatoms found at both the habitats. It is interesting to note that there were significant physic-chemical factors influencing the growth of diatoms in the two lakes. Seventeen species of diatoms were recorded in Mandakkhalli lake and eighteen species in Kukrahalli lake during the study period. Higher pH, calcium and oxidizable organic matter coupled with low concentration of nitrates and phosphates were found to favour growth of diatoms.

During the recent years lakes are becoming the victim of cultural eutrophication, which in turn is due to increase in anthropogenic pressure in their catchment areas, affecting the quality of water. Several workers have studied the ecology of fresh water algae, a few of interest one are of Munwar (1970), Singh (1960), Zafar (1964) and Hosmani and Bharathi (1982). The present study was aimed at monitoring the diatom population in Mandakkhalli and Kukkrahalli lakes of Mysore and correlating their occurrence with various physico-chemical parameters including calcium carbonate saturation index.

MATERIALS AND METHODS

Water samples were collected in 11 plastic carboys from two lakes of Mysore (Kukkrahalli and Mandakkhalli) at monthly intervals during June 2007 to May 2008. Samples were analyzed for various physic-chemical parameters and the phytoplankton analysis was done according to method described by Standard method of Examination Water and Waste Water APHA (1995) and, Trivedy and Goel (1986). Sedimentation of water was made in 4% formaldehyde and lugols iodine solution, and phytoplanktons were counted in 1 ml sample under a compound research microscope (40x magnitude) Fritsch (1975).

The results of the analysis of the two lakes

Accepted : January, 2009

RESULTS AND DISCUSSION

are given in (Table 1). All physic-chemical factors showed higher values in Kukkarahalli which were compared to Mandakkhalli during study period. The data revealed that Mandakkhalli lake through oligotrophic exhibits few characters of eutrophication due to severe environmental impact. The colour of Kukkarahalli lake water appeared green during the study period because of algal bloom. There was objectionable smell of hydrogen sulphide during most part of the study period.

Singh (1960), Philipose (1960), Zafar (1964) and Munwar (1970) have studied periodicity of diatom. The important factors considered were nitrate, phosphate, calcium and pH. Diatoms increase with increase in nitrate and phosphate. In the present study, the concentration of nitrate was quite low but the diatom population was significantly high (Table 2). Tripathy and Pandey (1990), Naganandini and Hosmani (1998) observe that diatoms were maximum during winter and summer, while Parvateesam and Mishra (1993) observed that diatoms were maximum during summer season. The present study showed low concentration of calcium and dissolved oxygen influencing growth of diatoms in both the lakes. The pH ranges of 7 to 8.25 influence the growth of diatoms. Nitrates and phosphates are also considered to be important parameters in the growth of diatoms.

Rajendra Nair (1990) and Hosmani (1975) reported that diatom populations were directly correlated to phosphate content. In the present

 Table 1 : Physico-chemical parameters and Langlier's index of two lakes

of two lakes		
Parameters	Mandakkahalli	Kukkrahalli
Water temperature	28.4 ⁰ C	29.3 ⁰ C
рН	7.7	8.13
Total solids	820.7	984.4
Free carbon dioxide	10.69	4.42
Dissolved oxygen	5.32	4.7
Calcium	68	88.4
BOD	9.6	15.42
COD	14.48	23.21
Phosphate	40	48
Nitrate	30.2	46.2
Nitrite	016	0.74
Langlier's index	1.24	1.801
Diatoms organisms or/L-1	6539	8277

(All Physico-chemical parameters are mg/L except water temperature and pH)

study, diatoms growth was directly proportional to phosphate and nitrate content. Both water bodies supported the higher number of diatoms (Table 2) but have varied amounts of dissolved oxygen. In Mandakkhalli Lake dissolved oxygen was 5.32 mg/L and diatom population was 6539 org/L. Kukkrahalli lake dissolved oxygen content was low 4.47 mg/L diatom population was 8277 org/L. This indicates that oxygen has lesser influence on growth of diatoms.

The periodicity of diatoms in Mandakkahalli Lake was regular except for a few species like *Cymbella*

Table 2 : Distribution of Diotoms (monthly occurrence)				
	Mandakkahalli	Kukkrahalli		
Months	June 2007 -May	-		
	2008	2008		
June, 2007	12260	10924		
July, 2007	13860	15540		
August, 2007	15540	20580		
September, 2007	13120	16800		
October, 2007	13600	13440		
November, 2007	13020	15120		
December, 2007	12600	17540		
January, 2008	12180	10920		
February, 2008	12180	17640		
March, 2008	18060	18060		
April, 2008	13860	21000		
May, 2008	14280	21000		
Total organisms	55236	192660		
Average	6539	8435		
Total organisms	6539	8277		

Numbers represent organism / L (org/L)

[Asian J. Environ. Sci., Vol. 4 (1) (June to Dec., 2009)]

cymbiformis, Stauroneis phoenicentron, Gyrosigma granula and Gomphonema gracile. Whereas, Gomphonema tenelum, Synedra ulna, and Navicula rhomboids, were found in significantly high numbers. In Kukkrahalli Gomphonema tenelum, Navicula rhomboids and Synedra ulna dominated and occurred as blooms (Table 3). The Langelier's index which is a measure of calcium carbonate saturation had no correlation with the growth of diatoms in the present study.

	Mandakkahalli	Kukkraha
Species of Diatom	June 2007-	June 199
	May 2008	May 200
Cocooneis placentula lineata	17000	100080
Cymbella cymbliformis	8820	NIL
Cymbe!!asimul ata	6720	NIL
Cymbella aspera	NIL	4620
Cymbella turgidula	NIL	420
Cyclotella striata	NIL	6300
Cyclotella catenata	5460	NIL
Eunotia monodon	7140	NIL
Gyrosigma granula	6300	6720
Gyrosigma elongatum	NIL	7980
Gyrosigma accuminaturn	NIL	4200
Gomphonema tenelum	7560	29610
Gomphonema sumatrense	4200	5460
Gomphonema gracile	8720	NIL
Gomphonema subapicatum	NIL	5040
Navicula rhomboids	18460	13070
Navicula shpaerophora	13020	18640
Nitzschia palea	4620	13640
Pinnularia gibba	7980	2100
Pinnularia simplex	5040	NIL
Stauroneis phoenicentron	8720	5140
Stauroneis angulare	6360	NIL
Synedra ulna	20260	32340
Synedra acus	NIL	16380
Rhopalodia gibba	NIL	7160
Total organisms per year in two lakes	157060	157780

Members represent Organisms/L (org/L)

Conclusion:

Through all these observations, it can be concluded that many physico-chemical parameters are necessary for existence of diatoms. pH, calcium and oxidizable organic matters coupled with low concentration of nitrite and dissolved oxygen and high concentration of nitrate and phosphate favour the growth of diatoms.

Acknowledgment:

Authors are thankful to Prof. Hosmani, Prof. Belagali and Dr. Vivekanandhan for their guidance to research work and also UGC for financial assitance.

Authors' affiliations

NAGARATHANAMMA, Department of Botany, Government Women's College, MANDYA (KARNATAKA) INDIA

AKHEEL SYED AHMED, Department of Studies in Chemistry, University of Mysore, Manasa Gangothri, MYSORE (KARNATAKA) INDIA

References

APHA, AWWA, WPCF. (1995). Standard methods for Examination of water and waste water. 19th ed APHA, INC Washington, DC.

Fritsch, F.E. (1995). The structure and reproduciion of the aigae. The synidies of Cambridge University Press, Esten Road, London, N.W.

Hosmani, S.P. (1975). Limnological studies in ponds and lakes of Dharwad. Ph.D., Thesis, Karnataka University, Dharwad.

Hosmani, S.P. and Bharathi, S.G. (1982). Use of algae in classifying water bodies. Phycos, **21**: 48-51.

Munawar, M. (1970). Limonological studies on fresh water pond of Hyderabad India. *The Biotope, Hydrobiologia*, **35**:127-162. **Naganandini** and Hosmani, S.P. (1998). Ecology of certain inland waters of Mysore district, Biological indices of pollution. *J. Env. & Poll.*, **5**(4):260-272.

Parvateesam, N. and Mishra, Maneesh (1993). Algae of Pushkar Lake including pollution indicating forms. *Phycos.*, **32** (1&2): 27-39.

Philipose, M.T. (1960). Fresh water phytoplankton of in land fisheries, Proc. Sym. Algology, ICAR, New Delhi. pp. 272-291.

Rajendra Nair, M.S. (1999). Sesonal variations of phytoplankton in relation to physico-chemical factors in a village pond at Imalia (Vidisha). *Indian J. Ecotoxicol. Environ. Monit.*, **9** (3): 177-182.

Singh, V.P. (1960). Phytoplankton ecology of the inland waters of Uttar Pradesh. Proc.Sym.AlgoI.ICAR, New Delhi. pp. 243-271.

Tripathy, A.K. and Pandey, S.N. (1990). *Water pollution*. Ashis Publishing House. pp 1-336.

Trivedy and Goel, P.K (1986). Chemical and biological methods for water pollution studies Environmental Publication, Karad. pp. 94-96.

Zafar, A.R. (1964). On the ecalogy of algae in certain fish pond of Hyderabad, India. *Hydrobiologia*, **24**(4): 556-566

