Impact of distillery spentwash irrigation on the growth of leafy vegetables in untreated and treated soil

H.C. BASAVARAJU¹, C.S. CHIDANKUMAR² AND S. CHANDRAJU*

Department of Studies in Sugar Technology, Sir M.V.P.G. Centre, University of Mysore, Tubinakere, MANDYA (KARNATAKA) INDIA

ABSTRACT

A field experiment was conducted to study the impact of distillery spentwash on the growth of different leafy vegetables. The distillery spentwash *i.e.*, primary treated distillery spentwash (PTSW) and 33% distillery spentwash were analyzed for their physical and chemical parameters. Experimental soils plot 1(untreated soil) and plot 2 (treated soil) were tested for their physico-chemical parameters. The leafy vegetable seeds (Namadaries and Mahyco) were sowed in the prepared land dimension of 3' x 4' blocks in both plots. Seeds were irrigated with raw water and 33% spentwash. The nature of the growth of plants were studied and compared. Application of 33% spentwash shows the efficient growth of plants in plot 2 compared to plot 1.

Key words : Leafy vegetables, Experimental soil, 33% distillery spentwash, Growth rate, Potential growth, Treated, Untreated.

INTRODUCTION

Molasses (one of the important byproducts of sugar industry) is the chief raw material for the production of alcohol in distilleries. They produce about 40 billion liters of wastewater known as raw spentwash, which is characterized by high biological oxygen demand (BOD: 5000-8000mg/l) and chemical oxygen demand (COD: 25000-30000mg/l) (Joshi *et al.*, 1994).

Generally spentwash is discharged into open land or near by water bodies results number of environmental hazards including threat to plant and animal lives. The raw spentwash is highly acidic and containing easily oxidisable organic matter (Patil et al., 1987). Spentwash contains highest content of nitrogen and plant nutrients (Ramadurai and Gearard, 1994). By adopting biomethenation plant in distilleries, reduces the oxygen demand of raw spentwash, this is called primary treated spentwash and is rich in nitrogen (N), potassium (K), and phosphorous (P) and decrease in calcium (Ca), magnesium (Mg), sodium (Na), chloride (Cl⁻), and sulphate (SO $_{4}^{2-}$) (Mohamed Haron and Subash Chandra Bose, 2004). Also it contains easily biodegradable organic matter and its application to soil has been reported to be beneficial to increase the yield of sugar cane (Zalawadia et al., 1997), rice (Deverajan and Oblisami, 1995), wheat (Pathak et al., 1998), quality of groundnut (Amar B Singh et al., 2003) and physiological response of soyabean (Ramana et al., 2000). Diluted spentwash increases the growth of shoot length, leaf number per plant, leaf area and chlorophyll content of peas (Rani and Vastava, 1990). The spentwash consists excess of various forms of cations and anions, which are harmful to plant growth. The concentration of these constituents should be reduced to beneficial level by diluting the spentwash, which can be used as a substitute for chemical fertilizer (Sahai et al., 1983). The spentwash could be used as a complement to mineral fertilizer to sugarcane (Chares, 1985) and thus valued as a fertilizer when applied to soil through irrigation water (Samuel, 1986). Higher percentage of spentwash irrigation causes decrease in seed germination, seedling growth and chlorophyll content in sunflowers (Helianthus annuus) and the spentwash could be safely used for irrigation purpose at lower concentration (Rajendran, 1990 and Ramana et al., 2001) without adversely affecting soil fertility and crop productivity (Raverkar et al., 2000, Kuntal et al., 2004 and Kaushik et al., 2005). Twelve pre sowing irrigations with the diluted spentwash had no adverse effect on the germination of maize but improved the growth and yield (Singh and Raj Bahadue, 1998). The diluted spentwash irrigation improved the physical and chemical properties of the soil and further increased soil microflora (Deverajan et al., 1994, Kuntal et al., 2004 and Kaushik et al., 2005). Application of diluted spentwash increased the uptake of Zinc (Zn), Copper (Cu), Iron (Fe) and Manganese (Mn) in maize and wheat, the highest total uptake of these were found at lower dilution than at higher dilution levels (Pujar, 1995). The diluted spentwash increase the uptake of nutrients, height, growth and yield of leafy vegetables (Chandraju and Basavaraju, 2007, Basavaraju and Chandraju, 2008, and Chandraju et al.,

* Author for correspondence. ¹Department of Chemistry, J.V.I.T. Bidadi, RAMANAGAR, (KARNATAKA) INDIA ²Department of Chemistry, Bharathi College, Bharthi Nagar, MANDYA (KARNATAKA) INDIA 2008), nutrients of pulses (Chandraju *et al.*, 2008), condiments and root vegetables (Chandraju *et al.*, 2008), top vegetables (Basavaraju and Chandraju, 2008), cabbage and mint (Chandraju *et al.*, 2008). In our previous investigations we noticed that 50% distillery spentwash irrigation was not favorable for the germination of seeds and growth of leafy vegetables. Therefore, the present investigation was carried out to investigate the impact of 33% spentwash on the growth and yield of different kinds of leafy vegetables in untreated and treated soils.

MATERIALS AND METHODS

Physico-chemical parameters and amount of nitrogen (N), potassium (K), phosphorous (P) and sulphur (S) present in the primary treated distillery spentwash (PTSW) and 33% spentwash were analyzed by standard methods (Table 1). The primary treated spentwash was used for irrigation with a dilution of 33% in the plot 1(untreated soil) and plot 2 (treated soil). The experiments were conducted at the field of Chamundi Distilleries Pvt.

Table 1: Chemical Compo	osition of d	istillery spe	ntwash
Chemical parameters	Units	PTSW	33% DSW
pН		7.36	7.24
Electrical conductivity	μS	28800	10020
Total solids	mg/l	46140	20870
Total dissolved solids	mg/l	35160	10140
Total suspended solids	mg/l	10540	4380
Settleable solids	mg/l	10070	3010
COD	mg/l	40530	10228
BOD	mg/l	16200	4800
Carbonate	mg/l	Nil	Nil
Bicarbonate	mg/l	13100	4200
Total phosphorous	mg/l	30.26	6.79
Total potassium	mg/l	7200	2400
Calcium	mg/l	940	380.0
Magnesium	mg/l	1652.16	542.22
Sulphur	mg/l	74.8	22.6
Sodium	mg/l	480	240
Chlorides	mg/l	5964	3164
Iron	mg/l	9.2	5.20
Manganese	mg/l	1424	368
Zinc	mg/l	1.28	0.41
Copper	mg/l	0.276	0.074
Cadmium	mg/l	0.039	0.010
Lead	mg/l	0.16	0.06
Chromium	mg/l	0.066	0.014
Nickel	mg/l	0.165	0.040
Ammonical nitrogen	mg/l	743.68	276.64

PTSW – Primary treated distillery spentwash 33% SW – 33% distillery spentwash

Table 2: Characteristics of experimental soils									
Parameters	Units	Plot-1	Plot-2						
Coarse sand	%	9.72	10.94						
Fine sand	%	40.80	42.86						
Slit	%	25.28	26.32						
Clay	%	24.2	19.88						
PH (1:2 soln)	%	8.16	8.15						
Electrical conductivity	μS	526	451						
Organic carbon	%	0.61	0.93						
Available nitrogen	ppm	340	460						
Available phosphorous	ppm	130	180						
Available potassium	ppm	80	65						
Exchangeable calcium	ppm	140	150						
Exchangeable magnesium	ppm	220	190						
Exchangeable sodium	ppm	90	180						
Available sulphur	ppm	240	230						
DTPA Iron	ppm	200	240						
DTPA Manganese	ppm	220	260						
DTPA Copper	ppm	5	8						
DTPA Zinc	ppm	50	65						
Plot-1: Untreated soil	Plot-2: Treate	d soil							

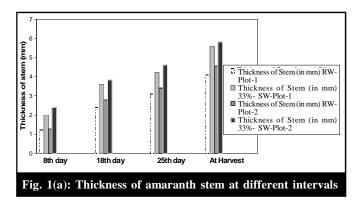
Ltd. Maliyur, Mysore District, Karnataka. Before initiation, plot 2 soil was treated with 33% spentwash for four times at an intervals of one week, each time land was ploughed and exposed to sunlight. A composite soil samples from both plots were collected from the experimental site at 25 cm depth, air-dried, powdered and analyzed for physico-chemical properties by standard methods (Table 2). The leafy vegetables selected were amaranth (Amaranthus gangeticus), Coriander leaves (Coriandum sativum), Fenugreek (Trigonella foenum graceum), Shepu (Peucedanum graveolens) and Spinach (Spinacia oleracea). The seeds were sowed in the prepared fields and irrigated with raw water and 33% spentwash at the dosage of twice a week and rest of the period with raw water. The natures of the growth of all plants were recorded at 8th, 18th, 25th days from plantation and also at the time of harvest.

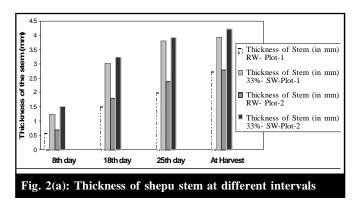
RESULTS AND DISCUSSION

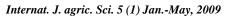
Irrigation was done as per the requirement with raw water and 33% spentwash for all varieties in different blocks. in previous investigations, it was found that germination of seeds and growth were not favorable with 50% spentwash irrigation and that could be due to higher concentration of spentwash. In the case of amaranth (*Amaranthus gangeticus*) and shepu (*Peucedanu graveolens*), noticed that seeds germination was unaffected in 33% spentwash and raw water irrigation

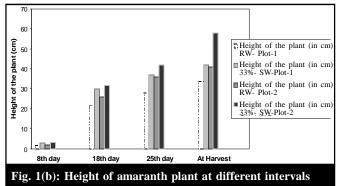
		Plo		Plot-2				
Observations	Thickness of stem (in mm)		Heigh	Height of the plant		Thickness of stem		nt of the plant
			(in cm)		(in mm)		(in cm)	
	RW	33% SW	RW	33% SW	RW	33% SW	RW	33% SW
8 th day from plantation	1.2	2.0	1.9	3.0	1.28	2.4	2.0	3.3
18 th day from plantation	2.4	3.62	22.0	30.0	2.8	3.84	26.0	32.0
25 th day from plantation	3.1	4.24	28.0	37.0	3.4	4.64	36.0	42.0
At the time of harvest	4.10	5.62	34.0	42.0	4.6	5.82	41.0	58.0
Weight of plants with root (bundle	145 g	260 ~			250 -	410 g		
of 50 nos.)		360 g			350 g			
Weight of edible portion of plants	75	190 ~			170 a	210		
(bundle of 50 nos.)	75 g	180 g			170 g	210 g		
RW– Raw water 33% S	W – 33% di	stillery spentw	vash	Plot-1-	Untreated soil	Plot-2 – Treated soil		

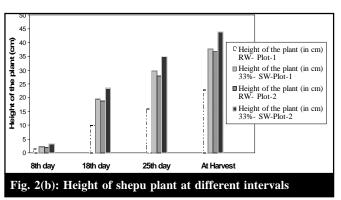
Table 4 : Thickness of stem, height and weight of shepu (Peucedanum graveolens)


		Plo	t-1		Plot-2				
Observations	Thickn	Thickness of stem		Height of the plant		Thickness of stem		nt of the plant	
Observations	(ir	(in mm)		(in cm)		(in mm)		(in cm)	
	RW	33% SW	RW	33% SW	RW	33% SW	RW	33% SW	
8 th day from plantation	0.6	1.24	1.5	2.2	0.7	1.52	2.15	3.4	
18 th day from plantation	1.5	3.02	10.0	19.5	1.8	3.24	19.0	23.5	
25 th day from plantation	2.0	3.82	16.0	30.0	2.4	3.92	28.0	35.0	
At the time of harvest	2.72	3.92	23.0	37.8	2.8	4.23	37.0	44.0	
Weight of plants with root (bundle	50 g	170 g			160 g	g 240 g			
of 50 nos.)	50 g				100 g				
Weight of edible portion of plants	35 g	35 g 140 g			130 g	210 g			
(bundle of 50 nos.)	55 g	140 g		-	150 g	210 g			


RW-Raw water


33% SW – 33% distillery spentwash

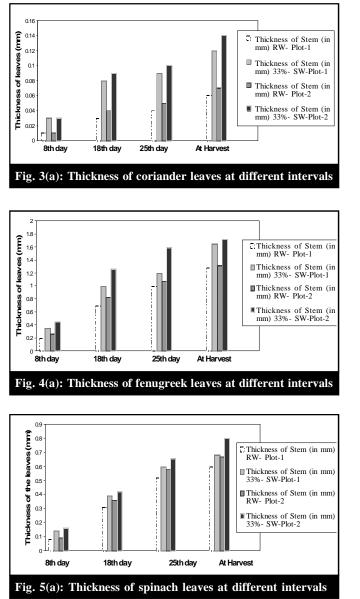

Plot-1- Untreated soil


Plot-2 - Treated soil

110

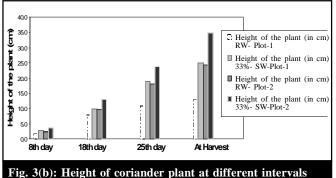
•HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE•

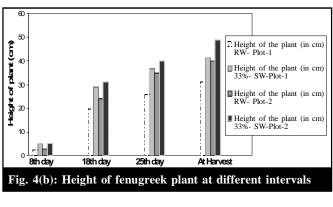
	ess of stem 1 mm)	0	t of the plant	Thickne	ss of stem	Heigh	t of the plant
· · · ·	ı mm)				bb of broth	Height of the plant	
RW		(in cm)		(in mm)		(in cm)	
11.11	33% SW	RW	33% SW	RW	33% SW	RW	33% SW
0.01	0.03	2.0	3.0	0.01	0.03	2.5	3.7
0.03	0.08	8.0	10.0	0.04	0.09	9.85	13.2
0.04	0.09	11.0	19.0	0.05	0.10	18.0	24.0
0.06	0.12	13.0	25.0	0.07	0.14	24.5	35.0
45 g	150 g			135 g	180 g		
40 g	110 g			100 g	140 g		
	0.03 0.04 0.06 45 g 40 g	0.03 0.08 0.04 0.09 0.06 0.12 45 g 150 g 40 g 110 g	0.03 0.08 8.0 0.04 0.09 11.0 0.06 0.12 13.0 45 g 150 g	0.03 0.08 8.0 10.0 0.04 0.09 11.0 19.0 0.06 0.12 13.0 25.0 45 g 150 g 40 g 110 g	0.03 0.08 8.0 10.0 0.04 0.04 0.09 11.0 19.0 0.05 0.06 0.12 13.0 25.0 0.07 45 g 150 g 135 g 40 g 110 g 100 g	0.03 0.08 8.0 10.0 0.04 0.09 0.04 0.09 11.0 19.0 0.05 0.10 0.06 0.12 13.0 25.0 0.07 0.14 45 g 150 g 135 g 180 g 40 g 110 g 100 g 140 g	0.03 0.08 8.0 10.0 0.04 0.09 9.85 0.04 0.09 11.0 19.0 0.05 0.10 18.0 0.06 0.12 13.0 25.0 0.07 0.14 24.5 45 g 150 g 135 g 180 g 40 g 110 g 100 g 140 g

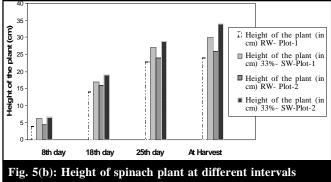

Table 6 : Thickness of stem, height and weight of fenugreek (Trigonella foenum graceum)

		Plot-1				Plot-2				
Observations	Thickne	Thickness of stem (in mm)		nt of the plant	Thickness of stem		Height of the plant			
	(in			(in cm)		(in mm)		(in cm)		
	RW	33% SW	RW	33% SW	RW	33% SW	RW	33% SW		
8 th day from plantation	0.2	0.35	2.5	5.0	0.26	0.45	3.0	5.4		
18 th day from plantation	0.7	1.0	20.0	29.0	0.82	1.26	24.0	31.0		
25 th day from plantation	1.0	1.2	26.0	37.0	1.08	1.59	35.0	40.0		
At the time of harvest	1.28	1.65	31.0	41.5	1.32	1.72	40.0	49.0		
Weight of plants with root (bundle	80 g	125 g			110 g	240 g				
of 50 nos.)	00 g	125 g			110 g	240 g				
Weight of edible portion of plants	45 g	85 g			70 g	120 g				
(bundle of 50 nos.)	.5 5	0.5 5			, • 5	120 5				
RW– Raw water 33%	SW – 33% dis	stillery spentw	vash	Plot-1-	l Plo	Plot-2 – Treated soil				

Table 7 : Thickness of stem, height and weight of spinach (Spinacia oleracea) Plot-2 Plot-1 Thickness of stem Height of the plant Thickness of stem Height of the plant Observations (in mm) (in cm) (in mm) (in cm) 33% SW RW 33% SW 33% SW RW RW RW 33% SW 0.08 0.14 4.0 6.3 0.09 0.16 4.6 6.6 8th day from plantation 18th day from plantation 0.31 0.39 14.0 17.0 0.36 0.42 16.0 19.0 0.52 23.0 27.0 0.66 24.0 29.0 25th day from plantation 0.60 0.58 0.60 30.0 0.80 26.0 0.68 24.0 0.67 34.0 At the time of harvest Weight of plants with root (bundle 170 g 330 g 300 g 420 g ___ of 50 nos.) Weight of edible portion of plants 120 g 275 g 260 g 350 g (bundle of 50 nos.) RW-Raw water 33% SW - 33% distillery spentwash Plot-1- Untreated soil Plot-2 – Treated soil


(100% germination). But the growth was very good in 33% spentwash and poor in the case of raw water in both plots. However, the growth of plants was highly potential (dark greenish) in plot 2 as compared to plot 1 with raw water and 33% spentwash irrigation. This indicates that, the presence of nutrients (nitrogen, phosphorous and potassium) in 33% spentwash favoured the potential growth of plants. The growth rate *i.e.*,


thickness of the stem, height of the plants at 8^{th} , 18^{th} , 25^{th} days, at the time of harvest and yield were recorded (Table 3 and 4). The thickness of stem and height of the plants increased at different intervals of time in plot 2 as compared to plot 1 [Fig.1 (a), Fig.1 (b), Fig.2 (a) and Fig.2 (b)]. It was observed that the potential growth of plants (stem thickness, height and yield) are in the order, 33% spentwash (plot 2) > 33% spentwash (plot 1) > raw



water (plot 2) > raw water (plot 1).

It the case of Coriander leaves (*Coriandum* sativum), Fenugreek (*Trigonella foenum graceum*) and Spinach (*Spinacia oleracea*) germination of seeds were almost similar in raw water and 33% spentwash in both plots 1 and 2. The plants were highly potential (dark greenish) in 33% spentwash in plot 2 and plot 1 than raw water. However, the growth of all plants was highly potential (dark greenish) in plot 2 than plot 1 with raw water and 33 per cent spentwash irrigation. Rate of growth of thickness of the leaf, height of the plants at 8th, 18th, 25th days, at the time of harvest and yield were recorded (Table 5, 6 and 7). The thickness of the leaf and height of the plants increased at different intervals in plot 2 as compared to plot 1 [Fig.3 (a), Fig. 4(a), Fig. 5(a)]. It was observed that growth and yield are in the

order, 33% spentwash (plot 2) > 33% spentwash (plot 1) > raw water (plot 2) > raw water (plot 1).

Conclusion:

Among the irrigation with 33% spentwash and raw water in both untreated and treated soil, it concluded that, the growth of all leafy vegetable plants are highly potential and yield is more in the case of 33% spentwash as compared to raw water. Also in treated soil (plot 2) growth and yield are much more greater than the untreated soil (plot 1). This concludes that, the spentwash treated soil (plot 2) is enriched with the plant nutrients. It further concludes that, the subsequent use of spentwash for irrigation enriches the soil fertility and hence, the diluted distillery spentwash (33%) can be conveniently used for the cultivation of leafy vegetable.

Acknowledgment :

One of the authors H.C. Basavaraju is grateful to The Principal, The Director and The Management, Jnana Vikas Institute of Technology, Bidadi, Ramanagar Tq.and District. for permission to carry out research and The General Manager and staff of the Chamundi Distilleries Pvt. Ltd. Maliyur, T.Narasipura Tq. Mysore Dist. for providing all facilities to conduct the field work.

REFERENCES

Amar, B. Singh., Ashisk Biswas and Sivakoti Ramana (2003). Effect of distillery effluent on plant and soil enzymatic activities and groundnut quality. *J. Plant Nutri. Soil Sci.*, **166**: 345-347.

Basavaraju, H.C. and Chandraju, S. (2008). Impact of distillery spentwash on the nutrients of leaves vegetables: An investigation. *Asian J. Chem.*, **20** (7): 5301-5310.

Basavaraju, H.C. and Chandraju, S. (2008). An Investigation of Impact of distillery spentwash on the nutrients of top vegetables. *Internat. J. agri. Sci.*, **4** (2): 691-696.

Chandraju, S. and Basavaraju, H.C. (2007). Impact of distillery spentwash on seed germination and growth of leaves vegetables: An investigation. *Sugar J. (SISSTA)*, **38**: 20-50.

Chandraju, S., Basavaraju, H.C. and Chidankumar, C.S. (2008). Investigation of impact of irrigation of distillery spentwash on the nutrients of pulses. *Asian J. Chem.*, 20 (8): 6342-6348.

Chandraju, S., Basavaraju H.C. and Chidankumar, C.S. (2008). Investigation of impact of irrigation of distillery spentwash on the growth, yield and nutrients of leafy vegetable. *Chem. Environ. Res.*, 17: (1&2):

Chandraju, S., Basavaraju, H.C. and Chidankumar, C.S. (2008). Investigation of impact of irrigation of distillery spentwash on the nutrients of some condiments and root vegetables. *Chem. Environ. Res.*, **17**(1&2):

Chandraju, S., Basavaraju, H.C. and Chidankumar, C.S. (2008). Investigation of impact of irrigation of distillery spentwash on the nutrients of cabbage and mint leaf. *Indian Sugar*. April: 19-28.

Devarajan, L., Rajanan, G., Ramanathan, G. and Oblisami,G. (1994). Performance of field crops under distillery effluent irrigations. *Kisan world*, 21: 48-50.

Deverajan, L. and Oblisami, G. (1995). Effect of distillery effluent on soil fertility status, yield and quality of rice. *Madras Agri. J.*, **82** : 664-665.

Joshi, H.C., Kalra, N., Chaudhary, A. and Deb, D.L. (1994). Environmental issues related with distillery effluent utilization in agriculture in India. *Asia. Pac. J. Environ. Develop.*, **1**: 92-103. Kaushik, A., Nisha, R., Jagjeeta, K. and Kaushik, C.P. (Nov 2005). Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments. *Bioresource Technol.*, **96** (17): 1860-1866.

Kuntal, M. Hati, Ashis, K. Biswas., Kalikinkar Bandypadhyay., Arun, K. Misra. (2004). Effect of post-methanation effluent on soil physical properties under a soybean-wheat system in a vertisol. *J. Plant Nutri. Soil Sci.*, **167** (5): 584-590.

Pathak, H., Joshi, H. C., Chaudhary, A., Chaudhary, R., Kalra, N. and Dwivedi, M. K.(1998). Distillery effluent as soil amendment for wheat and rice. *J. Indian Soc.Soil Sci.*, 46: 155-157.

Patil, J. D., Arabatti, S. V. and Hapse, D. G. (1987). A review of some aspects of distillery spentwash (vinase) utilization in sugar cane. *Bartiya sugar*, May: 9-15.

Pujar, S.S. (1995). Effect of distillery effluent irrigation on growth, yield and quality of crops. M.Sc. (Ag.) Thesis. University of Agricultural Sciences, Dharwad.

Rajendran, K. (1990). Effect of distillery effluent on the seed germination, seedling growth, chlorophyll content and mitosis in Helianthus Annuus. *Indian Botanical Contactor*, **7**: 139-144.

Ramadurai, R. and Gearard, E.J. (1994). Distillery effluent and downstream products. SISSTA. *Sugar J.*, 20: 129-131.

Ramana, S., Biswas, A. K., Kundu, J. K., Saha. and Yadava, R. B. R. (2001). Effect of distillery effluent on seed germination in some vegetable crops. *Bioresource Technol.*, **82** (3): 273-275.

Ramana, S., A. K., Biswas, Kundu, J. K., Saha. and Yadava, R.B.R. (2000). Physiological response of soyabean (*Glycine* max L.) to foliar application of distillery effluent. Ann. Plant Soil Res., 2 : 1-6.

Rani, R. and Sri Vastava, M.M. (1990). Ecophysiological response of Pisum sativum and Citrus maxima to distillery effluents. *Intl. J. Eco. Environ. Sci.*, 16-23.

Raverkar, K.P., Ramana, S., Singh, A.B., Biswas, A.K. and Kundu, S. (2000). Impact of post methanated spentwash (PMS) on the nursery raising, biological parameters of Glyricidia sepum and biological activity of soil. *Ann. Plant Res.*, 2 (2): 161-168.

Sahai, R., Jabeen, S. and Saxena, P.K. (1983). Effect of distillery waste on seed germination, seedling growth and pigment content of rice. *Indian J.Eco.*, **10**: 7-10.

Singh, Y. and Raj Bahadur (1998). Effect of application of distillery effluent on maize crop and soil properties. *Indian. J. Agri.Sci.*, **68** : 70-74.

Zalawadia, N.M., Ramana, S. and Patil, R.G. (1997). Influence of diluted spentwash of sugar industries application on yield and nutrient uptake by sugarcane and changes in soil properties. *J. Indian Soc. Soil. Sci.*, **45** : 767-769.

Received : August, 2008; Accepted : October, 2008