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Geomorphological parameters when combined with
analysis by principal components analysis, helps to
establish hydrological models for prediction of

sediment production rate and runoff from the basin area.
Therefore, in this study an attempt has been made to find the
intercorrelationship among the variables in order to screen
out the less significant variables out of the analysis and to
arrange the remaining into physically significant groups by
applying principal component analysis along with the
orthogonal rotation for better interpretability.

Haan and Allen (1972), Decoursey and Deal (1974) and
Pondzic and Trninic (1992) have demonstrated the use of
multiple regression analysis and principal component analysis
for development of hydrological prediction equation involving
geomorphic parameters. Kumar and Satyanarayana (1993)
carried out principal component analysis for eastern red soil
region of the India and concluded that circulatory ratio,

ruggedness number and drainage factor have been found non
significant for explaining the component variance. Singh et
al. (2009) used Principal Component Analysis to screen out
the less correlated parameters and to regroup the correlated
parameters into physically significant components. They found
the out of thirteen geomorphological parameters, three
parameters were not correlated with others and, therefore,
screened out to regroup remaining ten parameters into three
principal components.

The study area is Tapi basin which is situated between
68030 to 70045 E longitudes and 22 018 to 23 025 N latitude. The
Tapi river basin covers an area of 65,145 km² that makes up
almost two per cent of the total area of India. The basin mostly
lie in the northern and eastern districts Maharashtra state,
including places like Dhule, Jalgaon, Nashik, Nandurbar,
Amravati, Akola, Washim, and Buldhana districts. The river
receives discharge from 14 main tributaries, 4 on the right
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ABSTRACT : Geomorphological models have been developed for prediction of sediment production rate
and runoff from the small watersheds of Tapi basin, Maharashtra, India. In this study, total of twelve
morphological parameters were selected and used after under gone principal component analysis. Principal
component analysis was carried out for grouping the different parameters into the principal components. To
understand the behaviour of all the parameters pertaining to study areas, and to reduce the dimensionality
of database, the data pertaining to twelve parameters of ten small watersheds were submitted for principal
component analysis. The method of components analysis, then, involves the rotation in the total variable
space - an orthogonal or uncorrelated transformation wherein each of the n original variables is describable,
in terms of the n new principal components. An important feature of the new components is that they
account, in turn, for a maximum amount of variance of the variables. Analysis extracted three components
as a principal components with 10 parameters, accounting for a total variance of 97.256 %. The first
component was highly correlated with R
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bw
 accounting for 68.52 % variance. Second component

is strongly correlated with R
N
 accounting for 18.60 % variance and third with S

c
, accounting for 10.13 %

variance. Finally, these extracted 10 parameters were used for modeling for prediction of sediment yield
and runoff from selected small watersheds of Tapi basin, Maharashtra, India.
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bank and 10 on the left bank, of which the Purna river, Girna
river, Panzara river, Waghur river, Bori river, Amarwati river,
Mousam river and Aner river are the most important.

Various watersheds in the area of interest were marked
using the Survey of India (SOI) toposheets. For the preparation
of the drainage and contour maps at higher scale, digitized
toposheets at the scale 1: 2,50,000 and undigitized toposheets
at the scale 1: 50,000 were used which were digitized later.
ArcGIS 9.3 software was used to evaluate the twelve
geomorphological parameters of the selected ten watersheds
from digitized toposheets.

 METHODOLOGY
Geomorphological parameters:

Watershed characteristics play a vital role on the
hydrologic responses of watersheds, and therefore, a number
of parameters which signify the watershed characteristics are
evaluated from the toposheets. Singh (1992) and Singh (2000)
also specified the important geomorphological characteristics
of the watershed. Twelve salient parameters were selected in
this study for Tapi basin of Maharashtra state, India.
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Rl Stream length ratio ubaLu 10log ; bantiR log1 

Rb Bifurcation ration ubaN u 10log ; bAntiRb log

Lbw Length width ratio Lb/Lw

Principal component analysis:
The principal components analysis with rotations was

carried out in following three steps:

Step 1 - Calculate the correlation matrix, R
Step 2 - Calculate the unrotated factor loading matrix

by principal component analysis.
Step 3 - Calculate the rotated factor loading matrix to

enhance interpretability by orthogonal transformation.
SPSS 16.0 software have been used for obtaining

correlation matrix, first (unrotated) factor loading matrix,
orthogonal rotation of a factor loading matrix using a
generalized orthomax criteria including quartimax, varimax,
and equamax. The varimax method attempts to load highly a
relatively low number of variables on each factor.

Correlation matrix:
The inter-correlation matrix of the geomorphic

parameters is obtained by using the following procedure:
– The parameters are standardized:

j

jij

S

)x-(x
X 

where, x denotes the matrix of standardized parameters,
x

ij
 = ith observation on jth parameter

i = 1, ……, N (no. of observations)
j = 1, ……, P (no. of parameters)
x

j
= Mean of the jth parameter

S
j

= Standard deviation of the jth parameter.

– The correlation matrix of predictor parameters is the
minor product moment of the standardized predictor measures
divided by N and is given by

R = (x’ * x)/N
where, x’ denotes the transpose of the standardized

matrix of predictor parameters.

First factor loading matrix:
The unrotated or first factor loading matrix which reflects

how much a particular parameter is correlated with different
factors, is obtained by premultiplying the characteristic vector
with the square root of the characteristic values of the
correlation matrix.

Thus, A = Q * D0.5

where, A = first factor loading matrix,
Q = characteristic vector of the correlation matrix,
D = characteristic value of the correlation matrix.

Rotated factor loading matrices:
When a transformation matrix is post-multiplied to the

first factor loading matrix, the rotated loading matrix is
obtained. Hence,

B = A * H

where, B = rotated factor loading matrix,
H = transformation matrix.
While deriving the rotated factor loading matrix only

S.P. NIKAM, R.C. PUROHIT, M.G. SHINDE, P.K. SINGH, H.K. JAIN AND PRAVIN DAHIPHALE

186-189



HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE
Internat. J. agric. Engg., 7(1) April, 2014  :188

those components whose eigen-values are greater than one
are retained.

 RESULTS AND DISCUSSION
The inter correlation matrix (Table 1) was developed

using twelve selected geomorphic parameters of the ten
watersheds. It reveals that strong correlations (correlation
co-efficient more than 0.9) existed between Re and Sb, between
Re and Lbw, between Sb and Lbw and between Rf and Rr.
Also, good correlations (correlation co-efficient more than
0.75) existed between Re and Rc, Rc and Sb, Rc anf Lbw and
between Df and Rl. Some more moderately correlated
parameters (correlation co-efficient more than 0.6) were Sb
with Rf, Rf with Rl, Rf with Lbw, Rr with RN, Rr with Rl and
Sc with Df. It is very difficult at this stage to group the
parameters into components and attach any physical
significance because some parameters like Sa and Rb did not
show any significant correlation with any of the parameters.

Hence, in the next step, the principal component analysis has
been applied. The correlation matrix is subjected to the
principal component analysis.

The principal component loading matrix obtained from
correlation matrix of 12 parameters (Table 2) reveals that the
first three components whose Eigen values were greater than
one, together account for about 92.36 % of the total explained
variance. The first component was strongly correlated
(loadings of more than 0.9) with R

e
, S

b
, R

l
 and L

bw
 but

moderately (loadings of more than 0.7) with Sa. The second
component was strongly correlated with R

N
. The third

component did not strongly correlate with any geomorphic
parameters but moderately correlated with S

c
.

It is observed from Table 2 that some parameters had
high, good or moderate correlation with components but the
parameter R

b
 could not be grouped with any one of the

components because of its poor correlation (0.4 to 0.5) with
them. Therefore, in the second step, the parameter R

b
 was first

Table 1: Intercorrelation matrix of the selected geomorphic parameters
Parameters Sa Re Rc Sb Rr Rf RN Sc Df Rl Rb Lbw

Sa 1.000 0.110 0.205 -0.255 0.354 0.462 0.315 0.331 0.323 -0.409 0.248 -0.284

Re 0.110 1.000 0.825 -0.976 0.575 0.441 -0.047 0.008 0.496 -0.576 0.339 -0.951

Rc 0.205 0.825 1.000 -0.855 0.226 0.205 -0.275 -0.031 0.488 -0.434 0.375 -0.840

Sb -0.255 -0.976 -0.855 1.000 -0.613 -0.514 -0.053 -0.034 -0.416 0.539 -0.392 0.974

Rr 0.354 0.575 0.226 -0.613 1.000 0.964 0.598 0.128 0.147 -0.637 0.098 -0.607

Rf 0.462 0.441 0.205 -0.514 0.964 1.000 0.658 0.134 0.111 -0.635 0.061 -0.511

RN 0.315 -0.047 -0.275 -0.053 0.598 0.658 1.000 -0.025 -0.361 -0.072 -0.086 0.023

Sc 0.331 0.008 -0.031 -0.034 0.128 0.134 -0.025 1.000 0.679 -0.172 0.086 -0.080

Df 0.323 0.496 0.488 -0.416 0.147 0.111 -0.361 0.679 1.000 -0.813 0.088 -0.469

Rl -0.409 -0.576 -0.434 0.539 -0.637 -0.635 -0.072 -0.172 -0.813 1.000 0.078 0.589

Rb 0.248 0.339 0.375 -.392 0.098 0.061 -0.086 0.086 0.088 0.078 1.000 -0.358

Lbw -0.284 -0.951 -0.840 0.974 -0.607 -0.511 0.023 -0.080 -0.469 0.589 -0.358 1.000

Table 2 : Principal component loading matrix of selected geomorphic parameters
Principal components

Parameters
1 2 3 4 5 6 7 8 9 10 11 12

Sa 0.767 0.204 0.394 -0.289 0.362 -0.019 -0.010 -0.003 0.001 0.000 0.000 0.000

Re 0.955 -0.100 -0.233 0.149 -0.037 0.019 -0.022 -0.006 0.003 0.000 0.000 0.000

Rc 0.897 -0.296 -0.281 0.122 0.108 0.005 0.049 -0.010 0.001 0.000 0.000 0.000

Sb -0.965 0.055 0.185 -0.177 -0.020 -0.011 0.011 0.014 -0.003 0.000 0.000 0.000

Rf 0.866 0.473 0.053 0.080 -0.125 -0.040 -0.018 0.008 0.001 0.000 0.000 0.000

Rr 0.827 0.543 0.103 0.032 -0.082 -0.052 0.020 0.013 0.000 0.000 0.000 0.000

RN 0.152 0.926 0.287 0.171 0.003 0.087 0.009 -0.005 0.000 0.000 0.000 0.000

Sc 0.369 -0.447 0.790 -0.088 -0.18 -0.003 0.008 -0.028 0.001 0.000 0.000 0.000

Df 0.820 -0.341 -0.123 -0.434 -0.064 0.058 -0.007 0.015 0.000 0.000 0.000 0.000

Rl -0.929 -0.114 0.091 0.320 0.117 0.000 -0.013 -0.013 0.001 0.000 0.000 0.000

Rb 0.575 -0.572 0.413 0.410 0.055 0.014 -0.003 0.037 -0.001 0.000 0.000 0.000

Lbw -0.973 0.076 0.172 -0.131 -0.013 0.010 0.014 0.024 0.006 0.000 0.000 0.000

Eigen value 7.638 2.18 1.266 0.672 0.22 0.016 0.004 0.004 0.000 0.000 0.000 0.000
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screened out and remaining 11 parameters were subjected to
the principle component analysis. It reveals from the principle
component loading matrix obtained from correlation matrix of
11 parameters that each parameter was having high, good or
moderate correlation with first, second or third component.
Further they were subjected to different methods of
transformation (rotation) of the first factor loading matrix such
as varimax, equamax and quartimax. It was observed in the
rotated component matrix by varimax method of the three
principle components that the parameter Sa could not be
grouped with any one of the components because of its poor
correlation (0.4 to 0.5) with them. The parameter Sa was,
therefore, screened out in the next step for PCA and the same
analysis was repeated with only 10 variables.

The first factor loadings matrix obtained using the
correlation matrix of 10 parameters (Table 3) reveals that the
first three components now together accounted for 97.25 %
of the total explained variance showing an increase of about
4.89 %. The first factor loadings here also improved
considerably in almost all significant parameters. The R

e
, R

c
,

S
b
 and L

bw
 were highly correlated (loadings of more than 0.9)

with the first component. The R
N
 was highly correlated with

second component. The third component was highly correlated
with S

c
.

The analytical rotations were carried out for the
components having Eigen value more than one in order to
redistribute the explained variance in improving the factor
loadings. All the transformations almost resulted in the same
loading trends.

It can be seen how useful the factor analysis and principal
component analysis have been in screening out the parameters
or variables of least significance and in regrouping the
remaining variables into physically significant factors.
Multiple regression techniques can then applied in modeling
the hydrologic responses such as runoff and sediment yields

Table 3 : Principal component loading matrix of final geomorphic parameters
Principal components

Parameters
1 2 3 4 5 6 7 8 9 10

Re 0.974 -0.106 -0.165 0.103 0.003 -0.040 0.007 -0.001 0.000 0.000

Rc 0.906 -0.314 -0.241 0.137 0.039 0.057 0.003 0.000 0.000 0.000

Sb -0.975 0.049 0.162 -0.140 -0.013 0.015 0.000 -0.001 0.000 0.000

Rf 0.881 0.463 0.071 -0.013 -0.06 -0.018 0.002 0.001 0.000 0.000

Rr 0.840 0.527 0.103 -0.046 -0.051 0.035 0.000 0.001 0.000 0.000

RN 0.155 0.978 0.103 0.007 0.095 -0.004 0.000 0.000 0.000 0.000

Sc 0.286 -0.250 0.907 0.184 0.005 0.002 0.000 0.000 0.000 0.000

Df 0.818 -0.48 0.146 -0.276 0.051 -0.014 0.000 0.002 0.000 0.000

Rl -0.955 0.024 -0.126 0.268 0.009 -0.012 0.000 0.002 0.000 0.000

Lbw -0.981 0.081 0.128 -0.119 0.005 0.011 0.012 0.001 0.000 0.000

Eigen value 6.852 1.86 1.013 0.247 0.02 0.007 0.000 0.000 0.000 0.000

from the watersheds. One parameter each from significant
components may form a set of independent parameters at a
time in modeling the said hydrologic responses.
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