RESEARCH **P**APER

ADVANCE RESEARCH JOURNAL OF C R P I M P R O V E M E N T Volume 6 | Issue 2 | December, 2015 | 66-72 •••••• e ISSN-2231-640X

DOI : 10.15740/HAS/ARJCI/6.2/66-72 Visit us: www.researchjournal.co.in

AUTHORS' INFO

Associated Co-author : ¹Department of Agronomy, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, AKOLA (M.S.) INDIA

²Department of Agronomy, Vasantrao Naik Marathwada Krishi Vidyapeeth, PARBHANI (M.S.) INDIA

Author for correspondence: K.M. DESHMUKH Department of Agronomy, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, AKOLA (M.S.) INDIA

Response of different wheat genotypes to different sowing time in relation to GDD accumulation

■ K.M. DESHMUKH, S.K. NAYAK², RUPALI DAMDAR¹ AND S.S. WANJARI¹

ABSTRACT : An experiment on response of different wheat genotype to different sowing time in relation to GDD accumulation was carried out in Rabi season of 2010-11 at the research field of Wheat Research Unit, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola (M.S.). The treatments consisted of two sowing dates 45th MW, 48th MW and twenty wheat genotypes AKDW-4021, AKDW-2997-16, AKDW-4749, AKDW-4750, AKDW-4132-2, AKDW-3931-2, HD-2189, HIDW-295, NIAW-34, AKAW-4627, LOK-1, MACS -1967, AKAW-3997, AKAW-4073, AKAW-4210-6, AKAW-4493, AKAW-4705, AKAW-4731, AKAW-4636 and AKAW-4739. The experiment was laid out in a Factorial Randomized Blocked Design with three replications. The soil was clayey with pH 7.89 containing N-206.00, P-15.86 and K- 303.43 kg ha⁻¹ value after harvest. The growth, yield attributes and yield observations showed significant increase when wheat crop was sown at 45th MW than 48th MW. Grain yield obtained was significantly higher at 45th MW sowing. Wheat crop sown at 48th MW required significantly lower cumulative growing degree days (GDD) and helio thermal units for completion of reproductive phase than 45th MW sown crop. Correlation studies reveal that correlation between straw yield and bright sunshine hours found to be significant showing the negative correlation and correlation between straw yield and relative humidity was observed to be significant showing the positive correlation. Sowing of wheat crop at 45th meteorological week was recorded most economical under different date of sowing condition.Out of genotypes, AKAW- 4647 was superior over others in respect of tillers m⁻², chlorophyll content plant⁻¹, dry matter accumulation plant⁻¹, number of grains earhead⁻¹, yield per day per plant (g), rate of grain filling, grain yield (q ha⁻¹), straw yield (q ha⁻¹) 1) and test weight.

KEY WORDS : Genotypes, Sowing time, Wheat

How to cite this paper : Deshmukh, K.M., Nayak, S.K., Damdar, Rupali and Wanjari, S.S. (2015). Response of different wheat genotypes to different sowing time in relation to GDD accumulation. *Adv. Res. J. Crop Improv.*, **6** (2) : 66-72.

Paper History : Received : 16.04.2015; Revised : 01.10.2015; Accepted : 15.10.2015

The main species of wheat are common wheat (*Triticum aestivum* L.), durum wheat (*Triticum durum* Desf.), emmer wheat (*Triticum dicoccum Schrank*). It is grown across a wide range of environments around the world and has the highest adaptation among all the crop species. Worldwide more

land is devoted to the production of wheat than any other crop. Wheat is rich source of protein, minerals and vitamins among all the cereals. It contributes about 60 per cent of daily protein requirement and more calories to world human diet than any other food crops (Mattean *et al.*, 1970). In India, more than 80 per cent of the total area of wheat is under Triticum aestivum L. whereas the area under Triticum durum Desf. and Triticum dicoccum Schrank is only 12 per cent and one per cent, respectively. In India wheat is second important food crop next to rice. It is the crop that brought the green revolution and paved the way for the food security in India. It contributes about 25 per cent of the total food grain production of the India. Wheat is grown all over the India from sea level up to the elevation of 3568 meters in the Himalaya (Rao et al., 1992). This is primarily due to rising of temperature in late February coinciding with heading which adversely influences grain filling. The adverse effect of temperature could be minimized by adjusting sowing time to an optimum date to ensure high grain yield. Therefore, the study was undertaken to estimate the performance of some wheat genotypes particularly under late sown condition and to evaluate the losses or reduction in yield and different yield attributes due to delayed sowing of wheat. Attempts were also made to identify genotypes with lower rate of decline in yield and different physiological parameters and, therefore, more capable germplasm tolerate late heat without substantial loss in grain yield (Chowdhury and Wardlaw, 1978). Wheat has relatively high content of 'niacin' and 'thiamine'. It contains the characteristics substance 'gluten' which helps in providing structural framework for the spongy cellular structure of bread, chapatti and other baken products of bakery.

Research Procedure

The experiment was conducted on wheat at farm of Wheat Research Unit, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola during *Rabi* 2011. The experimental soil was medium black having initial status of 215.15 kg N ha⁻¹, 16.72 kg P ha⁻¹ and 327.22 kg K ha⁻¹. The experiment was laid out in a Factorial Randomized Block Design with three replications. Two sowing dates *viz.*, November 45th MW and December 48th MW as first factor and second factor consisting of twenty genotypes *viz.*, AKDW-4021,A KDW-2977-16, AKDW-4749, AKDW-4750, AKDW-4132-3, AKDW-3931-2, HD-2189, HIDW-295, NIAW-34, AKAW-4647, LOK-1, MACS-1967, AKAW-3997, AKAW4073, AKAW-4210-6, AKAW-4493, AKAW-4705, AKAW-473, AKAW-636, AKAW-4739. The crop was subjected to recommended package of agronomic and plant protection practices to obtain a healthy crop.

Research Analysis and Reasoning

The findings of the present study as well as relevant discussion have been presented under following heads :

Number of effective tillers m⁻²:

Data regarding number of effective tillers m⁻² recorded at different crop growth stages as affected by various treatments. The highest number of tillers m⁻² was observed at 60 days after sowing then it was slowed down to maturity. Number of effective tillers m⁻² was influenced significantly at all the stages of crop growth due to different sowing dates. Sowing on D_1 (45th MW) was significantly superior over D_2 (48th MW). The reduction in number of effective tillers m⁻²at delayed sowing might be attributed to delayed emergence of seedlings resulted in the curtailing of the number of days available from the emergence to maturity. Similar results were reported by Randhawa et al. (1981); Phadanwis and Saini (1992); Nainwal and Singh (2000). At 60 DAS the genotype G₁₀ (AKAW- 4627) recorded significantly more number of tillers m⁻²and genotype G₁₂ (MACS-1967) recorded significantly less numbers of tillers m⁻² among the 20 genotypes under study.

Dry matter accumulation plant⁻¹ (g) :

The mean dry matter accumulation plant⁻¹ continued to increase upto maturity of the crop but the increase was relatively higher only up to 90 days after sowing and then it was slowed down to maturity. The mean value of D_1 (45th MW) and D_2 (48th MW) was recorded 12.97

Table 1 : Correlation of 48th (GDD) correlation of weather parameters with grain and straw yield										
GDD	CRI	Tillering	Jointing	Panical	50 % flow	Dough stage	50% maturity	Harvesting		
Grain yield	0.450	0.564	0.550	0.584	0.345	0.209	0.233	0.177		
Sig.	*	*	*	*	*	*	*	*		
Straw yield	0.445	0.559	0.543	0.581	0.340	0.206	0.229	0.174		
Sig.	*	*	*	*	*	*	*	*		

Note: * and ** indicate significance of values at P=0.05 and 0.01, respectively

(g) plant⁻¹at the time of harvesting. There was favorable temperature experienced by wheat crop sown on D_1 (45th MW) during early growth or immediately after seedling emergence might have resulted in accumulation of higher dry matter. Similar results were reported by Mishra *et al.* (2003) and Kumar and Sharma (1999). At the time of harvesting genotype G_{10} (AKAW-4627) recorded significantly higher dry matter accumulation plant⁻¹ (g). Genotype G_{12} (MACS-1967) recorded significantly lower dry matter accumulation plant⁻¹ (g) (Table 2).

Chlorophyll content index (%) :

The mean chlorophyll contentindex (%) continued to increase upto 60 days after sowing and then it declined towards maturity. Different sowing dates significantly influenced the chlorophyll content index (%) at all crop growth stages. The reason for highest chlorophyll content index in timely sowing *i.e.* D_1 (45th MW) may be the enhanced vegetative development of crop. Similar results were reported by Rahman *et al.* (2009). At 60 days after sowing genotype G_6 (AKAW-3931-2) recorded significantly higher chlorophyll content index (%). Genotype G_{11} (LOK-1) recorded significantly lower chlorophyll content index (%) (Table 2).

Number of grains plant⁻¹:

The higher number of grains plant⁻¹ was 161.35 recorded in D_1 (45th MW) which was significantly superior over 137.90 recorded with D_2 (48st MW) (Table 2). Delayed emergence of seedlings caused by low temperature at sowing time and early maturity due to high temperature during reproductive phase with lesser time available for expression of various phenophases particularly the process of grain filling in case of D_2 (48st

Table 2 : Response	of wheat gen	otypes to differen	t sowing dates							
Treatments	No. of tillers m ² (At 60 DAS)	Dry matter accumulation (g) plant ⁻¹	Chlorophyll content index (%)(At 45 DAS)	No. of grain plant ⁻¹	Yield / day/ plant (g)	Rate of grain filling (%)	Helio thermal unit (o ^c day hr ⁻¹)	Test wt. (g)	Grain yield (q ha ⁻¹)	Straw yield (q ha ⁻¹)
D_1 - $45^{th}MW$	644.9	14.00	26.76	161.35	0.072	88.01	15784.51	41.67	38.49	71.39
D_2 - $48^{th} MW$	634.58	11.94	22.01	137.90	0.068	85.83	11215.57	38.30	35.35	63.82
S.E. \pm	0.18	0.42	0.56	2.90	0.0016	0.32	245.14	0.34	0.54	0.64
C.D. (P=0.05)	0.52	1.38	1.34	8.05	0.0044	0.88	690.19	0.96	1.52	1.82
Genotypes										
G1-AKDW-4021	628.5	11.92	28.43	141.83	0.070	86.16	14764.34	37.51	35.83	67.1
G2-AKDW-2977-16	638.5	12.88	24.22	150.67	0.072	88.33	13545.33	38.39	36.97	69.36
G ₃ -AKDW-4749	638.5	12.66	25.42	144.83	0.072	87.16	12915.63	38.36	36.85	68.80
G ₄ -AKDW-4750	636.16	12.24	29.34	143.50	0.070	86.83	14620.18	38.31	36.45	67.62
G5-AKDW-4132-2	642.66	13.24	31.41	188.50	0.072	88.33	11256.00	38.98	37.19	69.67
G ₆ -AKDW-3931-2	624.16	13.54	32.08	118.67	0.064	83.83	14613.44	36.91	34.96	63.06
G7-HD-2189	628.33	11.98	21.44	135.17	0.067	85.33	14334.3	36.77	35.62	65.33
G8-HIDW-295	617.5	11.10	23.71	105.17	0.058	82.83	14187.30	34.16	34.51	60.71
G9-NIAW-34	659.5	15.54	24.09	188.50	0.079	90.83	14641.72	46.47	39.43	72.53
G10-AKAW-4627	678.66	16.12	25.27	216.67	0.081	91.16	13597.57	47.83	42.60	74.27
G ₁₁ -LOK-1	650.00	13.52	18.43	172.17	0.075	89.50	12981.24	45.71	37.90	70.23
G12-MACS-1967	614.66	10.14	26.72	92.83	0.056	77.66	14051.92	33.74	33.01	60.21
G13-AKAW-3997	658.33	13.92	19.42	177.00	0.075	89.83	13743.55	45.79	38.50	71.00
G14-AKAW-4073	672.16	15.67	21.43	196.50	0.079	91.16	13643.54	46.80	40.41	73.20
G15-AKAW-4210-6	658.33	14.98	18.67	178.50	0.078	90.00	11229.80	46.11	39.24	72.31
G16-AKAW-4493	628.00	11.72	20.22	124.83	0.067	85.00	13118.74	36.79	35.04	64.50
G ₁₇ -AKAW-4705	646.66	13.64	20.27	171.33	0.074	89.50	13560.40	42.80	37.64	70.03
G18-AKAW-4731	617.16	10.94	21.48	96.33	0.058	82.00	11772.41	33.95	34.15	60.67
G19-AKAW-4636	621.5	11.46	21.42	112.17	0.060	83.66	13713.98	35.79	34.62	62.10
G20-AKAW-4739	642.83	13.38	22.43	166.17		89.33	13709.35	39.79	37.57	69.67
S.E. ±	0.58	1.10	1.63	9.20	0.0050	1.01	775.20	1.09	1.71	2.04
C.D. (P=0.05)	1.64	3.28	4.88	25.46	0.014	2.80	2182.57	3.04	4.82	5.7

MW), this might be the reason for lower number of grain plant⁻¹ in D₂. Similar results were reported by Nainwal and Singh (2000) and Sardana et al. (2005).

Significantly highest number of grains plant¹ (216.67) was recorded in genotype G₁₀ (AKAW -4627) than rest of the genotypes except genotype G_{14} (AKAW-407) which was found at par with it. Genotype G₁₂ recorded significantly lowest number of grains plant¹ than all other genotypes excluding genotypes G₁₈(AKAW-4731), G₈ (HIDW-295) and G₁₉(AKAW-4739), which were found at par with each other.

Yield per day per plant (g) :

The higher yield per day per plant was 0.072 recorded with D₁ (45th MW) which was significantly superior over (0.068) recorded with D_2 (48st MW) (Table 2). Lesser time available for expression of various phenophases particularly the process of grain filling in case of D_2 (48st MW), this might be the reason for lower number of grain plant⁻¹ in D₂. Similar results were reported by Nainwal and Singh (2000) and Sardana et al. (2005). Significantly highest yield per day per plant (0.081) was recorded in genotype G_{10} (AKAW -4627) that was significantly higher over rest of genotypes except G₁₄ (AKAW-4073) which

Table 3 : Effect of sowin	ng dates and g	enotypes on c	umulative growin	ng degree days	(GDD)			
	growing degree d	ays (GDD)						
Treatments	CRI	Tillering	Late jointing	Panical initiation	50 per cent flowering	Dough stage	50 per cent maturity	Harvesting
Factor 'A' - Sowing date	es							
D ₁ - 45 th MW	350.25	531.10	618.64	707.70	906.04	1360.90	1507.10	1920.40
$D_{2}\text{-}48^{th}MW$	277.07	417.03	508.01	644.19	843.29	1203.40	1448.70	1632.60
S.E. ±	5.61	3.28	4.65	5.46	5.94	23.03	8.71	4.34
C.D. (P=0.05)	15.82	9.24	130.9	15.38	16.73	64.84	25.54	12.24
Factor 'B'- Genotypes								
G1-AKDW-4021	298.10	467.13	561.97	656.45	866.85	1287.17	1470.02	1767.07
G2-AKDW-2977-16	309.88	472.62	567.90	674.18	868.62	1299.88	1480.07	1777.57
G ₃ -AKDW-4749	306.03	469.70	565.90	669.83	867.83	1296.60	1477.30	1774.55
G ₄ -AKDW-4750	302.77	469.70	565.90	662.43	867.20	1290.28	1476.77	1773.58
G5-AKDW-4132-2	311.22	474.87	568.98	680.57	872.85	1305.07	1485.32	1777.72
G ₆ -AKDW-3931-2	296.80	451.32	535.85	654.30	854.05	1263.53	1439.52	1754.90
G7-HD-2189	297.85	462.93	546.42	655.75	866.68	1270.12	1463.25	1758.92
G ₈ -HIDW-295	288.37	439.30	517.13	648.20	844.30	1233.27	1431.87	1739.45
G9-NIAW-34	242.25	430.07	506.00	636.43	840.20	971.75	1403.73	1714.23
G10-AKAW-4627	343.08	498.48	592.52	704.65	899.73	1356.27	1514.20	1809.67
G ₁₁ -LOK-1	338.90	493.67	585.98	691.83	879.13	1319.05	1512.55	1798.35
G12-MACS-1967	351.30	505.70	596.82	705.78	900.85	1360.48	1525.48	1813.60
G ₁₃ -AKAW-3997	342.50	498.25	588.92	698.52	891.72	1348.83	1513.78	1805.40
G14-AKAW-4073	342.57	525.62	617.43	738.18	966.13	1443.32	1523.38	1822.33
G15-AKAW-4210-6	296.92	458.93	538.95	655.27	858.52	1264.15	1459.58	1755.47
G16-AKAW-4493	287.58	437.57	515.58	642.32	843.30	1064.50	1428.07	1733.13
G17-AKAW-4705	334.20	483.32	580.42	690.67	878.07	1318.07	1489.48	1798.03
G ₁₈ -AKAW-4731	329.62	483.22	576.85	684.55	877.73	1308.32	1489.10	1797.37
G19-AKAW-4636	361.10	517.40	608.15	718.83	904.50	1379.83	1538.20	1817.05
G20-AKAW-4739	292.17	441.48	528.82	650.13	845.03	1262.62	1436.55	1743.30
S.E. ±	17.77	10.38	14.71	17.28	18.80	72.82	27.56	13.75
C.D. (P=0.05)	50.03	29.23	41.42	48.66	52.93	205.04	77.61	38.72
Interaction (DxG)								
S.E. ±	25.13	14.68	20.80	24.44	26.58	102.99	38.98	19.44
C.D. (P=0.05)	-	-	-	-	-	-	-	-
GM	316.29	474.06	563.32	675.94	874.67	1282.20	1477.90	1776.60

69 Adv. Res. J. Crop Improv.; 6(2) Dec., 2015 : 66-72 Hind Agricultural Research and Training Institute

was at par with G_{12} (MACS-1967). G_{12} (MACS-1967) recorded significantly lowest yield (0.056) which was found statistically at par with genotypes G_{18} (AKAW-473), G_{19} (AKAW-636), G_{6} (AKDW-3931-2), G_{16} (AKAW-4493) and G_{1} (AKDW-4021).

Rate of grain filling (%) :

The higher rate of grain filling was 88.01 recorded with D_1 (45th MW) which was significantly superior over 85.83 recorded with D_{2} (48st MW) (Table 2). The rate of grain filling in timely sowing was highest which progressively lowest in late sowing. Wheat varieties differed in rate of grain filling. The average rate of grain filling was highest in timely sowing and lowest in late sowing. Particularly the process of rate of grain filling in case of D_{2} (48st MW) might be the reason for lower number of grain panicalst¹ in late sown condition. Similar results were reported by Randhawa et al. (1981). Significantly highest rate of grain filling was recorded in genotype G_{10} (AKAW-4627) than rest of the genotypes except genotype G_{14} (AKAW-4073), where was found at par with it. Genotype G₁₂ recorded significantly lowest rate of grain filling than all other genotypes excluding genotypes G_{18} (AKAW-473), G_{8} (HIDW-295) and G_{19} (AKAW-4739), which were found at par with each other.

Helio thermal unit (⁰C day hr⁻¹) :

There was significant difference in helio thermal units at harvesting stage. Sowing on D_1 (45th MW) had recorded 15784.51 helio thermal units significantly more over D_2 (48th MW) (Table 2). This could be explained by the fact that delayed sowing resulted in forced maturity of wheat because of high temperature prevailed during reproductive phase of late sown crop. Similar findings were also reported by Jat *et al.* (2003), Khichar and Niwas (2007) and Gill (2009).

Genotype G_1 (AKDW-4021) recorded more helio thermal units 14764.34 at harvesting stage. Genotype G_{15} (AKAW-4210-6) recorded significantly lower 11229.80 helio thermal units which was statistically at par with genotype G_5 (AKDW-4132-3), G_{18} (AKAW-473) G_3 (AKDW-4749), G_{11} (LOK-1) and G_{16} (AKAW-4493).

Test weight (g) :

The highest test weight 41.67 g was obtained in D1 (45th MW) sowing which was significantly superior over 38.30 g when sowing was done at D_2 (48th MW) sowing (Table 2).

Delayed emergence of seedlings owing to lower temperature at sowing time and forced early maturity of crop due to terminal heat stress caused by high temperature at reproductive phase might have reduced the growth period of crop and thus resulted in lower test weight in D₂ (48th MW) sowing. Similar results were reported by Nainwal and Singh (2000); Sardana et al. (2003) and Shirpurkar *et al.* (2008). Genotype G_{10} (AKAW -4627) recorded significantly highest test weight (47.83 g) than rest of genotypes excluding G_{14} (AKAW-4073), G_{9} (NIAW-34), G_{15} (AKAW-4210-6) and G_{13} (AKAW-3997) while later four genotypes were found statistically at par with G_{10} (AKAW-4627). Genotype G_{12} (MACS-1967) recorded significantly lowest test weight (33.74 g) than other genotypes whereas it was statistically at par with genotypes G_{18} (AKAW-4731) and G_8 (HIDW-295), G_{19} (AKAW-4636) and G_7 (HD-2189).

Growing degree days :

When wheat crop was sown in D_1 (45th MW) accumulated significantly higher GDD in crop than sown at D_2 (48th MW) as shown in Table 3, for all crop phenophases studied during the experimentation. This could be explained by the fact that delayed sowing resulted in forced maturity of wheat because of high temperature prevailed during reproductive phase of late sown crop. Similar findings were also reported by Jat *et al.* (2003); Khichar and Niwas (2007) and Gill (2009). Genotype G_{14} (AKAW-4073) accumulated significantly higher GDD whereas genotype G_9 (NIAW-34) accumulated significantly lowest GDD for all crop phenophases like CRI, tillering, late jointing, panicle initiation, 50 per cent flowering, dough stage, 50 per cent maturity and harvesting.

Grain yield (q ha⁻¹) :

Grain yield due to sowing dates was not significantly influenced whereas numerically higher grain yield (38.49 q ha⁻¹) was recorded with D₁ (45th MW) sowing (Table 2). This could be explained by the fact that delayed sowing resulted in forced maturity of wheat because of high temperature that prevailed during reproductive phase of the late sown crop D₂ (48th MW). Significantly higher grain yield was obtained from timely sown D₁ (45th MW).It may be due to more contribution tendered by number of grains plant⁻¹, weight of grains plant⁻¹. Similar results were reported by Patil (2000); Sardana *et al.* (2003); Sardana *et al.* (2005) and Malik *et al.* (2007). Genotype G_{10} (AKAW-4627) recorded significantly highest grain yield (42.60 q ha⁻¹) which was statistically at par with G_9 (NIAW-34), G_{15} (AKAW-4210-6) and G_{13} (AKAW-4073). Genotype G_{12} (MACS-1967) recorded significantly lower grain yield 33.01 q ha⁻¹ which was statistically at par with G_{17} (AKAW-4705), G_{19} (AKAW-4636) and G_7 (HD-2189).

Straw yield (q ha⁻¹) :

The straw yield (q ha⁻¹) was significantly affected by different sowing dates. D₁ (45th MW) sowing gave the significantly higher straw yield of 71.39 q ha⁻¹ over 63.82 q ha⁻¹ when sowing was done at D₂ (48th MW) (Table 2). This might be due to considerable increment in tillers m⁻¹, chlorophyll content, leaf area, dry matter accumulation in wheat genotype was occurred when sown in D₁ (45th MW), which have been reported by several workers (Singh *et al.*, 1974; Pal *et al.*, 1996; Kumar *et al.*, 1998; Kumar *et al.*, 2000 and Negi *et al.*, 2003).

Effect of genotype :

Wheat genotype G_{10} (AKAW-4627) recorded significantly highest straw yield 74.27 q ha⁻¹ than rest of the genotypes except G_{14} (AKAW 4073) which found at par with it (Table 2). Genotype G_{12} (MACS) recorded significantly lower straw yield 20.21 q ha⁻¹ among rest of genotypes.

Correlation of cumulative growing degree days (GDD) with grain and straw yield:

Data regarding correlation of cumulative growing degree days (GDD). With grain and straw yield are presented in Table 1. GDD accumulated at different phenophases did not reflected in association with grain and straw yield. Similar results were reported by Saradana *et al.* (2003).

Correlation studies reveal that correlation between GDD with grain yield and straw yield were found to be significant showing the positive correlation at all phonological stages during experiment. It was also reported earlier by Saradana *et al.* (2003).

Conclusion :

- Sowing during 45th meteorological week (Timely sowing) with genotype (AKAW-4627), (AKAW-4073), (NIAW-34), (AKAW-4493) and (AKAW-3997) registered significantly higher grain yield. Similarly genotype AKAW- 3997 and NIDW 295 were more suitable for sowing in 48th (Late sowing) MW.

 Correlation of growing degree days (GDD) showed significant positive correlation with grain yield and straw yield during experiment.

 Sowing of wheat during 45th meteorological week recorded higher grain and straw yield.

LITERATURE CITED

- Chowdhury, S.I. and Wardlaw, I.F. (1978). The effects of temperature on kernel development in cereals. *Australian J. Agric. Res.*, **29**(2): 205 223.
- Gill, D.S. (2009). Agro-physiological traits for screening heat tolerant lines of wheat (*Triticum aestivum* L.) under late sown conditions. *Indian J. Agric. Res.*, 43(3): 211-214.
- Jat, B.L., Dhakar, L.L. and Poonia, T.C. (2003). Phenological and heat accumulation of wheat [*Triticum aestivum* (L.) Emend Fiori and palo] varieties under varying sowing dates and seed rates. *Agric. Sci. Digest.*, 23(2): 84-87.
- Khichar, M.L. and Niwas, R. (2007). Thermal effect on growth and yield of wheat under different sowing environments and planting systems. *Indian J. Agric. Res.*, 41(2): 92-96.
- Kumar, Rakesh and Sharma, S.N. (1999). Effect of nitrogen on dry matter and nutrient accumulation pattern in wheat (*Triticum aestivum*) under different dates of sowing. *Indian J. Agron.*, 44(4): 738-744.
- Kumar, S., Bangarwa, A.S. and Kadian, V.S. (2000). Response of wheat (*Triticum aestivum*) varieties to sowing dates and nitrogen levels. *Ann. Agric. Bio. Res.*, 5(1): 99-103.
- Kumar, S., Bangarwa, A.S., Singh, D.P. and Phogat, S. (1998). Dry matter accumulation in dwarf wheat varieties under different nitrogen levels and sowing dates. *Haryana Agric. Univ. J. Res.*, 28 (4): 151-157.
- Malik, R.K., Singh, S. and Yadav, A. (2007). Effect of sowing time on grain yield of wheat (Triticum aestivum) in ricewheat cropping system. *Haryana Agric. Univ. J. Res.*, 37(3): 103-105.
- Mattean, P.P.J., Hamid, S.C. and Johansan, V.A. (1970). Screening for high lysine content in wheat. *Cereal Sci. Today*, **15** : 409-410.
- Mishra, V., Mishra, R.D., Singh, M. and Verma, R.S. (2003). Dry-matter accumulation at pre- and post-anthesis and yield of wheat (*Triticum aestivum*) as affected by temperature stress and genotypes. *Indian J. Agron.*, 48(4):277-281.

- Nainwal, K. and Singh, M. (2000). Varietal behaviour of wheat (*Triticum aestivum*) to dates of sowing under Tarai region of Uttar Pradesh.*Indian J. Agron.*, **45**(1):107-113.
- Negi, S.C., Mankotia, B.S. and Rana, R.S. (2003). Performance of wheat (*Triticum aestivum*) varieties at different dates of sowing in North Western Himalayas. *Agric. Sci. Digest.*, 23 (1): 55-56.
- Patil, K.S. (2000). Effect of temperature on yield and yield components of early wheat cultivars. M.Sc. (Ag.) Thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola (M.S.) INDIA.
- **Phadanwis, B.N.** and Saini, A.D. (1992). Yield models in the wheat based on sowing time and phonological developments. *Ann. Plant Physiol.*, **6**(1): 52-59.
- Randhawa, A.S., Dhillon, S.S. and Singh, D. (1981). Productivity of wheat varieties as influenced by the time of sowing. *J. Res. PAU.*, **18**(3): 227-233.
- Rao, M.H., Singh, D., Singh, R. and Bishoni, O.P. (1992). Drymatter production in wheat (*Triticum aestivum*) in relation to thermal environment. *Indian J. Agric. Sci.*, **62**(5): 351-353.
- Sardana, V., Sharma, S.K. and Randhawa, A.S. (2002). Performane of wheat (*Triticum aestivum*) varieties under different sowing dates and nitrogen levels in the submontane region of Punjab. *Indian J. Agron.*, 47(3): 372-

377.

- Sardana, V., Sharma, S.K. and Randhawa, A.S. (2003). Yield performance of wheat (*Triticum aestivum* L.) varieties to late and very late sowing dates under the extreme northwest conditions of Punjab. J. Res. PAU., 40(2): 177-182.
- Sardana, V., Singh, R.P., Gupta, S.K. and Chakraborty, D. (2005). Influence of sowing time and nitrogen on productivity and quality of durum wheat (*Triticum durum* desf.). Ann. Agric. Res. New Series, 26(3): 411-415.
- Shirpurkar, G.N., Wagh, M.P. and Patil, D.T. (2008). Comparative performance of wheat genotypes under different sowing dates. *Agric. Sci. Digest*, 28(3): 231-232.
- Singh, Chidda (1989). *Modern techniques of raising field crops*. Oxford and IBH Publication Co. Pvt. Ltd., New Delhi (INDIA).
- Singh, V.P.N. and Uttam, S.K. (1996). Yield, protein content, NPK concentration and uptake of wheat varieties as affected by sowing dates under late sown conditions. *Adv. Agric. Res. India*, 6: 19-25.
- Singh, V.P.N., Thakur, C. and Shukla, S.C. (1974). Dry-matter production in dwarf and tall wheats grown under different sowing dates, irrigations and nitrogen levels. *JNKVV*, *Res. J.*, 8(3-4): 225-228.

Gth Year ***** of Excellence *****