Combining ability studies in sesame (*Sesamum indicum* L.)

H.G. SHEKHAT, J.H. VACHHANI, L.L. JIVANI AND V.H. KACHHADIA

Received : May, 2010; Accepted : September, 2010

SUMMARY

Combining ability analysis in a set of ten parents, $45 F_1$'s (excluding reciprocal) and their $45 F_2$'s in a diallel crossing programme for yield and yield contributing traits revealed significant estimates of mean squares due to gca and sca for all the characters in both the generations. The estimates of gca/sca variance ratios suggested that variances due to sca were greater than variances due to gca for most of the traits in F_1 and F_2 except for plant height and days to maturity in F_1 indicating the preponderance of non-additive effects. Equal importance of additive and non-additive gene actions were observed for 1000 seed weight in F_1 . A comprehensive examination of results revealed ABT-22, ABT-23 and AT-34 as good general combiners and crosses AT-90 x AT-104, ABT-22 x GTil-1, ABT-23 x AT-34 and AT-104 x GTil-2 as good specific combiners for yield and yield contributing characters.

Shekhat, H.G., Vachhani, J.H., Jivani, L.L. and Kachhadia, V.H. (2011). Combining ability studies in sesame (Sesamum indicum L.). Internat. J. Plant Sci., 6 (1): 59-63.

Key words : Combining ability, gca, sca, Gene action and sesame

Sesame (Sesamum indicum L.) is one of the most ancient oilseed crops of India. The crop is cultivated almost throughout India for its high quality oil and it has tremendous potential for export. It ranks third in term of total oilseeds area and fourth in terms of total oilseeds production in the country. The selection of parents on the basis of *per se* performance does not necessarily lead to desirable results. The knowledge of combining ability is prerequisite in any plant breeding programme for varietal improvement and for evolving a hybrid. Hence, attempts have been made to study the general combining ability and specific combining ability effects for yield and its component traits in sesame.

MATERIALS AND METHODS

Ten genetically diverse genotypes *viz.*, AT-90, AT-92, AT-104, AT-114, BAVJ-1, ABT-22, ABT-23, AT-34, G.Til-1 and G.Til-2 were crossed during *Kharif* 2002 following 10 x 10 diallel mating design excluding reciprocals. Five seeds were grown during *Kharif* 2003 for advancing the generation and F_2 seeds were collected from the F_1 plants. Thus, the experimental materials

Correspondence to:

H.G. SHEKHAT, Main Oilseeds Research Station, Junagadh Agricultural University, JUNAGADH (GUJARAT) INDIA

Authors' affiliations: J.H. VACHHANI, L.L. JIVANI AND V.H. KACHHADIA, Main Oilseeds Research Station, Junagadh Agricultural University, JUNAGADH (GUJARAT) INDIA Email : jivanvachhani@yahoo.in; vhkachhadia@jau.in comprised of 10 parents, 45 F₁'s and 45 F₂'s and these were planted at Main Oilseeds Research Station, Junagadh Agricultural University, Junagadh during Kharif 2004 in a Randomized Block Design with three replications at a spacing of 45 x 15 cm. Each entry consisted of a single row of 4 meter length for each of parents and F₁'s whereas, two rows each of F₂ progenies. All the recommended agronomical package of practices and plant protection measures were followed timely to raise a healthy crop. The observations were recorded on five randomly selected competitive plants of parents and F₁'s while, 20 plants of F₂'s from each replication for twelve characters viz., days to 50 % flowering, plant height (cm), number of effective branches per plant, number of capsules per plant, number of seeds per capsule, length of capsules (cm), days to 80 % maturity, yield per plant (g), 1000 seed weight (g), oil content (%), harvest index (%) and leaf area index. Data were statistically analyzed following Panse and Sukhatme (1978). The combining ability analysis was carried out according to Model-I, Method-2 of Griffing (1956). The gca and sca variances were estimated as per the technique suggested by Griffing (1956) and Gardner (1963).

RESULTS AND DISCUSSION

Analysis of variance revealed significant differences among parents, F_1 's, F_2 's, parents vs crosses and F_1 's vs F_2 's, for all the traits except, for number of capsules per plant in F_2 's and parents vs crosses for days to 50 % flowering, plant height, number of capsules per plant,

() \$ D O (B	కువుదే.: Arsiysిs లో vజగికుయొది అయామి చిత్తి కమ్హిక్ దూరియ	້ຂະແຈ ີວ	S	8.2" "Jy "Or Jw	0_A0 C_E_ECO.S 20250	0.12 ° - 3008 ° -								
								V.CET SCLETCS	Star and					
Source	Centre, 'or		Deys (a 50 % Loweing		No. 0. o.Castivo brancicos per piane	No. o. cepalica per pieri	No. o. scocis per espsuilo	Langin of sepsula (am)		Vicić Por piero (B)	. 000 saai waki (B)	0. sori/ani (%)	inćox (%)	arva. Erva
and the			321 9**	525.85**	\$ 590**	8/ .90**	**51.66	0.0/6**	10.23**	2.'/6**	0.282**	3.79**	86.57**	0.068**
			25.29**	· 52.15**	**9/./0	21.73*	36.38**	0.059**	2.32**	* 22 **	62.0**	2. 8 **	**687.1	** 16.0
50.6.			1.25**	# 19:01	0.36/ **	18.°0**	61 25**	0.0.2**	3.52 ^{##}	1. 92 **	0.035**	2.56**	.3.87##	0.033**
			9°36**	65.60**	0.27**	. 9.83**	33.27 ^{4**}	0.0.5**	5. W ##	**Ç	0.029**	2.59**	.3.12**	0°.0/***
"Our ?		. 08	. 56	21.53		3.87	:0.58	0.005	60°.	0.366	0.0.5	0.12	6.06	0.0.0
		80			0.0/3		6.32.	0.003		0.185	6.00	11:0:0	3.79	0.0.6
0. ²			. 52	10.13	6.0.0	3.056	2.959	0.003	3.058	1000	0.020	0.08	6.05	0.003
			. 28	56%	5000	8070	0.259	1 and as	2C .	0.026	5.00	5.00.0	0.31	Naran an
*0 *0			2,69		0.253	31.28	53.67	8 1212 12 8 1424 48	2.13	. 35	11 11 12 12 12 12 12 12 12 12 12 12 12 1		08 /.	C. and B
			88 82 8	2012	0.083	Som.	26.96	5.00	1.30	0.965	1	S	9,93	920°0
0 ² 40 ³ s			0.565	2.5.0	01.0	0.089	0.055	6770	. 260	0.050	028	0.033	08/.0	0.35
● gross of 幸雪 ?	12, 0.175 0.177 and ** indicado signification of Values al 2, 0.05 and 0.01	co o v	0.175 alues al 2-0.0		0.379 rosposlivciy	100	600 0	0.308	0.300	0.026	0.880	0.006	0.030	0.270

[Internat. J. Plant Sci., 6 (1); (Jan., 2011)]

number of seeds per capsule, days to maturity and leaf area index. Therefore, the data were subjected to combining ability analysis. The analysis of variance for combining ability (Table 1) exhibited that variances due to gca and sca were significant for all the traits in both the generations. This indicated that both additive as well as non-additive gene effects played an important role in the expression of all the characters. Similar findings were reported by Gawade et al. (2007). The magnitude of variances due to gca were lower than the magnitude of variances due to sca for all the characters in both the generations except for plant height and days to maturity in F₁ indicating preponderance of non-additive gene action in the expression of these characters. The predominance of non-additive gene action for most of the characters is suggestive of the high scope for exploitation of heterosis in sesamum. However, the additive gene action was important for plant height and days to maturity in F₁ generation. Same gene action was also observed for days to 50 % flowering and primary branches per plant (Prajapati et al., 2006), days to maturity (Singh, 2004 and Toprope, 2008), number of capsules per plant (Durai et al., 2007), 1000 seed weight and oil content (Vidyavathi et al., 2005, Prajapati et al., 2006 and Durai et al., 2007). Whereas, non-additive gene action was preponderant for days to 50 % flowering and days to maturity (Vidyavathi et al., 2005), primary branches per plant and plant height (Singh, 2004 and Toprope, 2008), number of capsules per plant and yield per plant (Singh, 2004, Vidyavathi et al., 2005, Prajapati et al., 2006 and Toprope, 2008).

An overall appraised of gca effects (Table 2) revealed in general, none of the parents was good general combiner for all the traits studied. However, parent ABT-22 was good general combiner along with high per se performance for number of effective branches per plant, length of capsule, 1000 seed weight, oil content and leaf area index. It was also average general combiner for yield and capsules per plant. It has, therefore, given consistent performance in both the generations. With respect to yield, two parents ABT-23 and AT-34 were found good general combiners in both F_1 and F_2 generations. In case of earliness (days to 50 % flowering and days to maturity), parents AT-90, AT-92, AT-104 and AT-114 were observed well to average general combiners in both the generations. The parents viz., AT-90, AT-92 and G.Til-2 were identified as good general combiners for plant height in both F_1 and F₂ generations. Besides, for 1000 seed weight, AT-104 and ABT-22 were found as good general combiners in both the generations while, BAVJ-1 and AT-34 were good general combiners in F_1 set and average general combiners in F_2 set for this character. None of the parents

"Develoren's	تعبية ثو 50 % Cowcring	8	Days to 80 %	harmon and	V and monthing (am	()	Number of effective branches per plant		Number of eapsule per biand		Number of scools year sensul a	306.8 por
00 06V	0.57	\$\$ 30 **		· 5. **	**/.//.	3.7 ***	0.2.*	50.0	2.9° **	06	3.72**	0.85
N. 37.	·谢·谢·孝 (12"	***6/.'0	**99.	0.93**	3.69**	3.10.**	0.08	w. 5##	. 55°	0.92	2.8. **	# 3月 +
10V	0.73*	6.0	0.91 **	0.18	.80	0.58	0.32 **	50.03	0.62.	0.3	. 55	0.50
7V	2.6°. **	******	**81.	0.93**		0.56	1.0	\$. J#	Sæ		0.6/	3.1 144
3AV 0.	0.02	0.5	0.16	1.5%	2.85*	2.10**	0.22*	0.16**	0.8/	200	2.88**	
ABC 22, 2, 8	2,85**	2,29**	3.3/ **	2.66**	**/.8.1	6.25**	a. C. www.	0.33**	0.88	180	5.68**	0.56
A37.23 1.0	李徽/小小	* 1.0	2.01 **	**67.	19:0	3. 9**	5.0	w. 7 *	** 1. 1	*.92*	0.73	3.68**
AC 3/ 0.9	0.99##	***SS**	** /8'''	***	\$./8**	1, 36 ww	0.3	0.38**	26*	1.6 .		1.6 .
C		** . / .	· 5/ **	0.0	5.38**	0.66		0.01	0.2.1	901.	0.31	0.02
Carries Second as	*9/."0	2.13*	0.79	· 5**	**1.19	3. [*] 3##	12 62 8	0.13*	1.55%##	2.90 ^{are}	st later	1.10
S.3.(2) 0.3	0.3/2,	0.289	587.0	0.379	. 360	and the	. Dur ur	1.500	S. 0	1.58'0	.68.0	0.689
S.J.(R. S) 0.4	0.2.0	05730	0.125	.670	2.000	065";	0.136	0.085	8.9.	1.1.6	. 328	560 .
50 (600 d)CO	0,680	0.512.	0.566	. 59'0	2,690	2 6	.8.0	0.13	2.0.5	2692	: 763	. 36/
C.D. (2 0.01) 0.5 Table 2 Conid	4.800 H	\$11.0	a.'/38	0.885	3.500	2.750	0.236	1.1 - W	2.627	2,209	2.229	9/17.
	Langta of angelia (am)		Vició por p	(E. (E)	1.000 scort weight (g)	w.g.~ (B)	01. com/cm/ (%6)	(se) 755		imácx (%)		rúcx
		20.0	6.75 ^{##}	6.13**	(1) 「 ****	50°, / ##	11、11、赤米	6.25**	0.0/	0.30	000	10.03
AC 92 0	1. 4. 4. C.	0.03	1.20	0.0	** / ごの	Q. 2**	0.50**	** ./. "∩	3.52**	0.67	0.08**	0.02
	0.03	0.05**	50.0	$0.3'/^{**}$	475 ° * 南南	0.55**	0.37**	47. 47. ° 42. 42.	6.91	0.65	0. W?	2000
A 0.0	C.W.S	European an	17 " " U	5.0	0.08*	ብካ ሪካ " ዲሆል የካ	0.60 au	0.73**	.60	0.56	38 P.W. W.	1 con in
3AV: 1 0.0	0.03***	.0.0	0.53 ^{mm}	0.22.	\$ 67 / W	10:0	0,70**		30°.	0.72.	1. (M. 1. 1.)	0.09
A32.22, 0.0	4×40.00	10.055 ##	2.5	0.06	o. Su 🗤	0.25##	0.19**	0.23**	6.52**	3.03**	0. S##	0.20**
A37.23 0	17 17 17 17 10 1	17 17 17 17 17	0.38*	6.3°**	100	0.03	130	1. ~	100	0.17	0.0	ገ ብንፈን ግን አይዲያ ላይ
AC 3/ 0	- 12" 12 + 4.0 4.0	1. 1. 1. T		0.23*	475 ° * also also 4.17 ° · · ·	. 12 M		80.0	· · · ·	0.53	80.0	10:0
and the second s	47. 47 - 47. 47 -	642.43	47 - 42 42 - 42	5.0	27. 27" J ale	Saran Saran	47 42 - 2 2 42 -	0.85 ^{##}	2.31 ##	06-0	0.02	1 15° 15
C	6.1.4章	C. O**	**20.	0.57**	C. 0**	\$P / ##	100	¢, \$\$#	6.2	* 90' '	0-07/9##	5, 9 ^{##}
S.L.(b) 0.1	and a	9.00	0.166	90	1800	0.030	εv , v	98.45° 45	0.67/	0.533	0.00.9	0.037
S.L.(R. 82) 0.0	0.023	0.073	0.276	\$10	- Sum	5100	15:0	4	Som .	0.795	0.0/3	. Su a
0 (500 0.00)	0.038	. 80.0	0.328	6460	1.900	0900	936 3	0.73	1.3/0	090 .	1.900	890'0
0.0. (2. 0.01) * md ** md/or/or start?	0.050 -	0.0/0	2050 0.010 0.27 Teerroon values 2 0.05 and 0.01 m	0.30/ "Server" ' Vo V	180.0	0.078	0.267	093	21.	. 370	0.07/	0.089

61

●HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE●

[Internat. J. Plant Sci., 6 (1); (Jan., 2011)]

Characters	effects of promising crosses Cross	Mean	sca effect	gca effect
Days to 50 % flowering	AT-104 x ABT-22	F ₁ 44.00	-4.22**	(H x L)
		F ₂ 42.67	-4.03**	$(M \times L)$
	AT-114 x ABT-22	F ₁ 43.00	-3.94**	(H x L)
		F ₂ 39.67	-5.76**	(H x L)
Plant height (cm)	AT-114 x ABT-22	F ₁ 99.40	-9.29**	(M x L)
		F ₂ 96.03	-3.33	(M x L)
No. of effective branches per plant	AT-104 x G.Til-2	F ₁ 5.07	1.37**	(H x M)
		F ₂ 2.40	-0.22	(M x L)
	ABT-22 x G.Til-2	F ₁ 5.10	1.32**	(H x M)
		F ₂ 2.80	-0.22	(H x L)
No. of capsules per plant	AT-104 x AT-34	F ₁ 56.30	15.14**	(M x H)
		F ₂ 30.27	1.38	(M x M)
	ABT-23 x AT-34	F ₁ 60.67	14.19**	(H x H)
		F ₂ 27.30	-3.81	(H x M)
No. of seeds per capsule	AT-104 x BAVJ-1	F ₁ 77.00	18.90**	(M x H)
		F ₂ 44.23	-3.66	(M x M)
	AT-90 x ABT-22	F1 70.20	18.49**	(H x L)
		F ₂ 52.23	5.81*	(M x L)
Length of capsule (cm)	AT-104 x BAVJ-1	F ₁ 2.81	0.22**	(M x H)
		F ₂ 2.51	-0.04	(H x M)
	BAVJ-1 x ABT-22	F ₁ 2.89	0.20**	(H x H)
		F ₂ 2.56	-0.002	(M x H)
Days to 80 % maturity	ABT-23 x G.Til-2	F ₁ 90.33	-3.07**	(L x M)
		F ₂ 90.67	1.50	(L x H)
	AT-34 x G.Til-1	F ₁ 88.33	-3.05**	(L x H)
		F ₂ 90.67	0.72	(L x M)
Yield per plant (g)	AT-90 x AT-104	F ₁ 8.81	2.67**	(L x M)
		F ₂ 4.60	-0.23	(L x H)
	ABT-22 x G.Til-1	F ₁ 9.16	2.37**	(M x M)
		F ₂ 5.38	-0.80*	(M x M)
1000 seed weight (g)	ABT-23 x AT-34	F ₁ 4.08	0.37**	(M x H)
		F ₂ 3.29	-0.17*	(M x M)
	ABT-22 x G. Til1	$F_1 4.11$	0.32**	(H x L)
		F ₂ 3.88	0.25*	(H x M)
Oil content (%)	ABT-22 x G. Til1	F ₁ 50.73	3.40**	(H x M)
	- · ·	F ₂ 47.85	0.11	(H x H)
	AT-92 x AT-34	F ₁ 50.76	3.18**	(L x H)
		F ₂ 44.84	-1.18**	(L x M)
Harvest index (%)	AT-104 x G.Til-1	F ₁ 39.57	7.47**	(M x H)
		$F_2 37.51$	4.04	(M x M)
	AT-104 x AT-23	$F_2 = 57.51$ $F_1 = 36.75$	7.03**	(M x M) (M x M)
	111 10TA 111-2J	$F_2 34.23$	1.22	(M x M) (M x M)
Leaf area index	AT-92 x G.Til-1	$F_2 54.25$ $F_1 1.12$	0.37**	$(\mathbf{M} \times \mathbf{M})$ $(\mathbf{L} \times \mathbf{M})$
	A1-72 X U.111-1			
	AT 02 - AT 24	$F_2 0.86$	0.08	$(\mathbf{M} \mathbf{x} \mathbf{L})$
	AT-92 x AT-34	F ₁ 1.01 F ₂ 0.93	0.25** 0.04	(L x M) (M x L)

* and ** indicate significance of values at P=0.05 and 0.01, respectively

was good general combiner in both the generations for number of seeds per capsule and harvest index.

A multiple crossing programme involving these parents would offer good scope for improving the yield by combining the positive effects of most of the yield attributing characters. A good degree of correspondence between gca estimates in F_1 and F_2 generations indicated the possibility of postponing combining ability studies to F_2 generation to obtained more reliable information where the problem of producing sufficient quantity of hybrid seed is evident.

Out of forty-five hybrids studied for specific combining ability effects, none of the cross combinations exhibited significant and consistent effects for all the characters. However, some of the crosses exhibited high *per se* performance and sca effect for more than one characters (Table 3). A perusal of the sca values and *per se* performance of hybrids indicated that the crosses AT-90 x AT-104, ABT-22 x G.Til.-1, ABT-23 x AT-34 and AT-

104 x G.Til-2 produced superior and potential hybrids. Parents involved in these hybrids were either high x high (H x H) or medium x medium (M x M) or medium x low (M x L) or low x medium (L x M) with regard to gca effects. The cross combinations showed high sca effect indicating additive x additive type gene action between favourable alleles contributed by two parents, which were considered to be fixable type of nature. In case of M x L and L x M general combiners indicated the presence of genetic interaction of additive x dominance and dominance x additive types of gene actions.

In view of these studies, it can be concluded that yield and most of the yield contributing traits were dominantly controlled by non-additive gene effects. Under such situation, it would be worthwhile to resort by using breeding methodologies such as biparental mating, recurrent selection and diallel selective mating than to use conventional pedigree or backcross methods.

REFERENCES

- Durai, R. S. R., Sarvan, S., Pandiyan, K. S. and Sevaguperumal (2007). Genetic effects for yield in intra-specific cross in *Sesamum indicum. J. Ecobiol.*, **20**(1):43.48.
- Gardner, C. O. (1963). Estimation of genetic parameter in cross fertilizing plants and their implications in plant breeding. *Statistical genetics and plant breeding* (Ed. W. O. Hanson and H. G. Robinson) NAC- NRC : 53-54.
- Gawade, S. A., Banger, N. D., Patil, C. M. and Nikam, A. S. (2007). Combining ability analysis for yield and its components in sesame. *Res. on Crops*, 8(2):492-495.
- Griffing, B. (1956_a). Concept of general and specific combining ability in relation to diallel crossing system. *Australian J. Biol. Sci.*, **9**: 463-493.
- Griffing, B. (1956_b). A general treatment of the use of diallel cross in quantitative inheritance. *Heredity*, **10**: 31-50.
- Panse, V. G. and Sukhatme, P. V. (1978). Statistical methods for agricultural workers, I.C.A.R., New Delhi.

- Prajapati, K. P., Patel, K. M., Prajapati, B. H. and Patel, C. J. (2006). Genetic analysis of quantitative traits in sesame (*Sesamum indicum* L.) *J. Oilseeds Res.*, 23(2):171-173.
- Singh, P. K. (2004). Identification of specific cross combinations in sesame, (*Sesamum indicum* L.) J. Oilseeds Res., 21(2):338-339.
- Toprope, V. N. (2008). Heterosis in relation to combining ability for yield and its contributing traits in sesame (*Sesamum indicum* L.) *J. Oilseeds Res.*, **25**(1):79-81.
- Vidyavathi, R., Manivannam, N. and Murlidharan, V. (2005). Line x tester analysis in sesame (*Sesamum indicum* L.). *Indian J. Agric. Res.*, **39**(3):226-228.

******* *****