Development of drought tolerant index in cotton genotypes based on relative water content and yield

K. ANANTHI AND H. VIJAYARAGHAVAN

Department of Crop Physiology, Tamil Nadu Agricultural University, COIMBATORE (T.N.) INDIA Email : ananthiphd@yahoo.com

Water stress adversely affects both yield and fibre quality of cotton (*Gossypium spp* L.). A study was conducted to determine the relative water content (RWC) and drought tolerant index (DTI) of cotton plants under water stress in cotton. The experiment was conducted by adopting Factorial Randomized Block Design with three replications. The treatments comprised of water stress imposed at vegetative, squaring and boll development stages of crop growth. In case of drought tolerant genotype, the leaves maintained higher RWC and photosynthetic activities under water stress than that of drought sensitive genotype. Prolonged water shortages virtually affect all the metabolic processes and often result in severe reductions in plant productivity.

Key words : Relative water content, Yield, Drought tolerant index

How to cite this paper : Ananthi, K. and Vijayaraghavan, H. (2012). Development of drought tolerant index in cotton genotypes based on relative water content and yield. Asian J. Bio. Sci., 7 (2) : 138-144.

INTRODUCTION

Cotton (Gossypium spp.; Family : Malvaceae) a leading natural fibre source, is grown in arid and semiarid regions of the world. It is a very important cash crop for Indian farmers and contributes around 30 per cent to the gross domestic product of Indian agriculture. It is considered as the 'white gold' and 'king of fibre crops'. Water use efficiency is a key factor determining plant productivity under limited water supply. Through intensive breeding programmes, cultivars have been developed that are grown commercially as annuals. The relative water content (RWC) was studied in drought tolerant and drought sensitive genotypes of cotton (G. hirsutum L.) during induction of water stress and posterior recovery (Asish Kumar et al., 2008). In case of drought tolerant genotype, the leaves maintained higher RWC and photosynthetic activities under water stress than that of drought sensitive genotype. Flower and Ludlow (1986) proposed that RWC is an alternative measure of plant water status which tells upon the metabolic process in the tissue and lethal leaf water status. Upreti et al. (1998) noted changes in RWC under stress and normal conditions, the reduction being significant under stress condition. Crop management for both optimum yield and fibre quality is a realistic and important approach to take for a profitable cotton production

system. Water availability is arguably the most limiting factor to profitable cotton production in the South East. Pace et al. (1999) suggested cotton cultivars that can endure and recover from drought are needed to minimize fruit loss and reduce the amount of water required for crop production. Minimum numbers of flowers were found when moisture stress was imposed at flowering stage (Kaur and Singh, 1992). Jordan (1983) reported higher rate of square and boll shed in cotton due to water stress. Varma (1975) reported more than 32 per cent of flower shedding and 58 per cent of boll shedding in cotton. Kaur and Singh (1992) found that flower number and percentage of boll abscission were decreased by water stress at flowering stage of cotton. Seed cotton yield decreased as the allowable water deficit increased (Cudrak and Reddel, 1988). Lint yield is generally reduced because of reduced boll production, primarily because of fewer flowers and also due to increased boll abortions when the stress is extreme and when it occurs during reproductive growth (Pettigrew, 2004). Seed yield and yield components are severely affected by water deficit.

RESEARCH METHODOLOGY

The aim of this experiment was to investigate the responses caused by progressive water stress and the

necessary time for have biochemical and physiological changes of *Gossipium* spp. during the vegetative, squaring and boll development stages. For present investigation, twenty one genotypes including eight parents, four F_1 hybrids, five F_2 's and four back crosses along with parents were subjected for genetic diversity analysis using physiological features. Field trails were conducted in at *Kharif*, 2008 in the Department of Cotton, Centre for Plant Breeding and Genetics, TNAU, Coimbatore.

Treatments:

- $-T_1$ -Control
- $-T_{2}$ Stress at vegetative
- $-T_{3}^{-}$ Stress at squaring
- $-T_{A}^{-}$ Stress at boll development

Varietal details:

Parents:

- JKC 770
- -AS1
- -AS2
- KC2
- KC3
- MCU 13
- Suvin
- Surabhi

F₁ hybrids:

- AS1XSuvin
- KC2XMCU13
- AS2XMCU13
- KC2X JKC 770

F₂'s:

- KC2 x XMCU13
- AS3 x JKC 770
- AS2 x MCU13
- KC2 x JKC 770
- AS1 x Suvin

Back crosses:

- (AS2 x MCU13) x MCU13
- (AS2 x MCU13) x AS2
- (KC2 x MCU 13) x MCU 13
- (KC2 x MCU13) x KC2

Drought tolerant index (DTI):

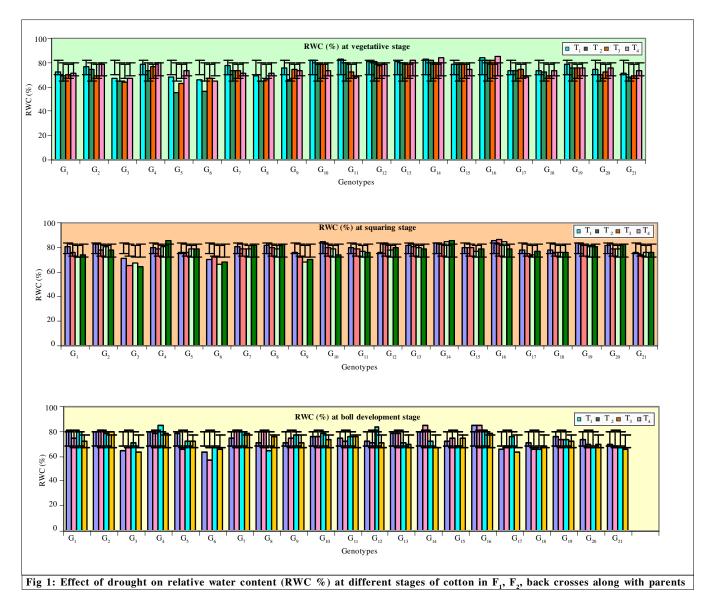
An attempt was made to develop a drought tolerant index based on two physiological parameters such as chlorophyll stability index and relative water content. In a similar fashion yield data were also computed for arriving at a drought tolerance index. The following parameters were used (Zangi, 1998 and Jafary, 2002).

- The yield recorded in normal stress free environment (Yn)
- The yield recorded under drought (Yd)
- The yield recorded in all genotypes under normal environment (Yn*)

The drought tolerant index is defined by the above data for arriving at the following indices:

Drought tolerance index (DTI)=(Yd x Yn)/(Yn*)²

RESEARCH FINDINGS AND ANALYSIS

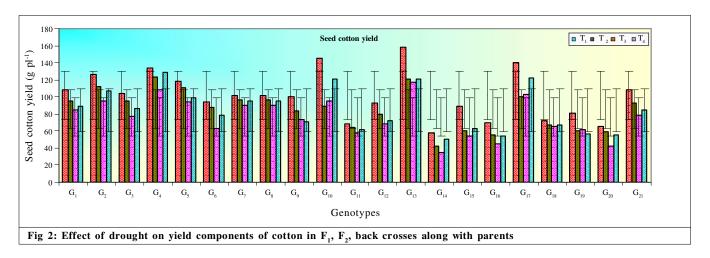

Relative water content which is an important parameter for drought studies was recorded in F₁, F₂, and F₂ and back cross generations along with parents. In general it was observed that RWC was maintained at higher level in KC2 x MCU13 followed by KC2 x JKC770 and AS2 x JKC 770 in both F_1 and F_2 generations. This indicates that these three combinations were superior in terms of drought tolerance. The genotype (KC2 x MCU13) x KC2 maintained a higher relative water content in all stages than others even under the stress conditions (76.43, 78.84 and 77.38). Plant water stress was measured in terms of leaf water potential or leaf relative water content (Deivanai et al., 2010). Reduction in RWC results in loss of turgidity, which leads to stomatal closure and reduced photosynthetic rates (Sulian et al., 2007). The performance of genotypes for RWC (%), under water deficit condition, in which a sharp decline in RWC was recorded among the genotypes. Some previous studies (Jamauex et al., 1997; Altinkut et al., 2001; Colom and Vazzana, 2003) have shown that maintenance of a relatively high RWC during mild drought is an indicative of drought tolerance. Among the genotypes KC2, AS2 and MCU 13 recorded higher value of RWC percentage at all the stages of crop growth irrespective of the treatments (77.28, 79.06 and 79.37; 74.80, 77.02 and 77.78; 71.46, 75.07 and 75.63, respectively). However, the susceptible genotype Surabhi exhibited the lowest relative water content percentage of 61.45, 64.89 and 64.39 than other genotypes. RWC was maintained at higher level in KC 2 x MCU13 followed by KC2 x JKC770 and AS 2 x JKC 770 in both F, and F, generations. (Table 1 and Fig. 1).

Differences were noticed in seed cotton yield per plant due to the treatments. The stress imposed at squaring stage has shown a marked reduction in seed cotton yield when compared to the control. The seed cotton yield recorded as 128.99 in KC2 x MCU13 (F_2) irrespective of treatments. Significant differences were also observed between the genotypes, treatments and their interactions. The genotypes KC2 and AS2 had the highest value of seed cotton yield (120.28 and 110.22) than other genotypes at all stages irrespective of the treatmental effects. (Table 2 and Fig. 2) Among the backcrosses, (KC2 x MCU13) x MCU13 the tolerant genotype

ี่ โด้บัตร์ 1≣ 3.2000 อาโต่ายนอยู่ที่ อย่างข่อเร็าของสะโตรอย่าง ก.(? XWY	VIC WELCO	and and 23	VC %) #1. d.	÷ .	ರಿ ಇಲ್ಲಿ ತ್ರತ್ನಾಡಾ ದಿ ಇದಲ್ಲಿದ್ದು	1. 18 B. 19	o da da arak tatata tan in wilo		Service and						
S. Le 1935			Vogo'z'' vo					Semaning					Boʻʻ dava ayrari		
and the second of the second o					V.02.					V.GET					V. GE.
N. Const. S.	65.27	58.87	65.04			30.53	66.34	12.24		10.51.		12 the	80.29	12. 3	15.63
AS 2,		86 N.	69.3	7.67,		32.21	66.81.	80.52		Con 11.		30.5/	18.39	\$9.61,	81.14.
and to a second	8.7.9	67 '30	6/ 33	67.23	82.33		65.25	67.52	1219	66.37/	1.13			63.2	56.11
XC X	18.62	13.53		20.2	8614.	80.2	19.32	80.39	\$2.20	90.61.	1.8.61.	18.3	567.268	1.5.81.	1564
. SV	68.29	55.67	62,39	13.23	06 13	16.23	CC 91.	1181.	91.81.	her and	5184	68.33	m. KI.	15:61.	15:04
en and a set	66.26		66.73	65.33		EX al.	No late	66.23	58.12	68.13	63.38		57.73	65.28	65/33
XO 3	78°14.	13.33	68 SI.	. C V.	13.86	30.63	18.65	96.64.	07.78	76.65	14. 81.	30.6/	1,8°67,	13.02	he like
Second Winter	97.69	65.2%	1.759		60.83	37.	8161.	6.87	18.28	51.81.	You .Y.	91.61.	81.13	16.32	m5 87.
$\otimes \mathbb{U}_{\mathbb{R}^n} \mathbb{A}_{\mathbb{R}^n} \mathbb{A}_{\mathbb{R}^n} \mathbb{C}_{\mathbb{R}^n} \mathbb{A}_{\mathbb{R}^n} \mathbb{C}_{\mathbb{R}^n} \mathbb{C}_{\mathbb{R}^n$															
AS * X Survin	\$1.51.	66.78		13.22	.1%1.	6894	12.33	68.21	16. SV.	5. 61.	88° •1,	1. 1k.	11.91.	88°0/,	8141.
XC 2 x VCU : 3	e. 78	65.87	78.87	13.20			85°61.	18.39		.18.6.		01Sh	78,83	91.81.	06 H.
AS 2 x V.CU: 3	83. 5	65.64	12.2	68.33	W.S.	30.21	18.53	8614				W. S.	1751.	99'57,	1.00 21.
044.072° × 2.02.	8. 22,	\$0.62	6814.	18.33	68.64.	88794	\$3.2	4881.	80.22	5751.	12.32	SE 01.	83.22		96 H.
Starky.															
XC 2 × VCU : 3	30.37	80.2	18.22	32.73	80.28	32.2	15.08	19.56	w. 61.	30.21	05.87	13.73	Srol.	69.30	25.87
AS 3 x J 3C 770	83.33	8.12	5.00	15 18	82.35	\$3.2.	32.51	8112	as:58	33,03	5661.		Or Ch.	67.78	3. U.
AS 2 × V.C.J. 3	78.66	13.26	0. G/.	1.9 11.	1.911.	1861.	16.98	5791.	19.81.	· · · · · · · · · · · · · · · · · · ·	a Sh	88° 11.	68.23	WE 12.	\$ 1.51
NU. 32.2 × 2 32.	37.56	32.0	32.15	12,28	83.52	32.73	36.73		16.61	83.73	37.52	\$2.73	11.48		83.29
AS T x Suvin	11.81.	13.2.		68.29	18.61.	0814.		16 14.	6611.	65.87	65.39	68.27		62.87	18.61.
B.C. A.C. WSSCS															
(AS2×N.CU.3) × N.CU.3	13.32	12,23	69.50	6181.	6. 61.	\$514.	894	6751.	68'91,	So 1.		65.53	65.70	68.30	56.01.
(XCD*NCC23) × XCD	18.93	15.32	15.83	19.51.		83.52	3.7.	n	30.65	/8-8/,	1.8.91.	5 81.	13.20		\$574.
(AS2×VCUU3) × AS2		31.01.	68.61.	6/51.	97.64.	81.25	261.	m/81.	32,55	16.38	91781.	Mr. Exc	111.9	1.5.69	11.63
(KO2×NCU13) × NCU13	Sor A.	68.78	69769	5181.	12 2 42 1 1	$\mathcal{L}_{\ell}, \mathcal{G}_{\ell},$		6894.		18.61.		68.3	6.7.9	6739	st le
W. Szzm	.n. 9/.	12.3.	12,98		NG 81.	.761.	6514.	1.694	157A.	61.51.	El de	45° 81.	66.87,	99° . A	60° SA.
			¢	ÐX.				3	DX.				Ð	DX.	
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		0.926	2.22				0.937		1.231			008.0	n/2%	. 80% /	
(Soo 2) C.D		. 379	1.30	26 27 26			3/8.	1 22.9	8.759			\$517.	1.223	850.8	

DEVELOPMENT OF DROUGHT TOLERANT INDEX IN COTTON GENOTYPES BASED ON RELATIVE WATER CONTENT & YIELD

Asian J. Bio Sci., 7 (2) October, 2012 :138-144 Hind Institute of Science and Technology


K. ANANTHI AND H.VIJAYARAGHAVAN

exhibited the highest seed cotton yield of 92.59. Maximum number of flowers and bolls produced were found to be highest in KC2, AS2 and MCU13 followed by Suvin, AS1 and KC3 in parental genotypes. According to Anderson (1972), water deficit at flowering and pollination (60-70 DAS) even for a short period resulted in an irreversible damage to plant and lowered the yield. Later experiments conducted by Singh and Sahay (1992) also supported this view. Seed cotton yield ultimately is the result of plant population, photosynthetic ability of the plants in community, number of flowers and number of bolls. Yield was remarkably reduced when stress was imposed at squaring stage. Earlier report also indicated that the most critical phenophase for water stress in cotton is flowering (Singh and Sahay, 1992).

Drought is a multifaceted parameter influenced both by

the genotypes as well as the environment. Drought tolerant mechanism is by and large much complicated and deserves to be quantified. In this direction an attempt was made to categorized drought tolerance in the cotton genotypes studied. From the perusal of the data (Table 3 and 4) it is seen that the genotype KC 2 had the highest mean value of drought tolerant index in relative water content (41.23) followed by AS 2 (40.91). KC2 x MCU 13 (41.13 in F_1 ; 41.24 in F_2). The cross KC 2 x JKC 770 recorded the highest value of drought tolerant index in RWC. Here KC 2 x JKC 770 recorded the lowest mean value of drought tolerant index in seed cotton yield. Among the genotypes Surabhi which was susceptible for water stress recorded the lowest mean value (30.45 and 35) for drought tolerant index in RWC and seed cotton yield irrespective of the treatments.

Stages	-	Numbe	r of flowe	rs per plant			Se	ed cotton yie	$ld (g nl^{-1})$	
Genotypes	T			1 1	Maan	T				Mean
Parents	T ₁	T ₂	T ₃	T ₄	Mean	T ₁	T ₂	T ₃	T ₄	
MCU 13	52.8	49.5	46.9	48.6	49.5	108.23	94.59	85.45	88.27	96.09
AS 2	45.7	44.4	41.2	42.5	43.5	126.43	112.34	94.82	107.29	110.22
JKC 770	38.3	26.1	22.6	24.1	27.8	103.68	95.48	77.29	86.3	90.69
KC 2	73.2	62.1	51.5	56.2	60.3	133.16	123.16	108.17	128.32	120.28
AS 1	57.6	51.3	46.6	49.4	51.2	118.63	110.35	93.76	99.59	105.58
Surabhi	44.2	42.6	41.3	43.4	42.6	93.6	86.9	62.9	78.34	80.44
KC 3	48.9	46.5	43.2	44.8	45.9	102	96.4	89.76	95.2	95.5
Suvin	59.6	55.5	52.5	54.2	54.8	102	96.4	89.76	95.2	95.5
F1 hybrids										
AS1 x Suvin	37.5	35.5	33.6	35	35.40	99.96	83.27	73.1	70.38	81.68
KC 2 x MCU 13	63.3	52.7	45.7	48.9	52.65	144.824	88.39	95.33	120.29	112.21
AS 2 x MCU 13	26.8	26	22.7	25	25.13	68.432	64.29	57.33	61.21	62.82
KC 2 x JKC 770	42.8	41.7	40.7	41.5	41.68	92.778	79.39	68.34	72.29	78.2
F ₂ 'S										
KC 2 x MCU 13	55.3	49.6	46.1	48.2	49.8	157.973	121.23	116.38	120.38	128.99
AS 3 x JKC 770	33.8	32.3	28.9	31.2	31.55	58.045	42.66	35.34	49.72	46.44
AS 2 x MCU 13	34.5	33.1	29.3	31.2	32.03	89.11	60.72	54.22	63.54	68.01
KC 2 x JKC 770	36.1	35.2	31.7	32.9	33.98	69.09	55.28	45.23	54.46	56.25
AS 1 x Suvin	54.7	54.2	49.5	52.6	52.75	140.008	99.82	103.29	122.26	116.28
Back crosses										
(AS2xMCU13) x MCU13	37.1	35.2	33.2	34.1	34.90	71.968	66.23	65.29	66.39	67.47
(KC2xMCU13) x KC2	24.4	23	21.2	21.6	22.55	81.263	60.38	62.28	57.19	65.28
(AS2xMCU13) x AS2	39.6	37.4	36.2	26.9	35.03	65.8	58.92	42.1	55.1	55.48
(KC2xMCU13) x MCU13	57.9	56.4	53.2	53.8	55.33	108	92.88	78.36	85.12	92.59
Mean	45.91	42.4	38.94	40.29	41.83	101.67	85.19	76.12	84.61	86.95
	Т	G		TXG		1	ſ	G	TXG	
S.E.+	1.584	0.691		3.198		3	3.632	1.585	7.264	
C.D. (P=0.05)	3.127	1.365		6.255			.171	3.129	14.342	,

K. ANANTHI AND H.VIJAYARAGHAVAN

Parents	DTI at vegetative	DTI	DTI at boll development	Mean
Farents	stress	at squaring stress	stress	Wiean
MCU 13	0.97	0.92	0.95	0.95
AS 2	1.02	1.05	1.02	1.03
JKC 770	0.74	0.76	0.73	0.74
KC 2	1.01	1.02	1.08	1.04
AS 1	0.92	0.95	0.95	0.94
Surabhi	0.80	0.74	0.76	0.77
KC 3	1.01	1.01	1.05	1.02
Suvin	1.03	1.03	1.08	1.05
F1 hybrids				
AS 1 x Suvin	0.88	0.83	0.85	0.85
KC 2 x MCU 13	1.07	1.05	0.99	1.04
AS 2 x MCU 13	1.00	0.98	0.97	0.98
KC 2 x JKC 770	1.01	0.95	0.97	0.98
F ₂ 'S				
KC 2 x MCU 13	1.05	1.04	1.03	1.04
AS 3 x JKC 770	1.09	1.11	1.13	1.11
AS 2 x MCU 13	1.01	0.96	0.99	0.99
KC 2 x JKC 770	1.18	1.15	1.08	1.13
AS 1 x Suvin	0.92	0.92	0.95	0.93
Back crosses				
(AS2 x MCU13) x MCU 13	0.94	0.93	0.94	0.94
(KC2 x MCU13) x KC 2	1.09	1.07	1.07	1.08
(AS2 x MCU13) x AS 2	1.02	1.01	1.07	1.03
(KC2 x MCU13) x MCU 13	0.89	0.92	0.92	0.91
Mean	0.97	0.92	0.95	0.95

Table 4 : Drought tolerance inde	x in seed cotton yield			
Parents	DTI at vegetative	DTI	DTI at boll development	Mean
Turents	stress	at squaring stress	stress	Wiedin
MCU 13	0.99	0.89	0.92	0.94
AS 2	1.37	1.16	1.31	1.28
JKC 770	0.96	0.78	0.87	0.87
KC 2	1.59	1.39	1.65	1.54
AS 1	1.27	1.08	1.14	1.16
Surabhi	0.79	0.57	0.71	0.69
KC 3	0.95	0.89	0.94	0.93
Suvin	0.95	0.89	0.94	0.93
F1 hybrids				
AS 1 x Suvin	0.81	0.71	0.68	0.73
KC 2 x MCU 13	1.24	1.34	1.69	1.42
AS 2 x MCU 13	0.43	0.38	0.41	0.40
KC 2 x JKC 770	0.71	0.61	0.65	0.66
F ₂ 'S				
KC 2 x MCU 13	1.85	1.78	1.84	1.82
AS 3 x JKC 770	0.24	0.20	0.28	0.24
AS 2 x MCU 13	0.52	0.47	0.55	0.51
KC 2 x JKC 770	0.37	0.30	0.36	0.35
AS 1 x Suvin	1.35	1.40	1.66	1.47
Back crosses				
(AS2 x MCU13) x MCU 13	0.46	0.45	0.46	0.46
(KC2 x MCU13) x KC 2	0.47	0.49	0.45	0.47
(AS2 x MCU13) x AS 2	0.38	0.27	0.35	0.33
(KC2 x MCU13) x MCU 13	0.97	0.82	0.89	0.89
Mean	0.84	0.75	0.83	0.81

Asian J. Bio Sci., 7 (2) October, 2012 : 138-144 Hind Institute of Science and Technology

LITERATURE CITED

- Altinkut, A., Kazan, K., Ipekci, Z. and Gozukirmizi, N. (2001). Tolerance to paraquat is correlated with traits associated with water stress tolerance in segregating F, populations of barley and wheat. *Euphytica*, **121**: 81-86.
- Anderson, T. (1972). Protective irrigation for dryland crops A basis for research in supplement irrigation. In proceeding of first meeting of principal investigators of All India Co-ordinated Research Project for dryland Agriculture, Hyderabad (A.P.) INDIA.
- Asish Kumar, S., Parida Vipin, S., Dagaonkar, Manoj, P., Phalak Laxman and Aurangabadkar (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol. Plant, 30: 619–662.
- Colom, M.R. and Vazzana, C. (2003). Photosynthesis and PSII functionality drought resistance and drought sensitive weeping love grass plants. *Environ. Exp. Bot.*, 4: 135-144.
- Cudrak, A.J. and Reddell, D.L. (1988). A stimulus response model to predict crop yields due to water deficits. ASAE Paper no. 88-2514. American Soc. agric. Eng. St. Joseph. MI.
- Deivanai, S., Devi, S. Sheela, S. and Rengeswari, P. Sharrmila (2010). Physiochemical traits as Potential Indicators for determining drought tolerance during active tillering stage in rice (*Oryza sativa L.*). *Pertanika J. Trop. agric. Sci.*, 33(1):61-70.
- Flower, D.S. and Ludlow, M.M. (1986). Contribution of osmotic adjustment to the dehydration tolerance of water stressed pigeon pea [*Cajanas cajan* (L.) Millsp.] leaves. *Plant Cell Environ.*, **9**: 33-40.
- Jafary, M. (2002). Study of salt tolerance in 40 genotype of cotton. M.Sc. Thesis, Gorgan University of Agricultural Science and Natural Resources, IRAN (WESTERN ASIA).
- Jamauex, I., Steinmertz, A. and Belhassen, E. (1997). Looking for molecular and physiological markers of osmotic adjustment in sunflower. *New Phytologist.*, 13: 117-127.
- Jordan, W.R. (1983). Cotton. In: I.D. Teare and M.M. Pett (Eds.). Crop-water relations. John wiley, NEW YORK (U.S.A.), pp. 213-254.
- Kaur, R. and Singh, O.S. (1992). Response of growth stages of cotton varieties to moisture stress. Indian J. Plant Physiol., 35(2): 182-185.
- Pace, P.F., Harry, T., Cralle, S.H., El-Halawany, M., Cothren, J.T. and Senseman, S.A. (1999). Drought-induced changes in shoot and root growth of young cotton plants. J. Cotton Sci., 3: 183-187.
- Pettigrew, W.T. (2004). Physiological consequences of moisture deficit stress in cotton. Crop Sci., 44: 1265-1272.
- Singh, D. and Sahay, R.K. (1992). Drought stress in cotton: identification of critical growth stages. Plant Physiol. Biochem., 19(1): 55-57.
- Sulian, L.V., Yang, Aifang and Zhang, Kewei (2007). Increase of glycine betaine synthesis improves drought tolerance in cotton. *Mol. Breed.*, 20: 233-248.
- Upreti, K.K., Murthi, G.S.R. and Bhatt, R.M. (1998). Responses of the French bean cultivars to water deficit changes in endogenous hormones, proline and chlorophyll. *Biol. Plant.*, 40(3): 381-388.
- Varma, S.K. (1975). Studies on the extent periodicity and intensity of flower bud and boll shedding in cotton (*Gossypuim hirsutum* L.). Cotton Dev., 5: 11-16.
- Zangi, M.R. (1998). Drought resistance evaluation in cotton and path analysis of its effective characters. M.Sc. Thesis, Tarbiat Modares University, IRAN (WESTERN ASIA).