Pharmacognostical, phytochemical and pharmacological studies in *Rauvolfia tetraphylla* L.

T. THINAKARAN, A. RAJENDRAN AND V. SIVAKUMARI

Asian Journal of Environmental Science (June to November, 2009) Vol. 4 No. 1 : 81-85

In the present study leaves of Rauvolfia tetraphylla L. were collected and analysed for the

pharmacognostical, phytomicrographs, phytochemical and antimicrobial properties. Analytical values of

leaves like total ash, water soluble ash, acid insoluble ash, sulphated ash and fluorescent analysis of the

plant showed colour characteristics in both visible and ultra violet light. Cold extracts of the plants

samples showed the presence of compounds for carbohydrates, alkaloids, tannins and phenols and

flavonoids and absence of fixed oil and saponins. The extract exhibited positive antimicrobial activity

against bacteria (E. coli and Klebsiella pneumoniae) and fungi (Aspergillus flavus and Fusarium indicus).

See end of the article for authors' affiliations

SUMMARY

Correspondence to : V. SIVAKUMARI Department of Environmental and Herbal Sciences, Tamil Nadu University, THANJAVUR (T.N.) INDIA

> The main source of drugs for Indian system L of medicine, majority of the Indian population depends on phytomedicine for their primary health care in this modern scientific world. In Indian flora, Rauvolfia tetraphylla L. (Family: Apocynaceae) is a small branched woody shrub cultivated in garden. Ethanobotanically, the extract of this herb mixed with castor oil is applied to skin diseases (Chaudhuri, 1965; Kannabiran and Krishnamoorthy, 1972; Ahmed, 1994). This plant is mainly used in major diseases, antihypertensive, sedative, antihelmentic (against worms), intestinal disorder, diarrhea and dysentery.

MATERIALS AND METHODS

The aerial parts of *Rauvolfia tetraphylla* L. were collected from Thiruvarur. Collected specimens were carefully examined and identified with the help of regional floras (Kirithkar and Basu, 1980). Specimens were further confirmed with reference to herbarium sheet available in the Botanical Survey of India, Suthern Circle, Coimbatore.

Pharmacognostical, phytomicrographs (Esau, 1964), powder preparation (Hardorne, 1973), total ash, water – soluble ash, acid – insoluble ash and sulphated ash (Anonymous, 1996; Kokate, 1994), powder analysis (Kokoshi *et al.*, 1985; Chase and Pratt, 1949; Key, 1938; Johansen, 1940), Phytochemical – alkaloids, carbohydrates, tannins and phenols, flavonoides, gum and mucilage, fixed oils and fats, saponins and phytosterol (Kokate, 1994), total terpenoid (Ferguson, 1956), total alkaloids (Ferguson, 1956) were estimated.

Total alkaloids (TA), total terpenoides (TT), total glycoside (TG), alcohol, water and 50% alcohol extracts of the powdered drugs of all four samples were carried out. The chromatograms were observed under UV and visible light. The Rf value of the band can be obtained by using the following formula.

Distance traveled by substance (cm) Rf =

Distance traveled the mobile phase (cm)

The aqueous extract was examined in GC-MS. The antimicrobial activity was carried out by the method of Bauer *et al.* (1996).

RESULTS AND DISCUSSION

Quantitative microscopical analysis of *R.* tetraphylla was carried out as stomatal index, stomatal frequency, vein-islet number, vein termination and palisade radia measured (Table 1). Analytical values of *R. tetraphylla* like total ash, water soluble ash, acid-insoluble ash, sulphated ash solubility in alcohol, water and extractive values of water. Analytical values of leaves as water soluble extractive ash are higher (18.98 %) to total ash (16.45%) and sulphated ash was higher (16.99%) compared to acid insoluble ash (1.40%). Solubility percentage of leaves parts of *R. tetraphylla* in water is higher (16.81%). When compared,

tetraphylla L., TLC profile, Fluorescent behaviour, Biological compounds, Thytocomponents

Accepted : May, 2009

Table 1 : Quantitative microscopic values of R. tetraphylla L.					
Parameters	R. tetraphylla L.				
Stomatal index upper surface	33.6-39.8-40				
Lower surface	40-42-45				
Stomatal frequency upper surface	34.8 - 39.7 - 41.6				
Lower surface	42.3 - 45.8 - 48.8				
Vein-islet number	20.7 - 23.8 - 25				
Vein termination number	22.6 - 30.2 - 34.3				
Palisade ratio	12.7 - 15.3 - 18.4				

100% alcohol (2.90%) and 50% alcohol (9.08%) were present (Table 2).

Fluorescent analysis of *R. tetraphylla* leaves powders in different chemical reagents showed no major distinguishing feature. The powders showed colour characteristics in both visible light and UV light except in

Table 2 : Analytical values of leaves parts of R. tetraphylla L.				
Sr. No.	Parameters	Value (%)		
1.	Water soluble extractive ash	18.98%		
2.	Total ash	16.45%		
3.	Sulphate ash	16.99%		
4.	Acid insoluble	1.40%		
5.	Solubility in alcohol			
	100% alcohol	2.90%		
	50% alcohol	9.08%		
	water	16.81%		

 (HNO_3) , nitric acid and ferric chloride (Table 3). The extractive value was obtained in water 44.90%, alcohol (25.67%) and other solvents extractive values ranging between 7.44 % to 11.60% (Table 4).

Cold extracts of the plant showed the presence of carbohydrate, alkaloids, tannins and phenols, saponins, flavonoids and absence of fixed oil and gum and mucilages phytosteral (Table 5) and successive extract of leaves

Table 3	Table 3 : Fluorescent behaviour of dried leaves powder of R. tetraphylla L.						
Sr. No.	Treatment with chemicals	UV light	Visible light				
1.	$P+H_2SO_4\\$	Dark green	Dark green				
2.	$P + HNO_3$	Yellowish green	Red				
3.	P + HCl	Yellowish green	Yellowish green				
4.	$P + NH_4OH$	Yellowish green	Yellowish green				
5.	P + acetic acid	Yellowish green	Dark green				
6.	P + Iodine	Yellowish green	Yellowish green				
7.	$P + FeCl_3$	Yellowish green	Reddish green				
8.	P + Picric acid	Yellowish green	Yellowish green				
9.	P + NaOH	Yellowish green	Yellowish green				

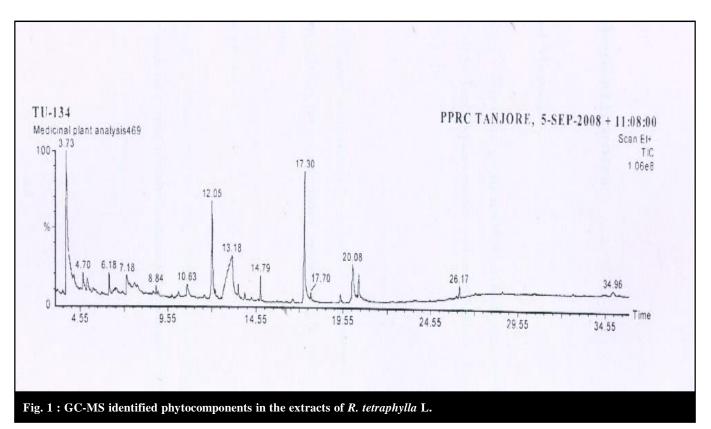
[Asian J. Environ. Sci., Vol. 4 (1) (June to Dec., 2009)]

Table 4 : Successive extraction				
Sr. No.	Solvents	Amount (%)		
1.	Pet ether	4.74%		
2.	Benzene	11.60%		
3.	Chloroform	7.44%		
4.	Alcohol	25.67%		
5.	Water	44.90%		

parts are given in Table 6. Quantitative estimation of the alcoholic (100%) extract of leaves parts of plant sample are shown in Table 7. The powder sample shared the total alkaloids content 0.06%, alkaloids fraction was yellowish in colour and had semisolid to oily in consistency. Total terpenoids content of the alcoholic extracts showed -392%, terpenoids was dark green and semisolid.

TLC was run for separation of various compounds in five different solvent extracts of *R. tetraphylla* using BAW, Ferosal, TBA, 60% alcohol and water. Mobile phases, RF values of alcohol, 50% alcohol and water extract of samples are presented in Table 8. The plant water extract was analysed in GC-MS for different components (Table 9 and Fig. 1).

Pharmacological results were obtained in the experiments were subjected to student't' test for their statistical significance (Table 10). The aqueous extract of *R. tetraphylla* leaf produced significant positive ionotropic effects, unaffected by propranalol, B- blocking drug, more affected by nifedipine, the Ca²⁺ channal


Compound tested	Reagent used	50% alcohol	100% alcohol	H ₂ O extract
Carbohydrates	Fehling's	+	++	+++
	Molish's	+	++	+++
Alkaloids	Dragendraff's	+	+	++
	Wagner's	+	+	++
	Hager's	+	+	++
	Mayer's	+	+	++
Tannins and	10% Lead	-	-	+
phenols	acetate			
Flavonoides	NaOH + HCl	+	+	+
Gum and	Alcoholic	+	-	+
mucilage	precipitation			
Fixed oil and	Spot test	-	-	-
fats				
Saponins	Foam test	-	-	+
Phytosterol	LB test	-	-	-

(+++) = Rich amount, (++) = Moderate amount, (+) = Minimum, (-) = absent

Table 6 : Qualitative phytochemical succeeive extracts of leaves of R. tetraphylla L.							
Compound tested	Reagent used	Pet ethe	Benz	Chloro	Alcoh	Water	
Carbohydrates	Fehling's	-	-	-	+	++	
	Molish's	-	-	-	+	++	
	Dragendraff's	+	-	+	-	-	
Alkaloids	Wagner's	-	+	+	-	+	
	Hager's	-	-	+	-	-	
	Mayer's	+	+	+	-	++	
Tannins and phenols	10% Lead acetate	-	-	-	+	+	
Flavonoides	NaOH + HCl	-	-	+	+	++	
Gum and mucilage	Alcoholic precipitation	-	-	-	-	++	
Fixed oil and fats	Spot test	-	-	-	-	-	
Saponins	Foam test	-	-	-	-	-	
Phytosterol	LB test	+	+	+	-	-	

(+++) = Rich amount, (++) = Moderate amount, (+) = Minimum, (-) = absent.

Table 7 : Quantitative estimation of biological compounds in alcoholic extract of R. tetraphylla L.				Table 8 : TLC Extract	. ^			aphylla L. se (Rf value	
Sr. No.	Compound	Colour and physical nature	Quantity (%)	LAttact	BAW	Ferosal	TBA	<u>60%</u>	-) H ₂ O
1.	Total alkaloids	Yellowish-semisolid	0.06%					NaOH	-
		to oily		50% alcohol	0.72	0.92	0.84	0.82	0.74
2.	Total	Dark green colour	-392%	100% alcohol	0.79	0.94	0.83	0.81	0.70
	terpenoids	semisolid		H ₂ O	0.40	1.08	0.74	0.96	0.83

[Asian J. Environ. Sci., Vol. 4 (1) (June to Dec., 2009)]

Table 9 :	Table 9 : Phytocomponents identified in the extract of the plant samples								
Sr. No.	RT	Name of the compound	Molecular formula	Molecular weight	Peak area %				
1.	3.73	2-Furancarboxaldehyde 5- methyl-	$C_6H_6O_2$	110	27.09				
2.	4.70	3-Hydroxy-piperidine-1- Carboxylic acid, benzyl ester	$C_{13}H_{17}NO_3$	235	1.63				
3.	4.93	2,5-Dimethyl-4-hydroxy-3(2H)- Furanone	$C_6H_8O_3$	128	1.81				
4.	6.18	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6- methyl-	$C_6H_8O_4$	144	1.85				
5.	7.18	Benzofuran, 2,3-dihydro-	$C_8H8_6O_4$	120	2.75				
6.	7.63	1-Deoxy-d-mannitol	$C_6H_{14}O_5$	166	2.99				
7.	8.84	Hexahydroindole	$C_8H_{13}N$	123	0.66				
8.	9.75	D-Galactose, 6-deoxy-	$C_6H_{12}O_5$	164	0.24				
9.	10.14	Carbonic acid, dithio-, O-ethyl S-(2-phenoxyethyl) ester	$C_{11}H_4O_2S_2$	242	0.68				
10.	10.63	1,6-AnhydroD-glucopyranose (levoglucosan)	$C_6H_{10}O_5$	162	2.47				
11.	12.05	Spiro [1,3-dioxolane-2,2'-[6,7] diazabicyclo[3.2.2]non-6-ene]	$C_9H_{14}N_2O_2$	182	9.45				
12.	13.18	3-O-Methyl-d-glucose	$C_7H_{14}O_6$	194	20.71				
13.	14.79	2,3-Bis (methylally) pyrrolidine	$C_{12}H_{21}N$	179	1.67				
14.	16.68	Cyclopentaneundecanoic acid, methyl ester	$C1_7H_{32}O_2$	268	0.54				
15.	17.30	n-Hexadecanoic acid	$C_{16}H_{32}O_2$	256	15.13				
16.	17.70	Decanoic acid, ethyl ester	$C_{12}H_{24}O_2$	200	1.40				
17.	19.40	1,3-propanediol, 2-dodecyl	$C_{15}H_{32}O_2$	244	0.92				
18.	20.08	Oleic Acid	$C_{18}H_{34}O_2$	282	5.24				
19.	20.43	9,9-Dimethoxybicyclo [31]nona- 2,4-dione	$C_{11}H_{16}O_4$	212	1.99				
20.	26.17	Phthalic acid, dodecyl 2- methoxyethyl ester	$C_{23}H_{36}O_5$	392	0.78				

Table 10 : Effects RT leaf extract on frog heart in situ preparation (*=P < 0.05; **=P < 0.01; ***=P < 0.001)

Extract / Drug	Frog	Ringer	Frog –	Ringer ±	Frog –	Ringer ±	Frog -	-Ringer ±	
			Prop	ranolol	Nifedipine		Atropine		Remarks
			(10 µ	gm/ml)	(10 µ	gm/ml)	(10 μ	ıgm/ml)	
	HR%	FC%	HR%	FC%	HR%	FC%	HR%	FC%	
DX-Digoxin	$80.16 \pm$	$303.9 \pm$	-	-	$62.63 \pm$	$229.96 \pm$	-	-	Cardiotonic
(10 µgm/ml)	2.25***	9.27***			10.38***	10.76***			activity
ADR-	$160.1 \pm$	$268.90 \pm$	$112.33 \pm$	$225.88 \pm$	-	-	-	-	-adrenergic
Adrenaline	5.915***	5.26***	3.18***	4.63***					activity
(10 µgm/ml)									
TQ-total	$93.84 \pm$	$164.0 \pm$	$94.38 \pm$	$174.39 \pm$	$48.78 \pm$	1484.48 \pm	$95.44 \pm$	$175.48 \pm$	Cardiotonic
aqueous extract	1.54***	5.27***	3.10 ^{N S}	6.65 ^{N S}	1. 49***	5.24***	2.25 ^{NS}	7.68 ^{N S}	like activity
(1mg/ml)									

N.S. = Not significant

blocker, while slightly less negative chronotropic effects unaffected by atropine, thus, suggesting the cardiotonic activity similar to cardiac glycosides. The extract has blood pressure lowering effect and acts as cardiotonic effect.

The antimicrobial activity of aqueous extract of leaf *R. tetraphylla* was tested against some human pathogenic

bacteria (E. coli, Serratia marcescens, Staphylococcus aureus, S. epidermitis and Klebsiella pneumoniae) and fungi (Aspergillus flavus, A. niger, A. fumigatus, Candida albicans and Fusarium indicus). The extract exhibited positive antimicrobial activity against E. coli and Klebsiella pneumoniae in bacteria and Aspergillus

Table 11: Antibacterial activity of R. tetraphylla L.						
Sr. No.	Bacterial spp.	Mean zone of inhibition (mm				
		5 mg	10 mg	20 mg		
1.	Escherichia coli	07	10	13		
2.	Serratia marcescens	-	-	-		
3.	Staphylococcus aureus	-	-	-		
4.	Staphylococcus	-	-	-		
	epidermitis					
5.	Klebsiella pneumoniae	06	10	15		

Table 12 : Antieungal activity of R. tetraphylla L.						
Sr. No.	Fungal spp.	Mean zone of inhibition (mm)				
		5 mg 10 mg		20 mg		
1.	Aspergillus flaus	11	14	17		
2.	Aspergillus niger	-	-	-		
3.	Aspergillus	-	-	-		
	fumigatus					
4.	Candida albicans	-	-	-		
5.	Fusarium indicus	07	08	11		

flavus and *Fusarium indicus* in fungi for 5-20 mg/ml and others had not inhibitory effect (Table 11 and 12).

Ash values and solubility values of *R. tetraphylla* in the present study are like those observed for the same species (Arokia doss, 2008). In *R. tetraphylla* TLC method has been described for the detection of various compounds. The method employed can be used for standardization of the drug (Thank and Radhika, 1997). similarly, GC-MS analysis of aqueous extract of *R. tetraphylla* was qualitatively and quantitatively analysed (Culea *et al.*, 2003).

Authors' affiliations

T. THINAKARAN AND A. RAJENDRAN, Department of Environmental and Herbal Sciences, Tamil Nadu University, THANJAVUR (T.N.) INDIA

References

Ahmed, J. (1994). Pharmacogonostical and ethano botanical studies on the stem bark of *Jatropha curens L*. and its comparison with *J. gossypritolia* on the basis of phloem fibre distribution in the bark of both species. Inf. Cong. Curr. Prog. Med. Aromat. Pl. Res. Calcutta, p. 57.

Anonymous (1996). *Pharmacopoeia of India*, Ministry of Health, Govt. of India publication. New Delhi.

Arokia doss, A. (2008). Differentiation between dedifferentiation and re-differentiation of roots in *Rauvolfia* leaf callus. *Hamdardmed.*, **37**(4): 60-62. **Bauer, A.W.,** Kirby, W.M.M., Truck, H. and Shreeies, J.C. (1996). Antibiotic susceptibility testing by standardized single disc method. *Am. J. Clin. Pathol.*, **45**: 493-496.

Chase, R. and Pratt, V. (1949). Physiochemical and pharmacological investigations of *Phyllanthus niruri*. *J. Physol. Res.*, **20**(1): 133-135.

Chaudhuri, R.H.N. (1965). Pharmacognostic studies on the stem bark of *Calophyllum inophyllum* L. *Bull. Bot. Sur. India*, **19**: 54-56.

Culea A., Ghosh, A.K. and Dos, P.C. (2003). Alkaloids from *Rauvolfia canescens. Pharmaceut. Biolo.*, **39**(3): 239-240.

Esau, N. (1964). Vesicular arbuscular mycorrhizal selection for increasing the growth of *Rauvolfia tetraphylla*. J. Med. Arom. *Plant. Sci.*, **24**(3): 695-697.

Ferguson, R. V. (1956). Indole alkaloids from *Rauvolfia sellowii*. *Phytochem.*, **41**(3): 969-973.

Hardorne, V. (1973). Effect of plant growth regulators on seed germination of *Rauvolfia serpentina*. International Conference on modern trends in plant science with special reference to the role of biodiversity in conservation, Amaravati, Maharashtra. p. 72.

Johansen, M. (1940). Micro propagation studies of some medicinal plants of Western Ghats. International Conference. Current progress in medicinal & aromatic plant research, Calcutta, India. p. 146.

Kannabiran, B. and Krishnamoorthy, K.H. (1972). Pharmacognostic study of *Anisomeles malabarica* L. J. Res. *Indian Med.*, **7**(4): 43-49.

Key, L. (1938). Indole alkaloids from *Rauvolfia bahiensis* (Apocynaceae). *Phytochem.*, **60** (30): 315-320.

Kirithkar, K.R. and Basu, B.D. (1980). *Indian medicinal plants*. Bishen Singh Mabendra Pal Singh, Dehradun, India. Vol. (1-4).412-418.

Kokate, C.K. (1994). *Practical Pharmacognosy*, Vallabh Prakshan, New Delhi.

Kokoshi, I.A., Lyubarets, O.F., Endress, S., Gleba, Y.Y. and Stockight, J. (1985). Alkaloids isolated from somatic hybrid cell culture of the species combination *Rauvolfia Serpentina*. *Phytochem.*, **5**(4): 303-307.

Thank, T.E. and Radhika, J.J. (1997). Antimicrobial activity, toxicity and the isolation of a bioactive compound from plants used to treat sexually transmitted diseases. *J. Ethanopharm.*, **96**(3): 515-519.

[Asian J. Environ. Sci., Vol. 4 (1) (June to Dec., 2009)]