

International Journal of Forestry and Crop Improvement

Volume 6 | Issue 1 | June, 2015 | 1-11 | Visit us : www.researchjournal.co.in

RESEARCH ARTICLE

DOI: 10.15740/HAS/IJFCI/6.1/1-11

Effect of organic farming practices on soil properties and beneficial soil micro-organism

 $Rudragouda\,F.\,Channagouda,\,H.B.\,Babalad\,\,\text{and}\,\,S.B.\,Salimath$

ABSTRACT: The field experiment was carried out at MARS, Dharwad during Kharif 2010-11 and 2011-12 to study the effect of organic farming practices on soil properties and beneficial soil micro-organism among the organic manurial treatments, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF recorded significantly higher uptake of N, P, O_e and K, O (72.53, 14.26 and 77.3 kg ha⁻¹, respectively) over EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDN. Among the organic treatment combinations, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded significantly higher uptake of N, P,O, and K,O (73.80, 15.16 and 78.4 kg ha⁻¹, respectively) over other organic combinations and was at par with (1/3) + VC(1/3) + GLM(1/3) equivalent to RDF with borax @ 0.2 per cent + MgSO₄ @ 1 per cent and RDF + FYM. Among the nutrient management practices, integrated application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDFrecorded significantly higher available soil N, P₂O₂ and K₂O (282.5, 28.8, 328.3 kg ha⁻¹, respectively) over FYM @ 5 t ha⁻¹ + RDF. Combined application of EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDF and EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDN recorded significantly higher organic carbon (5.6 and 5.5 g kg⁻¹, respectively) over FYM @ 5 t ha⁻¹ + RDF (5.2 g kg⁻¹). Integrated application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF recorded significantly higher bacteria, fungal, actinomycetes, phosphorus solubilising bacteria, N₂-fixers, enzymes mainly phosphatase and dehydrogenase activity and soil respiration rate (73.19 cfu × 10⁶/g of soil, 26.84 cfu × 10^3 /g of soil, 39.65 cfu × 10^2 /g of soil, 26.15 cfu × 10^3 /g of soil, 29.52 cfu × 10^3 /g of soil, 29.52 cfu × 10^3 /g of soil, 20.52 cfu × 10^3 g of soil, 25.01µ pnp/g of soil/hr, 11.99 µ TPF/g of soil/day and 9.51 mg of C or CO,/hr/100 g of soil, respectively) at 60 DAS as compared to application of FYM @ 5 t ha⁻¹ + RDF. Among the different treatment combinations, application of EC (1/3) + VC (1/3)+ gliricidia GLM (1/3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded significantly higher bacteria, fungi, actinomycetes, N₂-fixers and P-solubilizer, phosphatase and dehydrogenase enzyme activity and soil respiration rate over RDF+FYM.

KEY WORDS : Uptake, Soil availability, N, P, K, Microbial population

HOW TO CITE THIS ARTICLE : Channagouda, Rudragouda F., Babalad, H.B. and Salimath, S.B. (2015). Effect of organic farming practices on soil properties and beneficial soil micro-organism. *Internat. J. Forestry & Crop Improv.*, **6** (1) : 1-11.

ARTICLE CHRONICAL : Received : 24.07.2014; Revised : 02.04.2015; Accepted : 05.05.2015

Address of the Correspondence : RUDRAGOUDA. F. CHANNAGOUDA, Krishi Vigyan Kendra (U.A.H.S.), Babbur Farm, Hiriyur, CHITRADURGA (KARNATAKA) INDIA Email: rfc1234@rediffmail.com Address of the Coopted Authors : H.B. BABALAD, Department of Agronomy, University of Agricultural Sciences, DHARWAD (KARNATAKA) INDIA S.B. SALIMATH, Krishi Vigyan Kendra (U.A.H.S.), Babbur Farm, Hiriyur,

CHITRADURGA (KARNATAKA) INDIA

INTRODUCTION

With escalating population and shrinking resource base, the challenge to increase agricultural production on sustainable basis is indeed a formidable one. Synthetic external inputs have the limitations of higher costs and causing damage to environment. So, combined use of organic sources of nutrients helps to maintain healthy crop growth and to obtain sustainable yield and quality. Among the various factors affecting the growth and yield of cotton, nutrient management play a vital role. Presently, the chemical fertilizers are the major source of nutrients but escalating cost, coupled with increasing demand of chemical fertilizers and depleting soil health necessitates the safe and efficient use of organics in crop production. These practices gaining much popularity to enhance and maintain soil organic carbon status for obtaining sustainable crop yields. In this context, to field experiment were carried out to study the soil properties in organic production system.

EXPERIMENTAL METHODS

A field experiment was conducted at MARS, Dharwad during 2010 and 2011 to study the nutrient management practices for organic cotton production. The soil of the experiment site was clay, having medium carbon (0.41 %) and available NPK (264.70:24.80:285.30 NPK kg ha⁻¹). The experiment was laid out in Split Plot Design with three replication. The main plot comprises of five manual treatments as M₁ : Recommended dose of fertilizer (RDF)(80:40:40 N:P₂O₅:K₂O kg ha⁻¹+ FYM $(@5 t ha^{-1})$, M₂: Crop residues equivalent to 50 per cent RDN with compost culture + vermicompost equivalent to 50 per cent RDN M₃: Crop residues equivalent to 50 per cent RDF with compost culture + vermicompost equivalent to 50 per cent RDF, M₂: Compost equivalent to 50 per cent RDN + vermicompost equivalent to 50 per cent RDN, M₅: Compost equivalent to 50 per cent RDF + vermicompost equivalent to 50 per cent RDF and sub plot consists of six green manures treatments are S₁ : Gliricidia GLM mulch @ 7.5 t ha⁻¹, S₂: Gliricidia GLM mulch @ 7.5 t ha-1 + Soil application of jeevamrutha @ 500 lt ha⁻¹ at sowing, 30, 60 and 90 DAS, S_3 : Lucerne GM alone as inter crop (1:2 row proportion), S_4 : Lucerne GM as inter crop + Soil application of Jeevamrutha @ 500 lit ha⁻¹, S_5 : Sunnhemp GM alone as inter crop (1:2) row proportion), S_6 : Sunnhemp GM as inter crop + Soil application of jeevamrutha @ 500 lt ha⁻¹, two control treatments are T₁: Recommended dose of fertilizer $(RDF)(80:40:40 \text{ N:P}_{2}O_{5}:K_{2}O \text{ kg ha}^{-1} + FYM @ 5 \text{ t ha}^{-1})$ and T₂: Recommended dose of fertilizer (RDF)(80:40:40 $N:P_2O_5:K_2O$ kg ha⁻¹) only. As per the treatments the organic manures equivalent to RDN and RDF through farm yard manure, cotton stalks (50 %), compost (50 %), green leaf manure were applied 15 days before sowing and 50 per cent vermicompost was spot applied to the soil before dibbling of cotton seeds and top dressing with remaining 50 per cent of vermicompost was done at 60 DAS. The chemical fertilizers as per the recommended package alone and along with farm yard manure were applied to the check treatments. The seeds were treated with cow urine, Azospirilum, Phosphate solubalizing bacteria, Pseudomonas striata, Trichoderma and cow dung slurry before sowing. The seed of hybrid cotton DHB-915 was obtained from ARS Dharwad, Hebballi farm and were hand dibbled with two cotton seeds per hill on 12 July, 2010 and 15 June, 2011. Two rows of sunnhemp and lucerne at 30 cm apart were grown as a green manure crops in between two rows of cotton (90 cm). Sunnhemp was cut at 30-35 DAS was mulched in between the rows where lucerne was regularly harvested (3 times during the year) at 30 to 35 days interval and used as mulch between the rows. Gliricidia green leaf manures @ 7.5 t ha⁻¹ were mulched in between the cotton row at 30 DAS. Nitrogen estimation was done by Kjeldahl's method (Jackson, 1973) phosphorus by vanado molybdate phosphoric yellow colour method and potassium by flame photometric method. The soil adhering to the roots was carefully collected and used for enumeration of total bacteria, fungi and actinomycetes, by standard serial dilution plate count technique using soil extract agar for bacteria count (Bunt and Rovira, 1955), Martin's Rose Bengal agar for fungi (Martin, 1950) and Kusters agar for actinomycetes (Kuster and Williams, 1964). The microbial populations were expressed as number of colony farming units per gram dry weight of soil.

EXPERIMENTAL RESULTS AND ANALYSIS

The uptake of major nutrients mainly nitrogen, phosphorus and potassium differed significantly due to organic manures. Among the organic manurial treatments, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF recorded significantly higher uptake of N, P_2O_5 and K_2O (72.53, 14.26 and 77.3 kg ha⁻¹, respectively) over EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDN. The results suggested that addition of organics not only increased the availability of these

,	:	2010				2011				Pooled		
Treatments	Bulk density (g/cc)	N (kg ha ⁻¹)	P (kg ha ⁻¹)	K (kg ha ⁻¹)	Bulk density (g/cc)	N (kg ha ⁻¹)	P (kg ha ⁻¹)	K (kg ha ⁻¹)	Bulk density (g/cc)	N (kg ha ⁻¹)	P (kg ha ⁻¹)	K (kg ha ⁻¹)
Organic manure (M)	ure (M)											
M_1	1.28a	77.5a	16.0a	79.6a	1.27a	80.6a	18.1a	82.2a	1.28a	79.0a	17.1a	80.9a
M_2	1.27a	66.3c	11.6c	75.6b	1.25a	69.3c	13.3c	77.9b	1.26ab	67.8c	12.5c	76.8c
M_3	1.27a	70.4b	13.5b	76.1b	1.24a	74.6b	15.0b	78.5b	1.25b	72.5b	14.2b	77.3b
S.E.±	0.0082	0.30	0.11	0.20	0.011	0.26	0.10	0.17	0.0082	0.28	0.10	0.10
Foliar spray o	Foliar spray of liquid manures $+$ micronutrients (L)	+ micronutrio	ents (L)									
L_{l}	1.27a	72.4a	14.2a	78.1a	1.25a	76.2a	16.2a	80.5a	1.26a	74.3a	15.2a	79.3a
L_2	1.26a	69.6b	12.7b	75.6c	1.23a	72.3d	14.2b	77.9c	1.27a	71.0b	13.5b	76.8d
L_3	1.27a	71.3a	13.7a	76.7bc	1.26a	74.7c	15.4a	79.0bc	1.27a	73.0a	14.5a	77.8c
L_4	1.27a	71.6a	13.7a	77.2ab	1.25a	75.1c	15.5a	79.8ab	1.26a	73.3a	14.6a	78.5b
L_5	1.27a	72.2a	14.1a	77.1ab	1.25a	75.7b	16.0a	80.4a	1.26a	74.0a	15.1a	79.1ab
S.E. ±	0.011	0.43	0.28	0.42	0.014	0.14	0.26	0.39	0.0105	0.42	0.27	0.21
Interactions (MXL)	MXL)											
$M_1 L_1$	1.28ab	78.5a	16.1a	80.5a	1.26a-d	81.9a	18.6a	83.0a	1.27ab	80.2a	17.3a	81.8a
$M_1 L_2$	1.27a-c	76.0b	15.8a	78.3b-e	1.27ab	78.5bc	17.7ab	80.9b-d	1.27ab	77.3bc	16.7ab	79.6cd
$M_1 L_3$	1.28ab	77.2ab	16.0a	79.1a-d	1.27a-d	80.2ab	18.0ab	81.5a-c	1.27ab	78.7ab	17.0ab	80.3bc
$M_1 L_4$	1.28a	77.6ab	16.0a	79.9a-c	1.27a-c	80.8a	18.2a	82.5ab	1.28a	79.2ab	17.1a	81.2ab
$M_1 L_5$	1.28a	78.3ab	16.1a	80.3ab	1.26a-e	81.4a	18.3a	83.0a	1.27ab	79.8a	17.2a	81.6a
${ m M}_2{ m L}_1$	1.27bc	67.2f	12.1cd	76.6e-g	1.24c-e	70.7fg	14.1ef	79.1d-f	1.26d-f	68.9fg	13.1ef	77.9f-h
${ m M}_2{ m L}_2$	1.27bc	64.4g	10.5e	74.2i	1.26a-d	66.6h	11.0g	76.3g	1.27a-d	65.5h	11.1g	75.3h
${ m M}_2{ m L}_3$	1.27a-c	66.4fg	11.7de	75.0g-i	1.26a-d	69.3g	13.2f	77.3fg	1.27a-c	67.8g	12.5f	76.2ij
${ m M}_2{ m L}_4$	1.26c	66.6f	11.7de	75.7g-i	1.25a-e	69.8fg	13.4f	78.1e-g	1.26b-e	68.2fg	12.6f	76.9hi
${ m M}_2{ m L}_5$	1.27a-c	67.1f	12.1cd	76.5e-h	1.25b-e	70.2fg	14.1ef	78.9d-f	1.26b-e	68.7fg	13.1ef	77.7f-h
${ m M}_3{ m L}_1$	1.26c	71.5cd	14.3b	77.1d-g	1.23e	76.0de	15.9cd	79.5c-e	1.25f	73.8de	15.1cd	78.3ef
${ m M}_3{ m L}_2$	1.27a-c	68.4ef	11.9d	74.4hi	1.25b-e	71.8f	13.2f	76.6g	1.26c-f	70.1f	12.6f	75.5j
$M_{3}L_{9}$	1.27bc	70.4de	13.4bc	75.8f-i	1.25a-e	74.6e	14.9de	78.2e-g	1.26b-e	72.5e	14.2de	77.0g-i
${ m M}_3{ m L}_4$	1.26c	70.5de	13.5bc	76.3e-i	1.24de	74.8de	15.0de	78.8ef	1.25ef	72.6e	14.2de	77.5f-h
$M_3 L_5$	1.27a-c	71.2d	14.2b	76.8e-g	1.24de	75.6de	15.8cd	79.3d-f	1.26d-f	73.4de	15.0cd	78.1e-g
\mathbf{C}_1	1.28ab	73.0fc	14.7ab	78.0c-f	1.28a	77.1cd	16.7bc	80.0c-e	1.28a	75.3cd	15.7bc	79.0de
S F +	0.0033	0.72	0.46	0.67	0.0082	0.71	0.43	0.63	0.0033	0.69	0.43	0.35

			2010			107	_				Pooled	
Treatments	ос (g kg ⁻¹)	N (kg ha ⁻¹)	P ₂ O, (kg ha ⁻¹)	K_2O (kg ha ⁻¹)	0C (g kg ⁻¹)	N (kg ha ⁻¹)	P ₂ O5 (kg ha ⁻¹)	K_2O (kg ha ⁻¹)	oc (g kg ⁻¹)	N (kg ha ⁻¹)	P ₂ O ₅ (kg ha ⁻¹)	K2O (kg ha ⁻¹)
Organic manure (M)	e (M)											
M_1	5.1b	270.8c	25.6c	311.4b	5.3b	275.5c	27.0c	317.6b	5.2b	273.2c	26.3c	314.5b
M_2	5.3ab	275.5b	26.2b	323.4a	5.6a	279.8b	28.3b	330.5a	5.5a	277.6b	27.3b	327.0a
M_3	5.4a	277.7a	27.6a	324.7a	5.7a	287.3a	30.1a	331.8a	5.6a	282.5a	28.8a	328.3a
S.Em.±	0.0058	0.35	0.13	0.49	0.0058	0.30	0.15	0.81	0.0041	0.29	0.08	0.56
oliar spray of l	liquid manure	Foliar spray of liquid manures + micronutrients (L)	ents (L)									
L_1	5.3a	276.1a	27.3a	320.9a	5.7a	282.7a	29.4a	328.0a	5.5a	279.4a	28.3a	324.4a
L_2	5.2b	272.9b	25.4b	318.8b	5.4c	278.2b	26.8b	325.3c	5.3d	275.6b	26.1b	322.1b
L_3	5.3ab	274.4ab	26.2ab	319.2ab	5.5bc	280.5ab	28.3a	325.9bc	5.4cd	277.5a	27.3a	322.6ab
L_4	5.3ab	274.6ab	26.4ab	319.7ab	5.5a-c	280.9ab	28.5a	326.5a-c	5.4bc	277.8a	27.5a	323.1ab
L_5	5.3a	275.3a	27.1a	320.7a	5.6ab	282.1a	29.2a	327.5ab	5.5ab	278.7a	28.1a	324.1a
S.E.±	0.0043	0.68	0.42	0.56	0.0065	0.56	0.38	0.54	0.0030	0.62	0.38	0.47
Interactions (M×L)	×L)											
$M_1 L_1$	5.2c-f	272.7d-f	26.5a-d	312.7c	5.4c-e	277.2c-f	27.8с-е	319.0b	5.3f-i	275.0de	27.2b-e	315.9c
${ m M_1L_2}$	5.0ef	269.7gh	24.2de	310.0c	5.2de	273.8fg	25.1fg	316.0b	5.1ij	271.8ef	24.6fg	313.0c
$M_1 L_3$	5.1d-f	270.3f-h	25.4b-e	310.40	5.2de	274.6fg	27.1d-f	316.4b	5.2h-j	272.5e	26.2ef	313.40
$M_1 L_4$	5.1d-f	270.3f-h	25.5b-e	311.5c	5.3c-e	275.2e-g	27.2d-f	317.7b	5.2g-i	272.7e	26.4d-f	314.60
$M_1 L_5$	5.2b-f	271.2e-h	26.3a-d	312.6c	5.4b-e	276.8c-f	27.7c-e	318.8b	5.3e-i	274.0e	27.0c-e	315.7c
$M_2 L_1$	5.4a-d	276.2a-d	27.0a-c	323.8ab	5.8ab	281.6bc	29.1a-d	331.3a	5.6a-c	278.9c	28.1a-e	327.5ab
${ m M}_2{ m L}_2$	5.2b-f	274.0c-f	25.2c-e	322.8b	5.5a-d	275.9d-f	26.6e-g	329.6a	5.4d-h	275.0de	25.9f-g	326.2bab
${ m M}_2{ m L}_3$	5.3a-d	275.3a-d	25.9a-d	323.2ab	5.5a-d	280.0c-e	28.1c-e	330.2a	5.4c-g	277.7cd	27.0c-e	326.7ab
${ m M}_2{ m L}_4$	5.3a-d	275.8a-d	26.1a-d	323.3ab	5.6a-c	280.6b-d	28.6b-e	330.5a	5.5b-e	278.2c	27.3b-e	326.9ab
${ m M}_2 { m L}_5$	5.4a-d	276.0a-d	26.9a-c	323.9ab	5.8ab	281.1bc	29.1a-d	331.1a	5.6a-c	278.5c	28.0a-e	327.5ab
${ m M}_3{ m L}_1$	5.5a	279.4a	28.3a	326.4a	5.9a	289.4a	31.2a	333.6a	5.7a	284.4a	29.7a	330.0a
${ m M}_3{ m L}_2$	5.3a-e	275.0b-e	26.8a-c	323.5ab	5.6a-d	285.0ab	28.7b-c	330.5a	5.4b-f	280.0bc	27.8а-е	327.0ab
M_3L_3	5.4a-d	277.6а-с	27.4a-c	324.2ab	5.7a-c	286.9a	29.7a-c	331.2a	5.5a-d	282.2ab	28.5a-d	327.7ab
$M_3 L_4$	5.4a-c	277.9а-с	27.7ab	324.1ab	5.6a-c	287.0a	29.9a-c	331.4a	5.5a-d	282.5ab	28.8a-c	327.7ab
${ m M}_3{ m L}_5$	5.5ab	278.6ab	28.0a	325.5ab	5.8ab	288.4a	30.8ab	332.7a	5.6ab	283.5a	29.4ab	329.1ab
c,	4.9f	267.5h	23.5e	291.7d	5.1e	270.9g	24.6g	290.2c	5.0j	269.2e	24.1g	291.0d
S.E. ±	0.0088	1.28	0.71	1.0.3	0.011	1.52	0.68	1.42	0.0058	S.E.± 0.0088 1.28 0.71 1.0.3 0.011 1.52 0.68 1.42 0.0058 1.05 0.66 1.00	0.66	1.00

		ñ	2010			2011	1			Pooled	ed	
Treatments	Bacterial population		Fungal population	opulation	Bacterial 1	Bacterial population	Fungal p	Fungal population	Bacterial population	population		Fungal population
	60 DAS	90DAS	60 DAS	90DAS	60 DAS	90DAS	60 DAS	90DAS	60 DAS	90DAS	60 DAS	90DAS
Organic manure (M)	ure (M)											
M_1	65.52b	62.73c	23.00b	20.67b	66.95c	64.60c	25.28b	23.10b	66.23c	63.67c	24.14c	21.88c
M_2	68.86a	67.21b	23.73b	21.53b	71.61b	d99.99b	26.00b	23.81b	70.24b	68.60b	24.87b	22.67b
M_3	71.25a	68.75a	25.53a	22.53a	75.13a	73.00a	28.15a	25.95a	73.19a	70.87a	26.84a	24.24a
S.E. ±	0.697	0.187	0.301	0.225	0.241	0.135	0.255	0.261	0.437	0.153	0.0523	0.048
Foliar spray o	Foliar spray of liquid manures + micronutrients (L)	s + micronut	rients (L)									
L_{l}	69.21a	67.22a	24.11a	21.67a	72.16a	68.79a	2621a	24.00a	70.69a	68.01a	25.16a	22.83a
L_2	67.33a	64.44b	23.56a	21.11a	69.44b	68.90a	26.17a	24.00a	68.39a	66.67a	24.86a	22.55a
L_3	68.44a	66.33a	24.11a	21.56a	70.88ab	69.37a	26.74a	24.55a	69.66a	67.85a	25.43a	23.05a
L_4	68.72a	66.50a	24.22a	21.67a	71.79ab	69.46a	26.53a	24.33a	70.26a	67.98a	25.37a	23.00a
L_5	69.00a	66.66a	24.44a	21.89a	71.87ab	69.46a	26.74a	24.55a	70.44a	68.06a	25.59a	23.22a
S.E.±	1.063	0.96	0.463	0.456	0.817	0.617	0.349	0.351	0.841	0.583	0.249	0.225
Interactions $(M \times L)$	M × L)											
$M_1 L_1$	66.00b-e	64.00cd	23.00cd	21.00a-c	67.83c-e	65.53cd	25.39c	23.16c	66.91c-f	64.77cd	24.20b	22.08b
$M_1 L_2$	64.67de	61.67cd	22.67cd	20.33bc	65.30de	64.20c-e	24.96c	22.83c	64.98f	62.93de	23.81b	21.58b
$M_1 L_3$	65.33b-e	62.33cd	23.00cd	20.33bc	67.10с-е	64.86c-e	25.36c	23.16c	66.22ef	63.60de	24.18b	21.75b
$M_1 L_4$	65.67b-e	62.67cd	23.00cd	20.67a-c	67.24c-e	63.86de	25.03c	22.83c	66.45d-f	63.27de	24.02b	21.75b
$M_1 L_5$	65.93a-d	63.00cd	23.33b-d	21.00a-c	67.27c-e	64.53c-e	25.68c	23.50c	66.60d-f	63.77de	24.51b	22.25b
${ m M}_2{ m L}_1$	69.63a-e	68.00a	23.33d-d	22.00ab	72.82ab	67.25c	25.60c	23.41c	71.23a-c	67.62b	24.47b	22.70b
${ m M}_2{ m L}_2$	67.00a-e	64.67bc	23.33b-d	20.67a-c	69.48b-d	70.23b	25.60c	23.41c	68.24b-f	67.45bc	24.47b	22.04b
$M_2 L_3$	69.00a-e	67.67a	24.00a-c	21.33a-c	70.38bc	70.31b	26.27bc	24.07bc	69.69a-e	68.99ab	25.13b	22.70b
${ m M}_2{ m L}_4$	69.17a-e	67.83a	24.00a-c	21.67ab	72.64ab	71.25bab	26.27bc	24.07bc	70.90a-d	69.54ab	25.13b	22.87b
$\mathrm{M}_{2}\mathrm{L}_{5}$	69.52a-e	67.90a	24.00a-c	22.00ab	72.75ab	70.91ab	26.27bc	24.07bc	71.14a-c	69.41ab	25.14b	23.04b
$M_3 L_1$	72.00a	69.67a	26.00a	22.00ab	75.84a	73.60a	27.65ab	25.42ab	73.92a	71.63a	26.82a	23.71b
$M_3 L_2$	70.33a-d	67.00ab	24.67a-c	22.33ab	73.54ab	72.26ab	27.94ab	25.75ab	71.94ab	69.63ab	26.30a	24.04a
M_3L_3	71.00a-c	69.00a	25.33а-с	23.00a	75.16a	72.93ab	28.61a	26.42a	73.08a	70.97a	26.97a	24.71a
$M_3 L_4$	71.33ab	69.00a	25.67ab	22.67ab	75.50a	73.26ab	28.28a	26.08a	73.42a	71.13a	26.97a	24.38a
$M_3 L_5$	71.56ab	69.08a	26.00a	22.67ab	75.59a	72.93ab	28.28a	26.08a	73.58a	71.00a	27.14a	24.38a
\mathbf{C}_{I}	63.67e	61.37d	21.33d	19.00c	63.89e	61.82e	21.48d	19.53d	63.78f	61.59e	21.41c	19.27c
S.E.±	S.E. \pm 1.75 0.97 0.784 0.751 1.38 0.978 0.581 0.593 1.39 0.933 0.402	0.97	0.784	0.751	1.38	0.978	0.581	0.593	1.39	0.933	0.402	0.381

nutrients in the soil, but also favoured the release of nutrients from organic sources through mineralization by micro-organisms and their uptake by the crop. Among the recommended nutrient practices, integrated application of FYM @ 5 t ha⁻¹ + RDF recorded significantly higher uptake of N, P and K (79.0, 17.1 and 80.9 kg ha-1, respectively) accounting for 16.52, 36.77 and 5.35 per cent, respectively (Table 2) higher over EC (1/3) + VC(1/3) + GLM (1/3) equivalent to RDN. The increase in total dry matter production and seed cotton yield could be ascribed to increased uptake of nutrients. These results are well supported by Padole et al. (1998). Foliar spray of Panchagavya @ 5 per cent recorded significantly higher uptake of N, P and K (74.33, 15.23 and 79.36 kg ha⁻¹, respectively) over bio-digester @ 20 per cent and was at par with borax @ 0.2 per cent + $MgSO_4$ @ 1 per cent and vermiwash @ 20 per cent.

Among the organic treatment combinations, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3)3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded significantly higher uptake of N, P_2O_5 and K_2O (73.80, 15.16 and 78.4 kg ha⁻¹, respectively) over other organic combinations and was at par with (1/3) + VC(1/3) + GLM(1/3) equivalent to RDF with borax @ 0.2 per cent + MgSO₄ @ 1 per cent and RDF + FYM. Similar results were also observed by Sanjutha et al. (2008) and Tolanur (2008). Application of organics with foliar spray of Panchagavya noticed enhanced biological efficiency of crop plants and created greater source and sink in the plant system (Boomathi et al., 2005). Improved leaf area index was also observed with foliar spray of Panchagavya which indicates increased photosynthetic efficiency of plants and further led to increased uptake of nutrients. Integrated application of FYM @ 5 t ha⁻¹ + RDF + Panchagavya @ 5 per cent recorded significantly higher uptake of nitrogen, phosphorus and potassium (80.20, 17.39 and 81.82 kg ha⁻¹, respectively) over rest of the combinations but was at par with FYM @ 5 t ha⁻¹ + RDF + borax @ 0.2 per cent + MgSO₄ @ 1per cent and FYM @ 5 t ha⁻¹ + RDF + vermiwash @ 20 per cent. This might be due to higher total dry matter production in this treatment. Foliar application of boron accelerates the translocation of nitrogen compounds, increased the protein synthesis and stimulates fruiting and hastens the translocation of nitrogen and sugars thus, improving fruiting resulted in higher biomass production and yield.

Among the nutrient management practices, integrated application of EC (1/3) + VC (1/3) + GLM (1/3)3) equivalent to RDF and EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDN recorded significantly higher organic carbon (5.6 and 5.5 g kg⁻¹, respectively) over FYM @ 5 t ha⁻¹ + RDF (5.2 g kg⁻¹). It was higher by 7.96 per cent over FYM @ 5 t ha⁻¹ + RDF. Lower organic carbon content was recorded in plots supplemented (Table 1) with RDF + FYM as compared to 100 per cent organic manures application, which is in conformity with observations of Katyal (1985). The foliar spray of Panchagavya @ 5per cent was recorded significantly higher soil organic carbon (5.5 g kg⁻¹) over foliar spray of bio-digester @ 20 per cent (5.3 g kg⁻¹) and was at par with borax @ 0.2 per cent + MgSO₄ @ 1 per cent (5.5 g kg⁻¹). Among the different treatment combinations, application EC (1/3) + VC (1/3) + gliricidia GLM (1/3)equivalent to RDF with foliar spray of Panchagavya @ 5per cent recorded significantly higher soil organic carbon (5.7 g kg^{-1}) over RDF + FYM (5.0 g kg^{-1}) and was at par with EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with foliar spray of borax @ 0.2per cent + $MgSO_4 @ 1$ per cent and EC(1/3) + VC(1/3) + gliricidiaGLM (1/3) equivalent to RDF with vermiwash @ 20 per cent (5.6 and 5.5 g kg⁻¹, respectively). Malewar et al. (2000) reported that, organic carbon improvement in soil with application of FYM 10 t ha⁻¹ and FYM 10 t ha⁻¹ + 100 per cent RDF (6.75 and 6.70 g kg⁻¹ of soil) as compared to inorganic fertilizer alone. Solaiappan (2002) reported that annual application of FYM @ 10 t ha⁻¹ along with RDF significantly increased the organic carbon content of the soil from an initial value of 0.33 to 0.42 per cent at the end of I year cycle and further to 0.49 per cent at the end of II year cycle.

The available soil N, P_2O_5 and K_2O varied significantly due to different nutrient management practices. Among the nutrient management practices, integrated application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF recorded (Table 2) significantly higher available soil N, P_2O_5 and K_2O (282.5, 28.8, 328.3 kg ha⁻¹, respectively) over FYM @ 5 t ha⁻¹ + RDF. It was higher by 3.42, 9.72 and 4.38 per cent over FYM @ 5 t ha⁻¹ + RDF. The increment was higher with application organic manures as the loss of nutrients is lower with greater accumulation of nutrients enrich the available pool of nitrogen (Bharadwaj and Omanwar, 1994). Higher organic carbon content has been owing to

		2010				2011				Pooled	q	
Treatments	Actinomycetes at 60 DAS	Actinomycetes at 90 DAS	N ₂ fixers at 60 DAS	N ₂ fixers at 90 DAS	Actinomycete s at 60 DAS	Actinomycet es at 90 DAS	N ₂ fixers at 60 DAS	N ₂ fixers at 90 DAS	Actinomycete s at 60 DAS	Actinomycete s at 90 DAS	N ₂ fixers at 60 DAS	N ₂ fixers at 90 DAS
Organic manure (M)	nure (M)				1			1				1
M_1	34.40c	32.13c	23.93c	22.33c	36.83c	34.68c	25.79c	23.75c	35.62c	33.41c	24.86c	23.04c
M_2	36.67b	34.27b	27.60b	25.00b	38.78b	36.58b	30.81b	28.46b	37.72b	35.43b	29.21b	26.73b
M_3	38.27a	35.67a	32.00a	27.47a	41.03a	38.73a	34.31a	31.57a	39.65a	37.20a	33.15a	29.52a
S.E.±	0.239	0.154	0.539	0.353	0.182	0.136	0.511	0.235	0.174	0.143	0.335	0.294
Foliar spray	Foliar spray of liquid manures + micronutrients (L)	s + micronutrient	s (L)									
L_1	36.67a	34.44a	30.56a	28.78a	39.02a	36.73ab	34.06a	32.07a	37.85a	35.59ab	32.31a	30.42a
L_2	35.89a	33.33b	24.56b	21.67c	38.49a	35.61b	26.72c	23.92c	37.19a	34.47b	25.64c	22.79c
L_3	36.11a	33.78ab	25.56b	22.33c	38.78a	36.73ab	27.90c	25.19c	37.45a	35.25ab	26.73c	23.76c
L_{d}	37.11a	34.44a	28.56a	25.33b	39.00a	37.29a	30.81b	28.62b	38.06a	35.87a	29.68b	26.98b
L,	36.44a	34.11ab	30.00a	26.56b	39.11a	36.95ab	32.03b	29.85b	37.78a	35.53ab	31.02ab	28.20b
S.E.±	0.45	0.329	0.779	0.729	0.385	0.438	0.625	0.761	0.278	0.37	0.504	0.732
Interactions (MXL)	(MXL)											
$M_1 L_1$	34.33d-f	32.33cd	26.33d-f	25.00c-e	36.74d	34.69fg	28.38e-g	26.78d-f	35.54e	33.51d	27.36ef	25.89d-f
$M_1 L_2$	33.67ef	32.00cd	20.67hi	20.00gh	36.77d	34.19g	22.77i	20.73hi	35.22e	33.09d	21.72g	20.36hi
$M_1 L_3$	34.33d-f	32.00cd	21.33g-i	20.67f-h	36.85d	34.80fg	23.89hi	21.70g-i	35.59e	33.40d	22.61g	21.19g-i
$M_1 L_4$	35.00c-f	32.00cd	25.33d-g	22.33f-g	36.74d	34.69fg	26.30gh	24.11f-h	35.87de	33.34d	25.82f	23.22e-h
$M_1 L_5$	34.67d-f	32.33cd	26.00d-f	23.67d-g	37.07d	35.02fg	27.63fg	25.45e-g	35.87de	33.68d	26.82f	24.56e-g
${ m M}_2{ m L}_1$	36.67a-d	35.00ab	31.33a-c	29.00ab	39.25bc	36.88b-f	34.84bc	32.65bc	37.96bc	35.94bc	33.09bc	30.83bc
${ m M}_2{ m L}_2$	36.67a-d	33.33bc	23.67f-i	21.67e-g	38.35cd	35.19e-g	27.27fg	24.28f-h	37.51c	34.26cd	25.47f	22.98f-h
${ m M}_2{ m L}_3$	36.00b-e	33.67bc	24.33e-h	22.00e-g	38.47cd	36.42c-g	27.95e	25.72e-g	37.24cd	35.04cd	26.14f	23.86e-h
${ m M}_2{ m L}_4$	38.00ab	35.67a	28.00c-e	25.33b-e	39.25bc	38.21a-d	31.17de	28.98c-e	38.63a-c	36.94ab	29.59de	27.16c-e
$M_2 L_5$	36.00b-e	33.67bc	30.67a-c	27.00b-d	38.58cd	36.21d-g	32.84bc	30.65b-d	37.29cd	34.94cd	31.75cd	28.83b-d
${ m M}_3{ m L}_1$	39.00a	36.00a	34.00a	32.33a	41.08ab	38.63a-c	38.96a	36.77a	40.04a	37.32ab	36.48a	34.55a
$M_3 L_2$	37.33b-c	34.67ab	29.33b-d	23.33d-g	40.35a-c	37.46a-e	30.14d-f	26.74d-f	38.84a-c	36.06a-c	29.74de	25.04d-g
M_3L_3	38.00ab	35.67a	31.00a-c	24.33d-f	41.01ab	38.96ab	31.85cd	28.14d-f	39.51ab	37.32ab	31.42cd	26.24d-f
${ m M}_3 { m L}_4$	38.33ab	35.67a	32.33ab	28.33bc	41.01ab	38.96ab	34.96bc	32.77bc	39.67a	37.32ab	33.65bc	30.55bc
$M_3 L_5$	38.67a	36.33a	33.33ab	29.00ab	41.68a	39.63a	35.63b	33.44ab	40.17a	37.98a	34.48ab	31.22ab
C_1	33.33f	31.00d	20.00i	17.67h	33.60e	31.48h	21.16i	18.99i	33.47f	31.24e	20.58g	18.33i
S.E.±	$\rm kE,\pm$ 0.77 0.539 1.29 1.17 0.658 0.728 1.057 1.318 0.511 0.59 0.83	0.539	129	1.17	0.658	0.728	1.057	1.318	0.511	0.59	0.83	1.21

			2010				2011				Pooled	
Treatments	at 60 DAS	PSM at 90DAS	Dehydrogenase I at 60 DAS	Dehydrogenase at 90 DAS	PSM at 60 DAS	PSM at 90 DAS	Dehydrogenase at 60 DAS	Dehydrogenase at 90 DAS	PSM at 60 DAS	PSM at 90 DAS	Dehydrogenase Dehydrogenase at 60 DAS at 90 DAS	Dehydrogenas at 90 DAS
Organic m	Organic manure (M)		1			1		1				
M_1	16.73c	14.82c	8.51c	7.09b	17.77c	15.81c	10.14c	8.42c	17.25c	15.31c	9.33c	7.76c
${ m M}_2$	20.80b	18.47b	9.48b	8.02a	23.20b	21.42b	12.54b	10.75b	22.00b	19.94b	11.01b	9.38b
M ₃	24.67a	22.73a	9.85a	8.22a	27.64a	25.89a	14.13a	12.32a	26.15a	24.31a	11.99a	10.27a
S.E.±	0.478	0.499	0.0935	0.129	0.202	0.271	0.149	0.171	0.245	0.421	0.029	0.072
Follar spra	ıy of liquid m	anures + mi	Follar spray of liquid manures + micronutrients (L)									
L_1	22.89a	20.56a	9.69a	8.27a	25.30a	23.26a	12.71a	10.97a	24.09a	21.91a	11.20a	9.62a
L_2	18.89d	17.78cd	8.87b	7.04b	20.20c	19.22c	11.68c	9.84c	19.55d	18.50cd	10.27b	8.44c
L_3	19.33cd	16.89d	8.99b	7.57ab	21.58c	19.53c	12.03bc	10.27bc	20.46c	18.21ab	10.51b	8.92b
L_4	20.89bc	18.67bc	9.35a	7.92a	23.19b	21.14b	12.38ab	10.62ab	22.04b	19.91ab	10.86a	9.27ab
L_5	21.67ab	19.47ab	9.51a	8.09a	24.08ab	22.03ab	12.56ab	10.79ab	22.87b	20.75ab	11.03a	9.44a
S.E. ±	0.482	0.497	0.119	0.245	0.521	0.542	0.189	0.202	0.289	0.413	0.111	0.159
Interactions (MXL)	IS (MXL)											
${ m M_1}{ m L_1}$	18.67d-g	16.33ef	8.89e-g	7.47b-g	19.93f-h	17.88ef	10.59f	8.83f	19.30gh	17.11g-i	9.74f	8.15fg
$M_1 L_2$	15.33g	13.33g	8.17h	6.77g	16.12i	14.48gh	9.50gh	7.96fg	15.73j	13.91jk	8.84h	7.37gh
${ m M_1L_3}$	15.67g	14.33fg	8.22h	6.80fg	16.62i	14.57gh	9.92f-h	8.16f	16.14j	14.45jk	9.07gh	7.48gh
${ m M_1}{ m L_4}$	16.67fg	14.67fg	8.56gh	7.13d-g	17.59hi	15.55f-h	10.25f-g	8.50f	17.13ij	15.11i-k	9.40fg	7.82g
$M_1 L_5$	17.33fg	15.42fg	8.72f-h	7.30c-g	18.59g-i	16.55fg	10.44f-g	8.66f	17.96hi	15.98h-j	9.58fg	7.98fg
${ m M}_2{ m L}_1$	22.33e-g	20.00cd	9.86a-d	8.43a-d	24.97cd	22.93cd	12.97b-d	11.21cd	23.65cd	21.47de	11.42c	9.82b-d
$M_2 L_2$	19.33c-f	18.33de	9.05e-g	7.43b-g	20.94e-g	20.22de	11.88e	9.98e	20.14fg	19.28e-g	10.47e	8.71ef
${ m M}_2{ m L}_3$	20.00c-e	16.33ef	9.22d-f	7.80a-g	22.45d-f	20.41de	12.33de	10.57de	21.23ef	18.37f-h	10.78de	9.19de
${ m M}_2{ m L}_4$	21.00cd	18.67de	9.56b-e	8.13a-e	23.64c-e	21.60cd	12.67c-e	10.91de	22.32de	20.13d-f	11.11cd	9.52c-e
${ m M}_2 { m L}_5$	21.33cd	19.00c-e	9.72a-d	8.30a-d	23.97cd	21.93cd	12.83b-e	11.07с-е	22.65c-e	20.47d-f	11.28cd	9.69b-d
${ m M}_3{ m L}_1$	27.67a	25.33a	10.33a	8.90a	31.00a	28.95a	14.56a	12.86a	29.33a	27.14a	12.45a	10.88a
${ m M}_3{ m L}_2$	22	21.67bc	9.38c-f	6.93e-g	23.54c-e	22.95cd	13.64a-c	11.57b-d	22.77c-e	22.31cd	11.51c	9.25c-e
M_3L_3	22.33bc	20.00cd	9.52b-e	8.10a-f	25.66c	23.62c	13.83ab	12.06a-c	24.00c	21.81de	11.68bc	10.08a-c
${ m M}_3{ m L}_4$	25.00ab	22.67b	9.92a-c	8.50a-c	28.33b	26.29b	14.22a	12.46ab	26.67b	24.48bc	12.07ab	10.48ab
${ m M}_3{ m L}_5$	26.33a	24.00ab	10.09ab	8.67ab	29.66ab	27.62ab	14.39a	12.63ab	28.00ab	25.81ab	12.24a	10.65a
C ₁	16.00g	12.67g	8.20h	6.77g	16.67i	13.48h	9.07h	6.96g	16.34j	13.08k	8.64h	6.87h
S.E. ±	0.986	0.878	$3.E.\pm$ 0.986 0.878 0.207 0.395 0.874 0.876 0.321 0.515 0.817 0.179	0.395	0.874	0.876	0.321	0.351	0.515	0.817	0.179	0.261

RUDRAGOUDA F. CHANNAGOUDA, H.B. BABALAD AND S.B. SALIMATH

oil as influenced by organic manures, GLM, liquid	Develop
5TPF/g of soil / hr) and CO, exchange rate (mg of CO ₂ /hr/ 100 g soil) in cotton soil as influenced	2011
: Phosphatase activity (ng pnpTPF /g of soil / hr) and CO ₁ manures and micronutrients	2010

		20	2010			201	1			Pc	Pooled	
Treatments	Phosphatase at 60 DAS	Phosphatase at 90 DAS	CO ₂ exchange at 60 DAS	CO ₂ exchange at 90 DAS	Phosphatase at 60 DAS	Phosphatase at 90 DAS	CO ₂ exchange at 60 DAS	CO ₂ exchange at 90 DAS	Phosphatase at 60 DAS	Phosphatase at 90 DAS	CO ₂ exchange at 60 DAS	CO ₂ exchange at 90 DAS
Organic manure (M)	nure (M)											
M_1	18.60c	17.42c	9.34c	8.47c	20.20c	18.71c	9.94c	8.64c	19.40c	18.07c	9.64c	8.55c
M_2	20.83b	19.53b	9.54b	8.81b	24.35b	22.68b	10.13b	9.23b	22.59b	21.11c	9.84b	9.02b
M_3	22.91a	21.78b	10.29	9.34c	27.10a	25.49a	11.12a	9.69a	25.01a	23.64a	10.70a	9.51a
S.E. ±	0.22	0.33	0.142	0.140	0.18	0.18	0.014	0.13	0.120	0.123	0.07	0.08
Foliar spray	of liquid man	Foliar spray of liquid manures + micronutrients (L)	ıtrients (L)									
L_1	22.02a	20.67a	9.94a	9.04a	25.21a	23.32a	10.64 a	9.49a	23.61a	22.00a	10.29a	9.26a
L_2	19.54c	18.64b	9.59a	8.51a	22.67d	21.35c	10.44c	8.67b	21.10e	20.00c	10.01b	8.59b
L_3	19.96c	18.70b	9.56a	8.82a	23.39cd	21.62bc	10.31d	9.10ab	21.68d	20.16c	9.94b	8.96a
L_4	20.94b	19.69ab	9.93a	9.00a	23.78bc	22.35ab	10.53b	9.32a	22.36c	21.02b	10.23a	9.16a
L_5	21.44ab	20.19a	9.60a	9.01a	24.37b	22.85a	10.05e	9.36a	22.90b	21.52ab	9.82b	9.19a
S.E. ±	0.26	0.365	0.137	0.193	0.251	0.319	0.007	0.198	0.168	0.296	0.069	0.105
Interactions (MXL)	(IXII)											
$M_1 L_1$	19.46f	18.13d-f	9.58b-d	8.60a-d	20.97e	19.58f	10.38f	8.90a-e	20.21h	18.86g-i	9.98de	8.75e-g
${ m M_1L_2}$	17.68hi	16.93e-g	9.02d	8.17cd	19.08f	17.63gh	9.58j	8.23de	18.38i	17.28jk	9.30f	8.20gh
$M_1 L_3$	17.84g-i	16.53fg	9.38cd	8.46b-d	19.74ef	17.98fg	9.93h	8.62c-e	18.79i	17.26jk	9.66ef	8.54fg
$M_1 L_4$	18.84f-h	17.60e-g	9.64b-d	8.56a-d	20.46e	19.04fg	10.28g	8.80b-e	19.65h	18.32ij	9.96de	8.68e-g
$M_1 L_5$	19.16fg	17.90d-f	9.08d	8.55a-d	20.74e	19.34fg	9.53k	8.66b-e	19.95h	18.62h-j	9.31f	8.61e-g
$M_2 L_1$	22.41bc	21.17a-c	9.62b-d	8.91a-d	26.14bc	24.05b-d	10.28g	9.52a-c	24.27cd	22.61cd	9.95de	9.22b-e
${ m M}_2{ m L}_2$	19.65ef	18.13d-f	9.49b-d	8.56a-d	22.90d	21.72e	10.28g	8.73b-e	21.28g	19.93f-h	9.88de	8.65e-g
$M_2 L_3$	19.71ef	18.47de	999d	8.79a-d	23.74d	21.99e	9.53k	9.14a-d	21.72fg	20.23fg	9.26f	8.97d-f
${ m M}_2{ m L}_4$	20.91de	19.67cd	10.16a-c	8.92a-d	23.79d	22.55de	10.84d	9.32a-d	22.35f	21.11ef	10.50bc	9.12c-f
$M_2 L_5$	21.48cd	20.23bc	9.46b-d	8.89a-d	25.20c	23.12c-e	9.74i	9.46a-c	23.34f	21.68de	9.60ef	9.17c-e
${ m M}_3{ m L}_1$	24.19a	22.70a	10.62a	9.60a	28.53a	26.34a	11.28b	10.04a	26.36a	24.52a	10.95a	9.82a
${ m M}_3{ m L}_2$	21.29cd	20.87a-c	10.25a-c	8.80a-d	26.01bc	24.69a-c	11.48a	9.05a-d	23.65de	22.78b-d	10.86ab	8.93d-f
M_3L_3	22.34bc	21.10a-c	10.32ab	9.20a-c	26.71b	24.89ab	11.48a	9.53a-c	24.52c	23.00b-d	10.90ab	9.37a-d
${ m M}_3{ m L}_4$	23.07ab	21.82ab	10.00a-c	9.52ab	27.09b	25.46ab	10.48 e	9.83ab	25.08bc	23.64a-c	10.24cd	9.67a-c
$M_3 L_5$	23.67ab	22.43a	10.25a-c	9.60a	27.16b	26.08a	10.88c	9.97a	25.42b	24.26ab	10.56a-c	9.79ab
C_1	17.41i	15.83g	8.19e	7.81d	17.68g	16.16h	8.431	7.84e	17.54j	16.00k	8.31g	7.82h
S.E.±	0.456	0.576	0.264	0.327	$3.E.\pm$ 0.456 0.576 0.264 0.327 0.437 0.553 0.0091 0.345 0.478 0.476 0.133	0.553	0.0091	0.345	0.278	0.476	0.133	0.183

the continuous addition of enriched compost, vermicompost and gliricidia GLM equivalent to recommend levels of nitrogen with favourable environment for greater biological activity increased pool of nutrients. Organic manures in conjunction with foliar spray of Panchagavya recorded significantly higher available soil N, P₂O₅ and K₂O (279.46, 28.38 and 324.49 kg ha⁻¹, respectively) as compared to foliar spray of biodigester @ 20 per cent and was at par with borax @ 0.2 per cent + MgSO₄ @ 1 per cent and vermiwash @ 20 per cent and cow urine @ 10 per cent. Among the different treatment combinations, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded significantly higher available soil N, P₂O₅ and K₂O (284.4, 29.7 and 330.0 kg ha⁻¹, respectively) accounting for 5.66, 23.51 and 13.40 per cent, higher available NPK over RDF + FYM (269.2, 24.1 and 291.0 kg ha⁻¹) and was at par with EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with borax @ 0.2 per cent + $MgSO_{4}$ @ 1per cent, EC (1/3) + VC (1/3) + gliricidia GLM (1/3)equivalent to RDF with vermiwash @ 20 per cent and EC(1/3) + VC(1/3) + gliricidia GLM(1/3) equivalent to RDF with cow urine @ 10 per cent. Application of EC (1/3) + VC (1/3) + GLM (1/3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded higher gain in available N, P₂O₅ and K₂O over RDF + FYM and closely followed by EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with borax @ $0.2 \text{ per cent} + \text{MgSO}_{4} @ 1 \text{ per cent}$. Higher soil available N, P_2O_5 and K_2O may be due to higher soil microbial activity and higher root activity in the rhizosphere and improved soil physical and chemical properties. Higher organic carbon content has been owing to regular addition of enriched compost, vermicompost and gliricidia GLM with greater biological activity brought about by Panchagavya spray resulted higher available nutrients. Apart from major nutrients the availability of micronutrients enhanced as indicated by higher values of DTPA extractants viz., Cu, Zn, Fe and Mn, respectively. These results are in confirmity with findings of Katyal (1985); Chapale et al. (1990); Badanur et al. (1990) and Kademani et al. (2003). Similarly, Padole et al. (1998) and Malewar et al. (2000) indicate higher available N, P_2O_5 , K_2O and sulphur in the soil receiving FYM @ 10 t ha-1 over inorganic fertilizer alone.

Integrated application of EC (1/3) + VC (1/3) +

gliricidia GLM (1/3) equivalent to RDF recorded significantly higher bacteria, fungal, actinomycetes, phosphorus solubilising bacteria, N2-fixers, enzymes mainly phosphatase and dehydrogenase activity and soil respiration rate (73.19 cfu \times 10⁶/ g of soil, 26.84 cfu \times 10^{3} / g of soil, 39.65 cfu $\times 10^{2}$ / g of soil (Table 3-6), 26.15 cfu \times 10³/ g of soil, 29.52 cfu \times 10³/ g of soil, 25.01 μ pnp/g of soil/hr, 11.99 µ TPF/g of soil/day and 9.51 mg of C or CO_{2} / hr/100 g of soil, respectively) at 60 DAS as compared to application of FYM @ 5 t $ha^{-1} + RDF$. The foliar spray of Panchagavya @ 5 per cent in combination with organic manures recorded significantly higher population of bacteria, fungi, actinomycetes, N₂-fixers and PSM, phosphatase and dehydrogenase enzyme activity and soil respiration rate over foliar spray of bio-digester @ 20 per cent with organic manures and was at par with borax @ 0.2 per cent + MgSO₄ @ 1 per cent and vermiwash @ 20 per cent. Among the different treatment combinations, application of EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with foliar spray of Panchagavya @ 5 per cent recorded significantly higher bacteria, fungi, actinomycetes, N₂-fixers and P-solubilizer, phosphatase and dehydrogenase enzyme activity and soil respiration rate over RDF + FYM and was at par with EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with borax @ 0.2 per cent + MgSO₄ @ 1 per cent, EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with vermiwash @ 20 per cent and EC (1/3) + VC (1/3) + gliricidia GLM (1/3) equivalent to RDF with cow urine @ 10 per cent. The enhanced soil microbial activity as indicated by both population, microbial diversity and enzymatic activity was mainly due to favourably soil environment, sufficient energy in the form of carbon and protein sources with organic sources of nutrition. These results are in line with the findings of Solaiappan (2002) who opined that, addition of organic manures improved the microbial activity and enhanced the availability of native and applied nutrients which in turn increased the yield of cotton Mathur (1997). Application of vermicompost and crop residues stimulated the N₂- fixing bacteria mainly Azotobacter and Rhizobium sp. (Gaur, 1984). Finally concluded that combined application of EC (1/3) + VC(1/3) + gliricidia GLM (1/3) equivalent to RDN with foliar spray of Panchagavya @ 5 per cent improved soil properties.

REFERENCES

- Badanur, V.P., Poleshi, C.M. and Balachandra, K.N. (1990). Effect of organic matter on crop yield and physical and chemical properties of a *Vertisol. J. Indian Soc. Soil Sci.*, **38** (3): 426-429.
- Bharadwaj, V. and Omanwar, P.K. (1994). Long-term effects of continuous rotational cropping and fertilization on crop yields and soil properties II. Effects on EC, pH, organic matter and available nutrients of soil. *J. Indian Soc. Soil Sci.*, **42** (3): 387-392.
- Boomathi, N., Kanna, S. Suganya and Jeyarani, S. (2005). Panchagavya – A gift from our mother's nature. *Agrobios. Newslett.*, **4** (3): 20-21.
- Bunt, J.S. and Rovira, A.D. (1955). Microbiological studies of some subantartica soils. *J. Soil Sci.*, **6** (1): 119-122.
- Chapale, S.D., Chapale, B.S., Yerne, A.Z. and Lanjewar, A.D. (1990). Effect of green manuring on soil properties and yield performance of rice (*Oryza sativa*). *J. Soils Crops*, **10**(1):136-140.
- Guar, A.C., Neelakantan, A. and Dorgan, K.S. (1995). Organic manures. Publ. Indian Coun. Agric. Res., Pusa, NEW DELHI (INDIA).
- Kademani, M.B., Radder, B.M. and Hebsur, N.S. (2003). Effect of organic and inorganic fertilizers on availability and uptake of nutrients by sunflower in *vertisols* of Malaprabha command. *Karnataka J. Agric. Sci.*, **16** (1): 48-53.
- Katyal, J.C. (1985). Integrated nutrients supply system for sustainable crop production in agronomic research

towards sustainable agriculture, Ed. K.N. Singh and R. P. Singh. *Indian Soc. Agron.*, IARI, NEW DELHI (INDIA).

- Kuster, E. and Williams, S.T. (1964). Selection of media for isolation of *Streptomyces*. *Nature*, **202** : 929-929.
- Malewar, G.U., Badole, S.B., Mali, D.V., Siddiqui, M.B. and Syedismail (2000). Influence of fly ash with and without FYM and fertilizers on physico-chemical properties of sunflower and cotton growing soils. *Ann. Agric. Res.*, **21**(2): 187-191.
- Martin, J.P. (1950). Use of acid, rose-Bengal acid *Streptomycin* for estimating soil fungi. *Soil Fungi*, **69** (3) : 215-232.
- Mathur, G.M. (1997). Effect of long term application of fertilizers and manures on soil properties and yield under cotton– wheat rotation in northwest Rajasthan. *J. Indian Soc. Soil Sci.*, **45** (2): 288-292.
- Padole, V.R., Deshmukh, P.W., Nikesar, R.J. and Bansode, N.V. (1998). Effect of organics and inorganics on yield and quality of cotton grown on vertisols. *PKV Res. J.*, **22** (1): 6-8.
- Sanjutha, S., Subramanian, C., Rani, Indu and Maheswari, J. (2008). Integrated nutrient management in *Andrographis* paniculata. Res. J. Agric. Biol. Sci., 4(2):141-145.
- Solaiappan, U. (2002). Effect of inorganic fertilizer and organic manure on cotton-sorghum rotation in rainfed *Vertisols*. *Madras Agric. J.*, **89** (7-9): 448-450.
- Tolanur, S.I. (2008). Integrated effect of organic manuring and inorganic fertilizer on yield and uptake of micronutrients by chickpea in *Vertisol. Legume Res.*, **31** (3) : 184-187.

