Effect of seed invigouration treatments on growth parameters of soybean

DEEPA P. NAIR AND G.V. DEOGIRKAR

Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, AKOLA (M.S.) INDIA

(Received: October, 2010; Accepted: November, 2010)

An experiment on soybean variety JS-335 with two different lots L_1 and L_2 (72% and 57% germination, respectively) was conducted at the experimental farm of department of Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola to study the effect of seed invigouration treatments on growth parameters. The experiment was laid out in Factorial Randomised Block Design with 7 treatments and three replications. Results showed that growth parameters *viz.*, plant height, leaf area, total dry matter were significantly increased by invigouration treatments. The results indicated that at all the stages of development invigouration treatment of seed with IAA+NAA (10 ppm and 6 hrs hydration) *i.e.* T_1 showed maximum plant height, leaf area and total dry matter.

Key words : Invigouration treatments, Plant height, Leaf area, Dry matter

Nair, P. Deepa and Deogirkar, G.V. (2011). Effect of seed invigouration treatments on growth parameters of soybean. *Asian J. Bio. Sci.*, **6**(1): 12-15.

INTRODUCTION

C oybean [*Glycine max* (L.) Merrill] is a miracle \checkmark "Golden Bean" of the 21st century mainly due to its high protein (38-41%) content and about 20% cholesterol free oil. In India it is mainly grown as a oilseed crop. Total area under soybean cultivation in Maharashtra is 24,400 ha and production is 27,078 tonnes of seed. In Vidarbha area under soybean was 6,431 ha with the production of 7,054 tonnes of (Anonymous, 2006). The productivity of soybean is a result of interactions between genetic make up and environmental conditions. The genetic make-up is expressed through the physiological processes operating within the plant. Efficiency of physiological processes depends on morphological characters of plant. Thus, productivity can be manipulated to some extent through manipulation of morphological characters. The important morphological characters, associated with "Effect of seed invigouration treatments on growth parameters of soybean" productivity are plant height, leaf area and dry matter per plant. In view of above, the present investigation was undertaken to study the effect of invigouration of growth parameters.

RESEARCH METHODOLOGY

The field experiment was conducted at the experimental farm of Department Agril. Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola with the

object to know the influence of seed invigouration treatments on growth parameters of soybean. This experiment was carried out in Factorial Randomised Block Design with three replications and seven treatments of soybean cultivar JS-335 with two different lots *viz.*, L_1 and L_2 (72% and 57% germination, respectively). The observations were recorded from 15 DAS to 75 DAS at an interval of 15 days.

For recording the plant height, leaf area and total dry matter, five plants in each plot in each replication were randomly selected and labelled. For recording periodic observations on growth parameters, five plants were randomly selected from each plot. These plants were watered before uprooting and were removed with the help of fork to keep root system intact. These plants were washed thoroughly and were used for recording observations.

Plant height was measured from the ground level up to the tip of the main axis in centimeters at an interval of 15 days. Leaf area was measured by taking third leaf from apex amongst fully opened leaves which is supposed to fully active. Leaf area was calculated with the help of formula given by (Babich and Makrov, 1969). After the measurement of leaf area, leaves and stem of all the plants were dried in oven at 70°C till the samples showed constant dry weight.

The details of treatments are given below:

a. 9 0 %	M. O 3000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	© S, O	@ ° ,	a no llos mal a	° soy sca	69							
S.O.		SVC 9,			30 JAS			SVC 9/			80 3AS			SYC 91	
Server and the server															
				22 V 1		102 G #	9 : EL	The week	18 31	30 33	76 80°	78 87	21 CACA	98 I L	6186
	1 1 1919 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 23 2323	10 80 8 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The Car	3 1 W	20 30		33 11	31 26	3118	36 86	36 98		36 10	3111
	1 m 1 4	ee e		Ter we	98 g ,		30 18	32 30	33 / 8	98 33	31 halls	340 11	31 20	SE 93	38 1 -
		61 334 1 4744	063 63	6 62 1 hr	10200 V 2	CC 97 1	3/ 2	23 33	88 88	98 22	1062 1082	18 68	28 12	3 636	38 68
	1949 63 23 4949	1 × 63	6 4242	081	38 / ,	8 7 8		1111 N.S.	30.61	31 80	37 10	92 30	36 36	33 IV	and property
	08 8	311	8 33			191,	00 82	31 70	0 / 82	97 A.S.	10 0 C	31 01	98 98		09 98
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	320	ann ei Cara bi		399 83 /	1742 (2) 1943 (2)	36 22	37 00	32 38	08 72	31 34	1 , 000	mm 18	1949 6949 1949 6949	38 wo
W CE "	22 8	1 182		1 23 1 22 1	0131		11 62	1308		28 1 23 c	19 C. C.		342 331	23 / 22	
		0 1)	S /			5			ss /			(f) //			5
	392 8	287 O	act o	and C	129 6	Co Charles	0.278	1310	373 0	81,0	0,763	03/3	02/0		1180
C) 2.5%	0113			0 828	1999 1		012	\$ 3/3		9 / 0	8118		0311	301 0	

13

 T_0 - untreated (control)

T₁- IAA+NAA (10 ppm. 6hrs hydration)

T₂- IAA+NAA+Thiram

 T_3 - Hydration for 16 hours+Thiram (2g/kg) dry dressing after hydration

 $\rm T_4$ - Hydration for 6 hours+Thiram dry dr essing after hydration

 T_5 - GA₃ 50 ppm *i.e.* hydration in GA₃ 50 ppm for 6 hours.

 T_6 - GA₃ 50 ppm+Thiram *i.e.* T_5 +Thiram

RESULTS AND ANALYSIS

The results of the present investigation have been presented in Table 1, 2 and 3.

Plant height:

Data revealed that seed invigouration treatments showed rapid increase in growth from 15 DAS to 60 DAS indicating intermediate habit of growth. Plants though grew after 60 DAS, showed slow growth. The differences in height of plant were found to be significant at all the stages of growth for lots and invigouration treatments where as lots x interaction were non significant (Table 1).

High vigoured lot (L_1) showed improved plant height over low vigoured lot (L_2). Invigouration treatment T_1 showed increased plant height over control. All the treatments exhibited better plant height as compared to control in both the lots. Similar results were reported by Yadava and Sreenath (1975), Pawar *et al.* (1976) and Maske *et al.* (1998).

Leaf area:

Mean leaf area/plant was significantly affected by seed invigouration treatments, lots and their interactions at all stages of growth except for lots at 15 DAS. Mean leaf area/plant gradually increased upto 60 DAS followed by sharp decline in the last phase. The decrease in leaf area per plant during final phase of growth is attributed to senescence. Leaf area per plant was higher in high vigour lot (L_1) than low vigour lot (L_2) . Treatment T_1, T_2 and T₆ showed increased leaf area per plant over control (Table 2). Rest of the invigouration treatments exhibited lower leaf area per plant as compared to control. Both the high and low vigour lots when treated with IAA+NAA (T_1) , IAA+NAA+Thiram (T_2) and GA₃+Thiram (T_6) showed increased leaf area per plant. Similar pattern of leaf area development was reported by Rao et al. (1976), Allurwar (1982) and Maske et al. (1998).

$^{+}$ MS $^{-}$ MS <	~03, 0° 8000	8 °N 80° 32° 0	m Jage Jac	۵۰٬۵۵۵٬۰۵	3.8. € ry	mer of the light	o° soy so:	6. 60							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SVI G,			30 JAS			1 5 7AS			800 JAS			SVC GI	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
3 53 74 43b 400 87b		, 00 BO	O I B		I also	181	267	00	163		108	*9 8° -	1:22	70.01	69 16
· ·	0350	286	3) L	1 30	1 62.63		92 0		88 8	1 3 × 1 42 ×	33 8 :	0/8,	1186	66 36	3116
V 0.8* 0.8* 3'' 3.8 3'' 8'' 1'' 1'' 3''' 1'''' 1'''' 1'''' 1'''' 1'''' 1''''' 1''''' 1''''' 1''''' 1'''''' 1'''''' 1''''''''''''''''''''''''''''''''''''		09	08 /	10 = 1	06 8	1 6260	0 = 0	10 8	198	0/2/	067 -		26 31	74 1 W	26 - 36
0 0/6 0/6 3/6 7/6 6/0 6/7 7/3 3/7 7/6 3/36 2/36 <td></td> <td>×82 50 ×</td> <td></td> <td></td> <td></td> <td>371</td> <td>871</td> <td>1 001</td> <td>1 81</td> <td>é 6.93</td> <td>1 43 681</td> <td>18 9,</td> <td>2: 01</td> <td>20.30</td> <td>70 64</td>		×82 50 ×				371	871	1 001	1 81	é 6.93	1 43 681	18 9,	2: 01	20.30	70 64
0 07* 03b 380 37/ 360 300 37/ 500 370 500 77/ 780 77/5 780 77/5 780 77/5 780 77/5 760 78 760 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 77 78 77 77 78 77 78 77 77 78 77 77 78 77	Nº 45	3/0 0	93 0	3/8		2 80	00 8	613	981			1911	3166	, 3 36	20 8
0 0.0 0.0 1.0 0.0 1.0 0.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1 1.0 1.1 1.1 1.1 1.0 1.1	25	0 021	980	08 2			131	98 9	88,	00 P		08 9,	20.37		87 8 ;
2 * CS 380 3*5 8/1 1*5 * GS * 5.25 7.07 1 ×<		0 0 00	2 am		06 L		008	1 20		62 I :		681,	3116	21 16	21 60
x x x x x x x x x x x x x x x x x x x	11	90 ; (02 2						199,	1 43 Mas		33 36	10 66	
2 83 83 83 83 83 83 83 83 83 83 83 83 83															
03 0.00/ 0.010 0.003 0.005 0.003 0.005 0.010 0.01/ 0.01/ 0.032 0.003 0.007 0.010 08 0.070 0.028 0.008 0.01/ 0.078 0.01/ 0.078 0.77/ 0.738 0.337 0.008 0.020 0.079															
08 0 <i>0</i> 0 0.03 0.008 0.07 0.028 0.07 0.038 0.077 0.738 0.337 0.008 0.020 0.03	22	1000 0 80	82 63 63	50000 03	44 646963 53 696963 53	62 636963 63 636363	68 696943 69 696943	89 894 69 69 69 69	1 100 60	1 10 63	6800	0 / / 63	64 6463 63	1000 0	63 63 63 63 63 63
		000 88	0 079	800 O	001	0 028	001	0 073	0100	16,0	0 738	122 0	0000	020 0	0 079
					SUL ANE			I BY THINKS						1 22 2012	

		11	200		1 4	10	100	66			000	100
		()) ())		2 M		-					00	20 00
4.63												
3VC		$\mathbb{Z}^{k_{2}}$	98	00	1000		34				16219	
40				(M) >	1999	640			0		00	14
1												
		98	634	900 y	3	200			1000	ොම	13 ha	6000
		()) ())			(N) /	2999 2999	66	m 197	199 ×		0 0 0	19 19 19
		60	12		3	C.S.		92			01:	1000
											00	1 63
6.03												
3WC		49		86	11 1	Le.	6963 6963				~ 55	19965
6363											10	20 A
199												
		01	200	08			61				La	19 69 69
											10	63 63
	Ŵ	96	60	19			18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				0%	
				100		69 2	2 (N) (N)				1 (N 1 (N	2.9.
<i>(</i> 1)												
Nº.			60	18	13	10.83	19 65 19 65				820	1999
1 40										(JI)	3	83
						4.5						
a 396		Sec.		ŝ.				10 10	8 40 0		9 (N	5 / CA
M DC		633					2 9 7				5	63
0		10	P.S.	9	19 (A)	19 N - 19	01:	92) 92)			020	69200
a and		3		(4)	3	and	S.	(r)			3	69
£. [[6												100
14 De 39		0	1		3	120	1999 1999	11				100
		i l				2	0		i l		3	6.9
6											1	
୍ଞ		1		(12) (12)	1 1 6	122		C and			(N/N)	100
03 690											9	22
Sec. 2.				665		13	0	(25)			600	63
			1				1000 =				300 (2 23 the
e O												9.9
S.S.		1050	1	3	5		69		2753		02	
		60	1	<i></i>	~ 33		1		1		000	2.0
× Av												
00		200	38	0	1000		100	100	200		100	
								(y.) //		/	0 0	
°©												
10	1 (9 uu											
69 63	, EC								19 E. E.			
96									1			0

EFFECT OF SEED INVIGOURATION TREATMENTS ON GROWTH PARAMETERS OF SOYBEAN

[*Asian J. Bio Sci.*, 6 (1) April, 2011] • HIND INSTITUTE OF SCIENCE AND TECHNOLOGY •

Dry weight plant¹:

The data are presented in Table 3. The data indicate that mean total dry weight gradually increased upto 75 DAS. Rate of increase in mean total dry weight was fast till 60 DAS. The rate of increase in total dry weight slowed down from 60 DAS onwards. Mean total dry matter per plant exhibited significantly for lots, treatments and their interactions at all the stages of growth. Invigouration treatment IAA+NAA (10ppm, 6 hrs hydration) showed highest dry weight as compared to other treatments and control. Invigouration treatments and cultivar combinations showed significantly superior results. Similar results were also reported by Bhardwaj *et al.* (1963), Rao *et al.* (1976) and Maske *et al.* (1998) in soybean.

LITERATURE CITED

- Allurwar, M.W. (1982). Effect of presowing soaking seed treatments with growth regulators on growth and yield of groundnut. Ph. D. Thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, M.S. (India).
- Anonymous (2006). Annual report of state Department of Agriculture, Nagpur, M.S. (India).

- Bhardwaj, S.N., Sanhanam and Krishnamurthy, R. (1963). Influence of pretreating seeds with NAA on yield and growth of cotton. *Indian Cotton Grow. Res.*, 4(1): 5-11.
- Maske, V.G., Deotale, R.D., Sorte, V. N., Chimurkar, B.S. and Chore, C.N. (1998). Influence of GA₃ and NAA on growth and yield Effect of seed invigouration treatments on growth parameters of soybean contributing parameters of soybean. J. Soils & crops, 8(1): 91- 94.
- Pawar, P.R., Joshi, A. T. and Mahakal, K.G. (1976). Effect of seed treatment with plant growth regulator on germination, growth and yield of okra. J. Maharastra agric. Univ., 2(1): 26-29.
- Rao, J.V. S., Subhadra Devi, M. and Swami, P.M. (1976). Effect of growth regulators on Yield components of soybean. *Indian J. Plant Physiol.*, 10(1-2): 113-119.
- Yadava, R.B.R. and Sreenath, P.R. (1975). Influence of some growth regulators on growth, flowering and yield of cowpea. *Indian J. Plant Physiol.*, 18(1): 135-139.

**** * ****