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ABSTRACT

The H synchronization strategy is called a Radial Bsis Function Neural Network H, synchronization (RBFNNHS) strategy, for chaotic
systems due to BIS processes. In the proposed framerk, a radial basis function neural network (RBFNN) is constructed as an
alternative to approximate the unknown nonlinear function of the chaotic system. Based on this neuraletwork and linear matrix
inequality (LMI) formulation, the RBFNNHS controlle r and the learning laws are presented to reduce theffect of disturbance to an
H¥ norm constraint. Findings the RBFNNHS controller and the learning laws can be transformed into the.MI problem and solved
using the convex optimization method. A numerical xample is presented to demonstrate the validity oAhm’s RBFNNHS scheme.
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| NTRODUCTION applications such as
Chaos synchronization was discovered by Pecora — Pattérn recognition
and Carroll in 1996, interest in studying the syonkzation — Associative memories _
of various BIS-affected chaotic systems has in@eas — Signal processing, fixed-point computations, and

significantly. The idea of synchronization is tceue SO On (Guptat al.,2003).
output of the drive system to control the resp@ystem _ _ _
so that the output of the response system folldwes t SyStems having high Z¢ values:

output of the drive system asymptotically. In fterture, Due to the universal approximation ability of ndura
various synchronization schemes, such as networks, they have been widely used to approximate
human systems affected with high z-parameters and
_ \Variable structure control design robust controllers based on the outputsofai
_ OGY method networks. Recently, neural networks have been
— Parameters adaptive control successfully used in the synchronization controlésign
_ Observer-based control for uncertain chaotic systems. In Chatnal. (2006), a
_ Active control synchronization scheme was studied for uncertaiotot
— Time-delay feedback approach systems via radial ba_sis _function neural network
— Backstepping design technique (RBFNN). A synchronlzat_lon control scheme was
— Complete synchronization prese_nted with a RBFNN disturbance observer for two
and so on, have been successfully applied to tiasch chaotic systems in Chet al. (2009). A RBFNN based
sychronization. a chaos synchronization method for a class of time-
delayed chaotic systems was proposed in (Chen lagl C
Application of neural networks: 2009).

In recent years, neural networks have attracted

considerable attention as they proved to be essenti R€al physical systems: _ _
In real physical systems, one is faced with model
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uncertainties and a lack of statistical informationthe  constant matrix, and f(x(t)): "®® R"is the unknown
signals. This had led in recent years to an intémesin-  nonlinear function vector satisfying the local Lapgz
max control, with the belief that Hontrol is more robust  condition.
and less sensitive to disturbance variances ancelmod  The RBFNN is used to approximate f(x(t)) and the
uncertainties (Stoorvogel, 1992). In order to pedthe  synchronization controller is designed based ootiyeut
effect of the disturbance (Hetal.,2007) firstly adopted of RBFNN.
the H¥ control concept (Stoorvogel, 1992) for ciwaot The RBFNN is used to approximate f(x(t)) and the
synchronization problem of a class of chaoticayst  synchronization controller is designed based ontiteut

A controller for the H anti-synchronization was of RBFNN.
proposed by Ahn (2009). Despite these advances¢in H

synchronization, most research results were réstio The approximation of f(x(t)) using RBFNN is
known chaotic systems.

Can we obtain a RBFNN based ldynchronization f(x(t)) = W(t) f (x(1) @)
method for human chaotic systems? This paper gies where W(t)e R™" is the weight matrix antik(x(t))
answer for it. = [f,(x(1)) .... T (x(t))]"eRV is a set of base functions of

To the best of our knowledge, however, for thethe corresponding RBFNN.

RFBNN based H synchronization of unknown chaotic ~ The element functions (x(t)) (i = 1...n) are gitgn
systems, there is no result in the literature spviaich
still remains open and challenging. i(x(t) = exp(-||x(t)-ci|| 247 ), 3)

where cand dare the center and width of the neural

Ahn’s H, synchronization method: cell of the i- th hidden layer.

ThIS method is based on RBFNN model for unknown
chaotic systems with external disturbance. Thishobt
is called a radial basis function neural network H¥
synchronization (RBFNNHS) method. In this scheme, a
RBFNN is constructed to precisely approximate the .
unknown nonlinear function of the chaotic systerasé&l Here, S, 1 R is a compact set of weight
on this neural network model, the RBFNNHS controlle
with the learning laws is developed to ensure tiat¥ matrices andS, I R'is a compact set of state vectors.

= W+ =arg, min x%if Iif €O F &N . (2

norm from the disturbance to the synchronizatioares Under the optimal weight value, the nonlinear
reduced to a disturbance attenuation level. function vector f(x(t)) can be written as
Lyapunov method and linear matrix inequality: Fx(O)=W* e(x(t))+HF (x(t)), (5)

By virtue of Lyapunov method and linear matrix where, e(x(t)) = [e/(x(1).... e,(x(t))]'e R" is the
inequality (LMI) formulation, an existence critenidor ~ smeallest approximation error of the RBFNN.
the proposed scheme is represented in terms afvihe

The LMI problem can be solved efficiently by using Supposd| (x®)|| £ h, (6)
recently developed convex optimization algorithBeyd n > 0 is the unknown upper bound of the
et al., 1994). approximation error.

This paper is organized as follows. In section &, w By using (5), the unknown chaotic system (1) can
formulate the problem. In section 3, an LMI problien  be represented by
the RBFNNHS of unknown chaotic systems is proposed.
In section 4, a numerical example is given, andllfn x(t) = Ax(t) + W*F (x(t)) + e(Xx(t)). 7)
conclusions are presented in section 5. The synchronization problem of the system (7) is
considered by using the drive-response configuralibe
Mathematical details Chaos in the human brain due system (7) is considered as a drive system. Aaogrtdi

to intake of three types of BIS agents: the drive-response concept, the controlled response
Consider the chaotic system in the form of system is given byx()=Ax(t)+u(t)+d(t), (8)
Here x(t)e R" is the state vector of the response
x(t) = Ax(t) + f(x(1)), 1) system (8), u(tg R" is the control input, and d@R" is

Here x(t)e Ris the state vector, A €"Ris a known the external disturbance. Synchronization errgrex(t)

— X(t). Then we obtain the synchronization errctesn.
Asian Sci.,June & December, 2011, 6 (1&2[geJe}] HIND INSTITUTE OF SCIENCE AND TECHNOLOGY
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Construct the following controller
e(t) = Ae(t) — WHF (x(t)- ex(t))+u(t)+d(t). (9) u(t) =YX-1(x(t) — x(t) + W (x(1) + u,(t). (13)
n(t) = the estimate of n.
where \(t) is designed as
Defination 1 (RBFNN H, synchronization):
With zero initial condition and a given lex@i0, the X000~ X9) ,
error system (9) is RBFNN H synchronized, if the =T xoy x O MO X0 XA 0 w4
synchronization error e(t) satisfies. 0, l&et) x¢y x* # 0
If the weight W(t) and the parameter estimation

¥ ¥ value n(t) of the RBFNN are updated as
‘Fseydeg | d(xqxdt  qo © P

under the learning law W(t) and the controller u(t) W(t) = 4f XHx(0)-x(OF T(x(1)), (15)
Here S = a positive symmetric matrix. The parangter
H, norm bound or the disturbance attenuation level. n(t) = r [I(x() — x@®)" x| (16)
Defination 2 (RBFNN asymptotical synchronization): wheref is a symmetric positive definite matrix and
The error system (9) is RBFNN asymptoticallyr is a positive constant, then the RBFNNHS with the
synchronized if the synchronization error e(t)sfas.  disturbance attenuation lev@gls achieved.

Proof: The closed-loop synchronization error system
with the control input u(t)=Ke(t) + W{px(t)) + u(t)
|t|®r!41 «9 =0, 1D can be written as
under the learning law W(t) and the controller .u(t) e(t)=(A+K)e(t)+W(tF (x(t))-e(x(t))+u(t)+d(t).(17)
Remark 1. The Hnorm (Stoorvogel, 1992) is defined as
where W(t) =W(t)-W*. Defineh (t)= h(t)-h and

T, |1¥ e ()S& ) dt consider the following Lyapunov function:
ed

\/ d' (t)d(t)dt V(D)=€"(t) P, +trace{W(t)f “W(t)+ %h'z (t). (18)

where Pdis a transfer function matrix from d(t) to where trace{.} stands for the trace and is defined
e(t). For a given leva > 0, ||T |¥<g can be restated in as the sum of all the diagonal elements of a matrix
the equivalent form (10).

The purpose of this paper is to design the comtroll Time derivative of V(t):
u(t) and the learning law W(t) guaranteeing the RRIF The time derivative of V(t) along the trajectory of
H¥ synchronization for unknown chaotic systems. In(17).
addition, the controller u(t) and the learning Mt) will ; B 2
be shown to guarantee the RBFNN asymptoticafv(t):e(t) R * € () +2 trace WOIF W)}+7/7()b()t
synchronization when the external disturbance d(t). e (D[ AT P+ PA+ PK+ K R, + &)t PO)t
disappears.

+d" ()P, +2e" Pu (D+2€& () PW ¥ ( X )P

RBFNN H, synchronization:
This section designs the RBFNN  H *2racW(}/ "W} +—/7( W()t-2 &)t (x
synchronization controller for unknown chaotic eym;
The existence condition for the RBFNN H
synchronization is proposed in the following theore
Theorem 1. For given g > 0 and S B580, assume
that there exist X = X> 0 andg such that

If we use the inequality B +YTXEXTL X+YTL1Y,
which is valid for any matriceseR™™, YeR™™ L =L T>0,
LeR™, we have

1
e()K'pd(t) + d(t) e(t)E gdr(t)d(t)+ Ee(t)Tp P 19

AX+HY+(AX+YT 1 X Using (19), we obtain
1 -gl 0 <0 (12)
X o -st

V) EE() AP+ PA P+ K Pl-é PPty W)t@t
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+2€ (Y)Pu (9+28 (9 PW ¥ ( kD +2 trace W) F K Wt is equivalent to
+% KO +21IE ©P AP+PA+PK+KP P |
P -1 0 <0
=€ () AP+ PA+ PK+ K mé PP E)t+g? &)t Ot ' 0 -s? (27)
Pre-and post-multiplying (27) by diag¥{H, I) and
+2e" (1) Pu. () + 2tracdf( X)) &)t PW)} introducing change of variables such as XaRd Y=KP
1 (27) is equivalently changed into the LMI (12heh
+2tracgf W ( }F "W +_2/7( YOt &0t B the gain matrix of the control input u(t) is givenpK=YX-
r 1. Also, the learning laws (23) and (24) are eqenty
1 changed into (15) and (16), respectively. By cosrsid)
=€'()) A P+ PA+ PK+ K P*} PP @t+g H)t@At e(t)=x(t)-x(t) and P=X, the signal {t)(21) becomes (14).
This completes the proof.
+2e" () Pu, () + 2tracd[F( X)) €()t P+ W( )t ] W)X Remark 2. Various efficient convex optimization
2 algorithms can be used to check whether LMI(12) is
+7/7(t)/7 t)+2]|e" ¢)P | feasible. In this paper, in order to solve the L, utilize

MATLAB LMI Control Toolbox (Gahinetet al., 1995),

By considering h(t)=h(t)-h, with) defined by which implements state-of-the interior-point algjoms.

Pe(t) T
- ht), lle WPt O,
u = ll€ €P | External BIS disturbance = ZE&S =0
0, llE” ©)P | O, . . .
Without the external BIS disturbance, if we use the
(20) becomes control input (13) and the learning laws (15)-(16)

1 RBFNN asymptotical synchronization is obtained.
VIOE£E(D APrPA P KP—- PP@tg @) t(Qt

g Proof. When d(t) = 0,
+2trace{[F( X D) €( ) P+ WI( ¥ ] W)E we obtain V(t) < -§t)Se(t)£ 0 (28)
2 from (26). This guarantees
t—=h (A (1) - 2 ]le” ()P [1h (1) _
s im ey =0 @9)
=€’ (t) AP+ PA+ PK+ K P+= PP g)t+g” &)t @)t )
g from Lyapunov theory. This completes the proof.
2 T
OB - rlle OPI (22)  Numerical calculations:
Let us use the following learning laws Consider the following Genesio-Tesi chaotic system
(Genesio and Tesi, 1992):
(@) W(t) = FPe(t)f (x(t)) (23) (1) 0 0 x() 0

(b)h(®)=r|leT(®)P]| (24)

1
Suppose the following matrix inequality is satidfie X0 =0 0 1 %O+ 0

%O -c-b-a x) %0

. 1
AP+ PAr F>K+KP+g2 PP S0 (25) When a=1.2, b=2.92, and c=6, the Genesio-Tesi
Then chaotic system exhibits a chaotic behaviour. The
V(t) < -eT(t)Se(t)+gdT(t)d(t) (26)  Pparameters of
base functions are taken as@and di=1(i-1,2,3).
Integrating both sides of (26) from 0¥ogives For the numerical simulation, we use the following
parameters:

Ma-prs -y O | Ex e @ @ta

Since V¥) 3 0 and V(0) = 0, we have the relation
(10). From Schur complement, the matrix inequd2)
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10 0 O 1 0 0
= S:O].
F= 0 10 O -
0 0 10 0

For the design objective (10), let the H¥ perforogan
be specified by g=0.4. Solving the LMI (12) by toavex
optimization technique of MATLAB software gives

1.9200 0.0000 0.0000
X = 0.0000 1.9200 0.0000
0.0000 0.0000 1.9200

Fig. 1 shows state trajectories when the initia
conditions are given by

&)

10
time(sec)

time(sec

x©0) 3 %0 08
%(0) = -1, %0) = 12 ,
%0 2 %0 -15
2\\ //\\ | N\ F.“_,- “-\_‘E
jz ~oAh s = \:‘_u’ \_/ \2
01 -0.25 05
W)= 025 -01 02 450y =0 (3
01 -01 0.2

The external disturbancgti(i=1, 2, 3) is given by
w(t). Here w(t) = a Gaussian noise with mean 0 an
variance 10.

Fig. 2 shows, by the proposed RBFNNHS method

that the synchronization error e(t) is bounded adahe

Fig. 2: Synchronization errors @0.4)

origin. Next, we increase the disturbance atteondgvel
g to 0.88 with the matrix S remained invariant.\8q
for the LMI (12) gives.
0.8388 0.0000 0.0000
X = 0.0000 0.8388 0.0000
0.0000 0.0000 0.8388

-1.8831 - 52.3742 28.6016
51.5354 - 1.8831 2.7105
-23.5686 - 1.1000- 0.8765

Y

Fig. 3: State trajectories @0.88)
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Fig. 4: State trajectories @0.88)

State trajectories and error responses for thedios
loop chaotic system with the disturbance attenndéiel
g=0.88 are illustrated in Fig. 3 and Fig. 4, resipely.
From the simulation results, it can be seen tleatdhulting
disturbance attenuation performance is relativebyr for
higher attenuation level.

Conclusion:

The RBFENNHS controller acts like the H
synchronization controller, for BIS-induced chaotic
systems with external disturbance.
design framework, the RBFNN was built and trained t

emulate the unknown nonlinear function of the cltaot
system. the RBFNNHS controller and the learningslaw
were derived to achieve the, hberformance, with a
prespecified attenuation for the external distudeaiihe
synchronization for the Genesio-Tesi chaotic sysem
given to illustrate the effectiveness of the RBFNBIH
scheme.
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