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ABSTRACT
The H synchronization strategy is called a Radial Basis Function Neural Network H¥ ¥ ¥ ¥ synchronization (RBFNNHS) strategy, for chaotic
systems due to BIS processes. In the proposed framework, a radial basis function neural network (RBFNN) is constructed as an
alternative to approximate the unknown nonlinear function of the chaotic system. Based on this neural network and linear matrix
inequality (LMI) formulation, the RBFNNHS controlle r and the learning laws are presented to reduce the effect of disturbance to an
H¥ norm constraint. Findings the RBFNNHS controller and the learning laws can be transformed into the LMI problem and solved
using the convex optimization method. A numerical example is presented to demonstrate the validity of Ahm’s RBFNNHS scheme.

INTRODUCTION

Chaos synchronization was discovered by Pecora
and Carroll in 1996, interest in studying the synchronization
of various BIS-affected chaotic systems has increased
significantly. The idea of synchronization is to use the
output of the drive system to control the response system
so that the output of the response system follows the
output of the drive system asymptotically. In the literature,
various synchronization schemes, such as

– Variable structure control
– OGY method
– Parameters adaptive control
– Observer-based control
– Active control
– Time-delay feedback approach
– Backstepping design technique
– Complete synchronization
and so on, have been successfully applied to the chaos

sychronization.

Application of neural networks:
In recent years, neural networks have attracted

considerable attention as they proved to be essential in
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applications such as
– Pattern recognition
– Associative memories
– Signal processing, fixed-point computations, and

so on (Gupta et al., 2003).

Systems having high ZBIS values:
Due to the universal approximation ability of neural

networks, they have been widely used to approximate
human systems affected with high z-parameters and
design robust controllers based on the outputs of neural
networks. Recently,  neural networks have been
successfully used in the synchronization controller design
for uncertain chaotic systems. In Chen et al. (2006), a
synchronization scheme was studied for uncertain chaotic
systems via radial basis function neural network
(RBFNN). A synchronization control scheme was
presented with a RBFNN disturbance observer for two
chaotic systems in Chen et al.  (2009). A RBFNN based
a chaos synchronization method for a class of time-
delayed chaotic systems was proposed in (Chen and Chen,
2009).

Real physical systems:
In real physical systems, one is faced with model
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uncertainties and a lack of statistical information on the
signals. This had led in recent years to an interest in min-
max control, with the belief that H¥  control is more robust
and less sensitive to disturbance variances and model
uncertainties (Stoorvogel,  1992). In order to reduce the
effect of the disturbance  (Hou et al., 2007) firstly adopted
the H¥ control concept (Stoorvogel, 1992) for chaotic
synchronization  problem of a class of chaotic systems.

A controller for the H¥  anti-synchronization was
proposed by Ahn (2009). Despite these advances in H¥
synchronization, most research results were restricted to
known chaotic systems.

Can we obtain a RBFNN based H¥   synchronization
method for human chaotic systems? This paper gives an
answer for it.

To the best of our knowledge, however, for the
RFBNN based H¥  synchronization of unknown chaotic
systems, there is no result in the literature so far, which
still remains open and challenging.

Ahn’s H ¥¥¥¥
 synchronization method:

This method is based on RBFNN model for unknown
chaotic systems with external disturbance. This method
is called a radial basis function neural network H¥
synchronization (RBFNNHS) method. In this scheme, a
RBFNN is constructed to precisely approximate the
unknown nonlinear function of the chaotic system. Based
on this neural network model, the RBFNNHS controller
with the learning laws is developed to ensure that the H¥
norm from the disturbance to the synchronization error is
reduced to a disturbance attenuation level.

Lyapunov method and linear matrix inequality:
By virtue of Lyapunov method and linear matrix

inequality (LMI) formulation, an existence criterion for
the proposed scheme is represented in terms of the LMI.
The LMI problem can be solved efficiently by using
recently developed convex optimization algorithms (Boyd
et al.,  1994).

This paper is organized as follows. In section 2, we
formulate the problem. In section 3, an LMI problem for
the RBFNNHS of unknown chaotic systems is proposed.
In section 4, a numerical example is given, and finally,
conclusions are presented in section 5.

Mathematical details Chaos in the human brain due
to intake of three types of BIS agents:

Consider the chaotic system in the form of

x(t) = Ax(t) + f(x(t)), (1)

Here x(t)e Rn is the state vector, A e Rnxn is a known

constant matrix, and f(x(t)):  Rn ®  Rn is the unknown
nonlinear function vector satisfying the local Lipschitz
condition.

The RBFNN is used to approximate f(x(t)) and the
synchronization controller is designed based on the output
of RBFNN.

The RBFNN is used to approximate f(x(t)) and the
synchronization controller is designed based on the output
of RBFNN.

The approximation of f(x(t)) using RBFNN  is

f(x(t)) = W(t) ffff (x(t)) (2)

where W(t) e Rnxn  is the weight matrix and f k(x(t))
= [f 1(x(t)) .... f n(x(t))]TeRN is a set of base functions of
the corresponding RBFNN.

The element functions (x(t)) (i = 1...n) are given by

2 i(x(t)) = exp(-||x(t)-ci||2/ ),id (3)

where ci and di are the center and width of the neural
cell of the i-th hidden layer.
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Here, nxn
WS RÌ  is a compact set of weight

matrices and  n
xS RÌ is a compact set of state vectors.

Under the optimal weight value, the nonlinear
function vector f(x(t)) can be written as

f(x(t)=W* eeee(x(t))+ffff (x(t)), (5)

where, e(x(t)) = [e1(x(t)).... en(x(t))] te Rn  is the
smeallest approximation error of the RBFNN.

Suppose || (x(t))|| £ h£ h£ h£ h, (6)
n > 0 is the unknown upper bound of the

approximation error.
By using (5), the unknown chaotic system (1) can

be represented by

x(t) = Ax(t) + W* ffff (x(t)) + eeee(x(t)). (7)

The synchronization problem of the system (7) is
considered by using the drive-response configuration. The
system (7) is considered as a drive system. According to
the drive-response concept, the controlled response
system is given by  x(t)=Ax(t)+u(t)+d(t), (8)

Here x(t) e Rn is the state vector of the response
system (8), u(t) e Rn is the control input, and d(t) e Rn is
the external disturbance. Synchronization error e(t) = x(t)
– x(t). Then we obtain the synchronization error system.
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e(t) = Ae(t) – W* ffff (x(t))- eeee(x(t))+u(t)+d(t).         (9)

n(t) = the estimate of n.

Defination 1 (RBFNN H¥¥¥¥  synchronization):
With zero initial condition and a given level g>0, the

error system (9) is RBFNN H¥   synchronized, if the
synchronization error e(t) satisfies.

2

0 0
( ) ( ) ( ) ( ) ,T Te t Se t dt d t d t dtg

¥ ¥
<� �       (10)

under the learning law W(t) and the controller u(t).
Here S = a positive symmetric matrix. The parameter g =
H¥  norm bound or the disturbance attenuation level.

Defination 2  (RBFNN asymptotical synchronization):
The error system (9) is RBFNN asymptotically

synchronized if the synchronization error e(t) satisfies.

lim ( ) 0,
t

e t
®¥

=       (11)

under the learning law W(t) and the controller u(t).
Remark 1. The H¥ norm (Stoorvogel, 1992) is defined as

0

0

( ) ( )
|| ||
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T

ed
T

e t Se t dt
T

d t d t dt

¥

¥
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�

�
where Ted is a transfer function matrix from d(t) to

e(t). For a given level g > 0, ||Ted||¥ <g can be restated in
the equivalent form (10).

The purpose of this paper is to design the controller
u(t) and the learning law W(t) guaranteeing the RBFNN
H¥  synchronization for unknown chaotic systems. In
addition, the controller u(t) and the learning law W(t) will
be shown to guarantee the RBFNN asymptotical
synchronization when the external disturbance d(t)
disappears.

RBFNN H¥ ¥ ¥ ¥ synchronization:
This section designs the RBFNN H¥

synchronization controller for unknown chaotic systems.
The existence condit ion for the RBFNN H¥

synchronization is proposed in the following theorem.
Theorem 1. For given g > 0 and S = ST > 0, assume

that there exist X = XT > 0 and g such that

2
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  (12)

Construct the following controller
u(t) =YX-1(x(t) – x(t) + W(t) ffff (x(t)) + u

f
(t).      (13)

where uf(t) is designed as

1
1

1
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If the weight W(t) and the parameter estimation
value n(t) of the RBFNN are updated as

W(t) = -ffff X -1(x(t)-x(t) ffff T(x(t)),       (15)

n(t) = r ||(x(t) – x(t)T X -1||       (16)

where f  is a symmetric positive definite matrix and
r  is a positive constant, then the RBFNNHS with the
disturbance attenuation level g is achieved.

Proof: The closed-loop synchronization error system
with the control input u(t)=Ke(t) + W(t)f 9x(t)) + uf(t)
can be written as

e(t)=(A+K)e(t)+W(t)f (x(t))-e(x(t))+uf(t)+d(t).(17)

where W(t) =W(t)-W*. Define h (t)= h(t)-h and
consider the following Lyapunov function:

V(t)=eT(t) Pe(t)+trace{WT(t)f -1W(t)+ 
21

h
r

-
 (t). (18)

where trace{.} stands for the trace and is defined
as the sum of all the diagonal elements of a matrix.

Time derivative of V(t):
The time derivative of V(t) along the trajectory of

(17).

= 
1
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If we use the inequality XTY+YTX£XTL  X+YTL -1Y,
which is valid for any matrices XeRnxm, YeRnxm, L =L T>0,
LeRnxn, we have

e(t)kTpd(t) + dT(t)Pe(t)£ g2dT(t)d(t)+ 2

1
g e(t)Tp pe(t) (19)

Using (19), we obtain

2
2

1
( ) ( ) ( ) ( ) ( )T T T TV t e t A P PA PK K P PP e t d t d tg

g
� 	
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By considering h(t)=h(t)-h, with uf(t) defined by

T
f

Pe(t)
- ( ), || ( ) || 0,
||e ( ) ||u (t)=  

0, || ( ) || 0,

T
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Let us use the following learning laws

(a) W(t) = FPe(t)fT(x(t))    (23)
(b)h(t)=r||eT(t)P||    (24)
Suppose the following matrix inequality is satisfied

2

1
0T TA P PA PK K P PP S

g
+ + + + + <    (25)

Then
V(t) < -eT(t)Se(t)+g2dT(t)d(t)    (26)

Integrating both sides of (26) from 0 to ¥  gives

2
00 0 0

( )
[ ( )] ( ) (0) ( ) ( ) ( ) ( )T Tdv t

dt V t V V e t Set dt d t d t dt
dt

g
¥ ¥ ¥¥= = ¥ - <- +� � �

Since V(¥ ) ³  0 and V(0) = 0, we have the relation
(10). From Schur complement, the matrix inequality (25)

is equivalent to

2

1

0 0

0

T TA P PA PK K P P I

P I

I s

g
-
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 �- <
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 �-�  (27)

Pre-and post-multiplying (27) by diag (P-1, I, I) and
introducing change of variables such as X=P-1 and Y=KP-

1, (27) is equivalently changed into the LMI (12). Then
the gain matrix of the control input u(t) is given by K=YX-

1. Also, the learning laws (23) and (24) are equivalently
changed into (15) and (16), respectively. By considering
e(t)=x(t)-x(t) and P=X-1, the signal uf(t)(21) becomes (14).
This completes the proof.

Remark 2. Various efficient convex optimization
algorithms can be used to check whether LMI(12) is
feasible. In this paper, in order to solve the LMI, we utilize
MATLAB LMI Control Toolbox (Gahinet et al., 1995),
which implements state-of-the interior-point algorithms.

External BIS disturbance =  0EXT
BISZ =

Without the external BIS disturbance, if we use the
control input (13) and the learning laws (15)-(16), the
RBFNN asymptotical synchronization is obtained.

Proof. When d(t) = 0,
we obtain V(t) < -eT(t)Se(t)£ 0    (28)
from (26). This guarantees

lim ( ) 0
t

e t
®¥

=   (29)

from Lyapunov theory. This completes the proof.

Numerical calculations:
Consider the following Genesio-Tesi chaotic system

(Genesio and Tesi, 1992):

1 1

2 2
2

3 3 1

( ) 0 1 0 ( ) 0

( ) 0 0 1 ( ) 0

( ) ( ) ( )

x t x t

x t x t

x t c b a x t x t

� 	 � 	 � 	 � 	

 � 
 � 
 � 
 �= +
 � 
 � 
 � 
 �

 � 
 � 
 � 
 �- - -�  �  �  � 

When a=1.2, b=2.92, and c=6, the Genesio-Tesi
chaotic system exhibits a chaotic behaviour. The
parameters of

base functions are taken as Ci=0 and di=1(i-1,2,3).
For the numerical simulation, we use the following
parameters:
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, r =50

For the design objective (10), let the H¥ performance
be specified by g=0.4. Solving the LMI (12) by the convex
optimization technique of MATLAB software gives

1.9200 0.0000 0.0000

0.0000 1.9200 0.0000

0.0000 0.0000 1.9200

X
� 	

 �= 
 �

 �� 

Fig. 1 shows state trajectories when the initial
conditions are given by

1

2

3

(0) 3

(0) 1 ,

(0) 2
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x

x
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2

3
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ˆ (0) 1.2 ,

ˆ (0) 1.5

x

x

x
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 � 
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origin. Next, we increase the disturbance attenuation level
g to 0.88 with the matrix S remained invariant. Solving
for the LMI (12) gives.

 

0.8388 0.0000 0.0000

0.0000 0.8388 0.0000

0.0000 0.0000 0.8388

X
� 	

 �= 
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 �� 

1.8831 52.3742 28.6016

51.5354 1.8831 2.7105

23.5686 1.1000 0.8765

Y

- -� 	

 �= -
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 �- - -� 
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0.1 0.25 0.5
ˆ (0) 0.25 0.1 0.2 ,

0.1 0.1 0.2

W

-� 	

 �= -
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 �-� 

 ˆ ( 0 ) 0h = (31)

The external disturbance di(t)(i=1, 2, 3) is given by
w(t). Here w(t) = a Gaussian noise with mean 0 and
variance 10.

Fig. 2 shows, by the proposed RBFNNHS method,
that the synchronization error e(t) is bounded around the

 Fig. 1: State trajectories (gggg=0.4)

 Fig. 2: Synchronization errors (gggg=0.4)

 Fig. 3: State trajectories (gggg=0.88)
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State trajectories and error responses for the closed-
loop chaotic system with the disturbance attenuation level
g=0.88 are illustrated in Fig. 3 and Fig. 4, respectively.
From the simulation results, it can be seen that the resulting
disturbance attenuation performance is relatively poor for
higher attenuation level.

Conclusion:
The RBFNNHS controller acts like the H¥

synchronization controller, for BIS-induced chaotic
systems with external disturbance. In the presented
design framework, the RBFNN was built and trained to

emulate the unknown nonlinear function of the chaotic
system. the RBFNNHS controller and the learning laws
were derived to achieve the H¥  performance, with a
prespecified attenuation for the external disturbance. The
synchronization for the Genesio-Tesi chaotic system is
given to illustrate the effectiveness of the RBFNNHS
scheme.
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 Fig. 4: State trajectories (gggg=0.88)


