Constraints faced by the rice growers in adopting recommended summer rice cultivation practices in Raigad (M.S.)

R.G. TAMBAT AND S.S. SHINDEDESAI

S.P. College of Agriculture, Kharawate -Dahiwali, Chiplun, RATNAGIRI (M.S.) INDIA

ABSTRACT

The study was conducted in Karjat, Roha and Mangaon tahsils of Raigad district of Konkan region. The sample was constituted 150 rice growers drawn from 15 villages. The respondents were interviewed with the help of a specially designed schedule. The exploratory survey design was used for the present study. A major constraint faced by the respondents in adopting summer rice cultivation practices were 'lack of knowledge' was the major constraint as reported in 23 practices. The second major constraint was 'do not feel it necessary' observed in 12 practices. Another two important constraints were 'lack of time' and 'requires more labour' as found in 8 and 5 sub practices. The best varieties in order were GPU 28 and GPU 45 which registered the grain yield of 1753 kg ha⁻¹ and 1685 kg ha-1, respectively.

Key words: Constraints, Rice growers,

INTRODUCTION

Rice [Oryza sativa (L.)] commanded recognition as a supreme commodity to mankind, because rice is truly life, culture, a tradition and a means of livelihood to millions of people all over the world. It is the staple food of nearly half of the world population. It is not only a cereal crop, but also a way of life in Asian countries. It contributes about 40 to 70 per cent of the population's total calorie intake. Hence, sustained production and increased productivity of rice crop is critical for food and nutritional security in Asia.

Rice production in India in the year 2004-05 was 83.130 million tonnes, which is projected at a record 91.00 million tonnes in the year 2006-07. Summer rice was cultivated on an area of about 205 metric ha with total production of 490 metric tonnes in the year 2004-05 in Maharasthra. Konkan region accounts for summer rice area of about 154 metric ha with total production of 371 metric tonnes in the year 2004-05. (www.agri.mah.nic.in).

Among the four districts of Konkan region, Raigad is the major rice producing district which accounts for 55.19 per cent area and 57.41 per cent production of summer rice in Konkan region. According to 2004-05 estimates, in Raigad district, summer rice occupied about 85 metric ha area with the production of 213 metric tonnes. The data with respect to constraints faced by the summer rice growers are scanty. Hence, the study was undertaken to ascertain constraints perceived by the farmers in adopting recommended summer rice cultivation practices.

MATERIALS AND METHODS

The study was conducted in Raigad district of the Konkan region. Among the four districts of Konkan region, Raigad is the major summer rice producing district. Three Tehsils were selected based on the maximum area under summer rice cultivation. From each Tehsil, five villages were randomly selected. Thus, a total of 15 villages were selected. From each selected village list of summer rice growers was obtained from Agricultural Assistant of the selected villages. From the list ten summer rice growers were selected randomly, thus, making a sample of 150 rice growers. An interview schedule was prepared, so as to collect the information in line with the objectives of the study. Personal interview technique was used for data collection. Then the data collected were analyzed with suitable statistical

RESULTS AND DISCUSSION

Constraints faced by the rice growers in adopting recommended summer rice cultivation practices:

With the close observation of the above Table 1 it can be concluded that at overall level 'lack of knowledge' was the major constraint as reported in 23 practices. This constraint accounts about 47.33 per cent of them. The second major constraint was 'do not feel it necessary' observed in 12 practices accounting about 43.33 per cent. Another two important constraints were 'lack of time' and 'requires more labour' as found in 8 and 5 sub practices accounting 44.00 per cent and 46.67 per cent, respectively. The analysis indicated that the summer rice growers requires technical knowledge in important practices of summer rice like, 'seed treatment', 'use of weedicides', 'use of pest and disease resistant varieties', 'use of medicines against pests and diseases of rice'. Further, the summer rice growers do not feel the certain practices like, 'fungicidal seed treatment', 'destruction of eggs and

	ints faced by the rice growers		D 1	D
Sr. No. Practice		Constraints	Respondents	Percentage
l. Land prepara		T. 1. 6.1		
_	aghing after harvest of previous crop (n=2)	a. Lack of time	2	100.00
	and destruction of stubbles (n=94)	a. Lack of time	29	30.85
Applicati	ion of FYM@ 10 tons/ha (n=135)	a. Non availability of compost	56	41.48
2. Seed selection				
	nproved seeds (n=2)	a. Low yield of straw	2	100.00
Seed rate	e (n=47)	a. Impact of tradition	44	93.61
		b. No knowledge	28	59.57
		c. Do not feel it necessary	16	34.04
Seed trea	atment with 3% brine solution (n=122)	a. No knowledge	108	88.52
Seed Hea	initial with Eye erme serution (ii 122)	b. Lack of time	76	
		c. Do not feel it necessary	53	62.29
Annliaati	ion of 1% fungicide (n=142)	a. No knowledge	130	43.44
Applicau	ion of 1% fungicide (n=142)			91.54
		b. Lack of time	101	71.13
		c. Do not feel it necessary	131	92.25
3. Nursery mana				
•	on of raised beds (n=53)	a. No knowledge	37	69.81
Sowing of	of seed in line (n=53)	a. No knowledge	38	71.70
		b. Laborious work	29	54.72
Applicati	ion of 1kg urea/are, 15 days after sowing	a. No knowledge	33	56.89
(n=58)				
(n=139)	ion of insecticides for controlling stem borer	a. No knowledge	91	65.47
. Transplanting				
_	nting of 30 to 35 days old seedlings (126)	a. No knowledge	22	17.46
Line tran	splanting (n=103)	a. Simplicity of traditional practices	79	76.70
		b. Require more labours	102	99.03
		c. Complicated practice	91	88.35
Maintain	ing proper spacing (n=102)	a. Simplicity of traditional practices	38	37.25
		b. Require more labours	47	46.08
	nting 2-3 seedlings/hill and for hybrid 1 hill. (n=16)	a. Simplicity of traditional practices	16	100.00
5. Nutrient mana				
	dose 120kg N + 60kg P2O5 + 60kg K2O	a. No knowledge	41	41.41
(n=99)		b. High cost of fertilizers	81	81.82
Applicati	ion of 5 t/ha at the time of puddling $(n=147)$	a. No plantation of green manure crop	83	56.46
	ion of 'N' fertilizers in three split doses	a. No knowledge	16	
(n=137)	ion of 14 lettingers in three split doses	a. Ivo knowledge	10	11.68
6. Weed manage	ment			
	d free of weed (n=109)	a. Do not feel it necessary	66	60.55
-	eding after transplanting (n=117)	a. Do not feel it necessary	64	54.70
	eedicides, if necessary (n=145)	a. No knowledge	134	94.41
	,	b. Non availability of spraying appliances	126	86.89
. Water manage	pmont	or spraying appliances		00.07
	drainage and water supply (n=39)	a. No knowledge	20	51.20
•	ater level in field before and after panicle	a. No knowledge	13	51.28
initiation	*	a. No knowledge	10	72.22
		a. 1.0 Mio moago	10	32.26
B. Plant protection				
a. Stem I	borer val and destruction of stubbles (n=115)	a. Lack of time	54	44.04
1. Kelilov	var and destruction of studdles (II–113)			46.96
		b. Require more labours	46 55	40.00
2	27. 11	c. Do not feel it necessary	55	47.83
2. Use of	Vaibhav sickle for harvesting (n=15)	a. Do not feel it necessary	10	66.67

Contd. ...

70 1		1 /	~	. 1
Tal	210	, ,	On	tA

Table 1 Contd.			
3. Use of pest resistant varieties (n=146)	a. No knowledge	116	79.45
	b. Not suited to local paddy lands	93	63.70
4. Application of insecticides such as carbufuron,	a. No knowledge	128	88.28
phorate or quinolphos (n=145)	b. Non availability of spraying appliances	126	86.90
b. Army worm			
Collection and destruction of eggs and larvae	a. No knowledge	131	92.25
(n=142)	b. Lack of time	118	83.09
	c. Require more labours	116	81.69
	d. Do not feel it necessary	103	72.54
Spraying of methyl parathion powder @ 20 kg/ha (n=146)	a. No knowledge	134	91.78
	b. Lack of time	112	76.71
	c. Require more labours	116	79.45
	d. Do not feel it necessary	110	79.34
c. Bacterial leaf blight			
Removal and destruction of stubbles (n=116)	a. Lack of time	38	32.76
	b. Do not feel it necessary	66	56.90
Repairing of bunds and destruction of weeds on it (n=137)	a. Do not feel it necessary	91	66.42
Use of disease resistant varieties (n=26)	a. No knowledge	11	42.31
d. Blast of paddy			
Use of disease resistant varieties such as IET-8320,	a. No knowledge	139	92.67
4140, 4141 (n=150)	b. No taste	49	32.67
Spraying of 1% Edifenphos (Zosan) or 1gm	a. No knowledge	128	90.78
carbendazim per liter of water (n=141)	b. Non availability of spraying appliances	124	87.94
9. Harvesting and threshing			
Use of Vaibhav sickle for harvesting (n=10)	a. No knowledge	8	80.00
Drying the crop in the field for 2 days (n=22)	a. Do not feel it necessary	15	68.18
Use of power thresher for threshing (n=139)	a. Non availability of power threshers	115	82.73

larvae of army worm', 'spraying against army worm', 'repairing of bunds', 'destruction of stubbles' and 'weeding'. This may be due to none or less incidence of pest and diseases among their fields. Constraints like, 'lack of time and labour' were mostly observed in the practices like, 'removal of stubbles, collection of eggs and larvae of army worm and spraying'. The extension agency should made concerted efforts to remove such constraints to improve extent of adoption of rice cultivation technologies among the summer rice growers.

The findings of the present study are similar to those of the studies conducted by Shrivastwa *et al.* (1990), Dube *et al.* (1992) and Nirmala *et al.* (2002).

Implications:

The study has categorically pointed out that lack of knowledge about the recommended rice cultivation practices was the sever constraint experienced by the farmers in adoption of those practices. This has given birth to some misbeliefs and wrong notions amongst them. The foremost task, therefore, before the extension organizations will be to impart knowledge in respect of recommended summer rice cultivation technology to the farmers. A systematically planned practical oriented training programme for the farmers needs to be executed to redress this situation. CO 13 and Indaf 8 recorded significantly higher LAI tha.

REFERENCES

Shrivastawa, S.N. and Singh, R.K. (1990). 'Identification of constraints in paddy production under rainfed conditions'. *Indian J. Extn. Edu.*, **26**(3-4): 77-79.

Dube, S.K. and Sawarkar, V.K. (1992). Knowledge and adoption of rice production technology among small and marginal farmers. *Maharashtra J. Extn. Edu.*, **13**: 56-57.

Nirmala, L., Ranganathan, G. and Asoknan, M. (2002). Constraints of bio-fertilizer adoption. *Agri. Extn. Rev.*, **14**(6): 30-31.

Received: August, 2008; Accepted: December, 2008