Biodiversity of seed mycoflora on abnormal soybean variety of JS - 335 From Marathwada region of Maharashtra, India

UMESH T. KESARE AND ASHOK CHAVAN

Accepted : April, 2010

SUMMARY

Soybean (*Glycine max* L. Merril) has been recognized as a miracle crop, it contains about 44 % protein and 18 to 22 % oil. It is being used on large scale as a source of oil and protein. The oil is high in polyunsaturated fatty acids while the protein contains all essential amino acids as compared favourably with highest quality animal proteins. Soybean has a wide range of geographical adaptation due to its suitability to a range of soil and climatic conditions due to which it has become an important agricultural commodity. It has been cultivated throughout the world. Soybean plays a major role in the world food trade. Total twenty seven species of fungi were isolated from abnormal seed variety of JS- 335. Maximum incidence of fungi were found on discoloured seeds followed by mechanically damaged seeds and shrivelled seeds. However, small seeds and bold seeds yielded less no. of fungi.

Key words : Soybean, Abnormal seeds, Fungi

Soybean [*Glycine max* (L.) Merril] has been cultivated throughout the world and plays a major role in the world food trade. USA is the larger producer. However, India has emerged as one of the potential producers of soybean in the world. Soybean occupies an important position in agriculture and oil economy of the country. Considering its highly nutritious value it is commonly known as 'golden bean' which has become an landmark of Indian agriculture.

Fungi are mainly responsible for several types of seed abnormalities. Such abnormal seeds are not recommended for consumption as well as such seeds are rejected by seed industry. Several researchers pin point the association of mycoflora on abnormal seeds. Neergaard (1973) stated that the associated mycoflora in storage condition reduce the germinability of seeds. Shukla and Bhargava (1978) reported seed rotting of soybean due to the association of *Cladosporium herbarum*, the fungi like *Alternaria alternata*, *Trochethecium roseum* and *Fusarium*. Michail *et al.* (1980) observed the heavy loss due to the rotting of seeds by these isolated fungi like *Rhizoctonia solani*, *Macrophomina phaseolina*, *Fusarium equiseti* and *F. solani*. Chavan (1993) pin points the role of different fungi in discolouration. Sharma (1995) reported the

Correspondence to:

maximum rotting of soybean seeds due to the association of fungi.

MATERIALS AND METHODS

Collection of samples, detection and identification of seed mycoflora:

For the collection of seed samples, the method described by Neergaard (1973) has been adopted. Accordingly random samples of different varieties of seeds were collected from fields, store houses, market places and seed companies. A composite sample of each variety was prepared by mixing the individual samples together, preserved in cloth bags in laboratory condition at room temperature during the studies. The seed mycoflora was isolated by using Potato dextrose agar plate method (PDA) as recommended by International seed testing Association (ISTA 1966); De Tempe (1970), Neergaard (1977) and Agarwal (1976) and The identification and further confirmation of seed-borne fungi was made as per Bessey (1950), Mukadam *et al.* (2006).

RESULTS AND DISCUSSION

Abnormal seeds of variety JS-335 of soybean were employed for the association of fungi and the results are given in the Table 1. The seeds were broadly categorized into six types such as small seeds, shrivelled seeds, undersized seeds, discoloured seeds, bold seeds and mechanically damaged seeds. The results indicates that maximum incidences of fungi were found on discoloured seeds followed by mechanically damaged seeds and shrivelled seeds. However, small seeds and bold seeds

UMESH T. KESARE, Post Graduate Department of Botany, Adarsh College, Omerga, OSMANABAD (M.S.) INDIA

Authors' affiliations:

ASHOK CHAVAN, Department of Botany, Seed Health and Fungal Biotechnology, Lab. Dr. Bhimaro Ambedkar Marathwada University, AURANGABAD (M.S.) INDIA

Table 1 : Incidence of fungi on abnormal seeds of soybean variety Js-335							
Sr. No	Fungi	% Incidence					
		Small	Shriveled seeds	Under sized seed	Dis-coloured Seed	Bold Seed	Damaged Seed
1.	Alternaria alternata	00	10	06	09	06	12
2.	Aspergillus candidus	00	10	00	18	00	20
3.	Aspergillus flavus	08	13	08	14	09	14
4.	Aspergillus fumigatus	00	12	00	16	00	13
5.	Aspergillus glaucus	00	08	03	08	03	10
6.	Aspergillus niger	06	16	08	14	06	18
7.	Aspergillus rubrer	00	10	00	18	00	12
8.	Aspergillus ustus	03	12	08	10	05	14
9.	Botrytis cineria	00	10	00	08	00	12
10.	Cladosporium spp.	00	06	00	09	00	09
11.	Colletotrichum spp.	00	08	00	10	00	08
12.	Curvularia lunata	03	10	04	12	06	10
13.	Curvularia tetramera	00	12	00	16	00	12
14.	Drechslera oryzae	00	06	00	08	00	10
15.	Fusarium chlamydosporum	00	00	00	12	00	10
16.	Fusarium dimerum	00	25	00	22	03	30
17.	Fusarium equiseti	00	35	00	30	00	20
18.	Fusarium monilifohme	00	24	00	20	00	10
19.	Fusarium oxysporum	10	30	12	35	08	35
20.	Fusarium roseum	12	35	18	38	10	38
21.	Helminthsporium spp.	00	08	00	06	00	10
22.	Macrophomina phaseolina	00	12	03	14	00	14
23.	Pencillium chrysogenum	00	10	00	12	00	12
24.	Rhizoctonia bataticola	00	12	00	22	00	18
25.	Spicaria violecia	00	00	00	24	00	20
26.	Trichoderma viride	03	10	10	14	06	18
27.	Verticilium spp.	00	00	05	12	00	10

yielded less number of fungi. Out of total twenty seven species of fungi, *Aspergillus* with seven species, *Fusarium* with six species were dominated on discoloured seeds and damaged seeds. However shriveled seeds showed moderate incidence of fungi.

REFERENCES

- Agarwal V. K. (1976). Technique for the detection of seed borne fungi. *Seed Res.*, **4**: 24-31.
- Bessey, E.A. (1950). *Morphology and taxonomy of Fungi*. The Blakiston co., Philadelphia (reprint-1971, A Hafner publ. co. New York.)
- Chavan, A.M. (1993). Studies on pigment producing seed-borne fungi. Ph.D. Thesis, Dr. Balasaheb Ambedkar Marathwada University, Aurangabad. (M.S.).

De, Tempe, J. (1970). Testing cereals seeds for *Fusarium* infection in the Netherlands. *Prof. Int. Seed. Test. Ass.* **33**:193-200.

- ISTA (1966). Proc. *International seed testing Association*, **31**: 1-52.
- Michail, S.H., Abdul Rahim, M.A. and Abu Elganin (1980). Seed health testing of Soybean in Egypt. *Acta. Phytopathol. Acad. Sci. Huno*, **14**(314) :31-78

- Mukadam, D.S., Chavan., Ashok, Patil, M.S. and R. Patil, Anjali (2006). *The illustration of fungi*. Saraswati Printing Press, Aurangabad – 437001 (MS) India.
- Neergaard, Paul (1973). Detection of Seed-borne pathogens by culture tests. *Seed Sci. & Tech.*, **1** : 217-254.
- Neergaard, Paul (1977). *Seed Pathalogy*, Vol. I, John Villey and Sons, N. Y.
- Sharma, A.K. (1995). Effect of metabolites of some seed-borne fungi in seed mycoflora and seed germination of soybean. J. Hill Res., 8 (2): 165-168.
- Shukla, D.M and Bhargava, S.N. (1978). Effect of moisture on seed fungal floras. *Proc. National Acad. Sci. India*, 48 (4): 199-200.

***** *****