Rate of photosynthesis as affected by irrigation levels in potato

■ V.A. APOTIKAR, A.V. SOLANKI, J.D. JADHAV AND R.R. HASURE

SUMMARY

During both the seasons (2009-2010 and 2010-2011) the field trial was conducted on PGI Farm without changing randomization. The experiment was laid out in *Rabi* season. IRGA instrument (LI-6400XT) was used for estimation different microclimatic parameters of the crop within the height of 2 mt. At higher levels of irrigation (1.2 and 1.0 IW/CPE) two peaks of net photosynthesis were evident at 11.00 to 12.30 and 14.00 to 14.30 hr. At lower levels of irrigation the second peak was absent. Increased stomatal conductance appeared to be the reason for the first peak whereas for the second peak non-stomatal characters may be responsible. Photosynthetic rates were highest when planting was carried out during the last week of October and mulch was applied during first earthing up. The results revealed that increase in irrigation levels from 0.8 to 1.2 IW/CPE ratio, planting within 44th MW with sugarcane trash mulch @ 5 t ha⁻¹ exhibited higher values of all microclimatic parameter *viz.*, photosynthetic rate (34.40, 35.55 μ mol CO₂ m⁻² s⁻¹), At harvest, the treatments combination I₃D₂M₁ was significantly superior, recording highest mean fresh weight of tubers plant⁻¹ (352.44 g) followed by I₃D₂M₂, I₂D₂M₁ and I₂D₂M₂, while rests of the treatments were at par with each others during first peak with each others during second year.

Key Words : Photosynthesis, Potato, Planting dates, Irrigation levels

How to cite this article : Apotikar, V.A., Solanki, A.V., Jadhav, J.D. and Hasure, R.R. (2012). Rate of photosynthesis as affected by irrigation levels in potato. *Internat. J. Plant Sci.*, 7 (2) : 230-239.

Article chronicle : Received : 06.01.2012; Revised : 12.03.2012; Accepted : 11.04.2012

Indo-Gangetic plains of north India during short winter days from October to March. Uttar Pradesh, West Bengal, Bihar, Punjab, Madhya Pradesh, Gujarat, Assam, Karnataka and Uttarakhand are important potato growing states. About 25 million tones of potatoes are the requirement for consumption, seed purpose, processing industries and export. The estimated production of 24.51 million tonnes is quite less to meet the demand (Anonymous, 2011). The area under potato in Maharashtra is 18.8 thousand ha (2 % of India) with a production of 197.90 thousand MT and extremely low

----- MEMBERS OF THE RESEARCH FORUM +----

Author to be contacted :

J.D. JADHAV, Zonal Agricultural Research Station, SOLAPUR (M.S.) INDIA

Email: slp.aicrpam@gmail.com

Address of the Co-authors: V.A. APOTIKAR, A.V. SOLANKI AND R.R. HASURE, Department of Agronomy, Mahatma Phule Krushi Vidyapeeth Rahuri, AHMEDNAGAR (M.S.) INDIA

productivity of 10.52 t ha⁻¹ (Anonymous, 2011). The part of North Satara and Pune districts are major potato growing areas of 80 per cent of area is under this crop in the state (Ahire, 1999). Due to increasing industrialization and job market created demand for processed and ready to eat convenience food, particularly in urban areas. A plant with adequate soil moisture transpires water profusely, keeping its leaves cooler than the surrounding air. When soil moisture is insufficient, plant is experiencing moisture stress, the leaves transpire less and become warmer. The plant leaves must remain turgid for leaf expansion, to keep stomata open for higher photosynthetic rate. In plant, leaves functions as an optical organs and spectral radiation properties are attuned to environment in which they live. The efficiency of absorption of PAR partly determines the efficiency of photosynthesis of plant. The PAR is absorbed more efficiently and centering around 400-700 nm, determines the plant development. Evapotranspiration from vegetative surface is influenced by many meteorological factors like temperature, radiation, humidity and physiological factor such as photosynthetic rate, leaf water potential and stomatal

conductance of the plant. With this back ground in view, the present investigation was undertaken to know the rate of photosynthesis as influenced by Irrigation levels in potato.

MATERIALS AND METHODS

The field trial of potato (Variety) Kufri Pukhraj was conducted during both the seasons (2009-2010 and 2010-2011) on PGI Farm without changing randomization. The experiment was laid out in Split Plot Design in *Rabi* season with recommended dose of fertilizer. 120:60:120 NPK kg ha-1. There were eighteen treatments comprised of nine main plot treatments and two sub-plot treatments:

Treatment details : A. Main plot	treatment	s (nine)						
Irrigation levels (I) X Planting date	s (D)							
I ₁ D ₁ - (0.8 IW/CPE) X (42 MW)	I ₂ D ₁ - (1	.0 IW/CPE) X (42 MW)						
I1D2 - (0.8 IW/CPE) X (44 MW)	I_2D_2 - (1	1.0 IW/CPE) X (44 MW)						
I ₁ D ₃ - (0.8 IW/CPE) X (46 MW)	$I_2D_3 - (1)$	1.0 IW/CPE) X (46 MW)						
I ₃ D ₁ - (1.2 IW/CPE) X (42 MW)								
I ₃ D ₂ - (1.2 IW/CPE) X (44 MW)								
I ₃ D ₃ - (1.2 IW/CPE) X (46 MW)								
B. Sub-plot Treatments (Two) Mu	lching (M)							
M ₁ - With mulch	M ₂	- Without mulch						

Treatment details :

IRGA instrument (LI-6400XT) was used for estimation different microclimatic parameters of the crop within the height of 2 mt. The LI-6400XT is the only photosynthesis measurement system to put the CO_2 and H_2O gas analyzers in the sensor head. These dual paths, non-dispersive infrared analyzers feature an open path design with the optical bench of the sample analyzer open directly to the leaf chamber mixing volume. Leaf dynamics are measured in real time, preventing confounding correlations between gas exchange and changes in environmental driving variables. The microclimate observations were recorded as:

Micr	oclimatic observatio	n		
Sr. No.	Particulars	Frequency	Period (DAP)	Sample size
1.	Photosynthetic rate	4	28,56, 84, and at harvest	One plant from each net plot
2.	Microclimate- yield relation in potato (Response analysis)	4	_"_	do

RESULTS AND DISCUSSION

The important findings of the experiment studies under different irrigation levels, planting dates and mulching are presented in this chapter under appropriate heads.

Effect of different treatments on photosynthetic rate :

The data pertaining to photosynthetic rate of potato as influenced by various treatments at different growth stages are housed in Table 1 and 2 (2009 and 2010). In general, during both seasons, there was a rapid increase in photosynthetic rate from early growth stage to 56 days and thereafter it gradually decreased towards maturity of the crop. Highest mean values of photosynthetic rate were recorded at 56 DAP interval as 19.74 and 20.22 μ mol CO₂ m⁻² s⁻¹ in 2009 and 2010, respectively.

Effect of irrigation levels and planting dates (IxD):

During the first year at 28 DAP the mean photosynthetic rate was maximum with $I_3D_2(11.61 \mu \text{ mol } \text{CO}_2 \text{ m}^2 \text{s}^{-1})$ followed by I_2D_2 , which was at par with I_1D_2 , I_3D_1 , I_2D_1 and I_1D_1 . During second year I_3D_2 significantly recorded maximum photosynthetic rate (11.84 μ mol CO₂ m⁻² s⁻¹) followed by I_2D_2 which was at par with I_1D_2 and I_3D_1 , while remaining treatments were at par with each others. At 56 DAP during first year, the maximum and significantly higher mean photosynthetic rate was obtained with I_3D_2 (28.38 μ mol CO₂ m⁻² s⁻¹) followed by I_2D_2 , which was at par with I_1D_2 , I_3D_1 and I_2D_1 . During second year maximum photosynthetic rate was obtained by I_3D_2 (27.25 μ mol CO₂ m⁻² s⁻¹) followed by I_1D_2 and I_3D_1 , while remaining treatments were at par with each others.

At 84 DAP during first year, significantly maximum mean photosynthetic rate was registered under I_3D_2 (20.25 μ mol CO₂ m⁻² s⁻¹) followed by I_2D_2 , which was at par with I_1D_2 , while rests of the treatments were at par with each others. During second year I_3D_2 recorded significantly maximum photosynthetic rate (29.04 μ mol CO₂ m⁻² s⁻¹) followed by I_2D_2 , which was at par with I_1D_2 , I_3D_1 and I_2D_1 . At harvest during first year, significantly maximum mean photosynthetic rate was registered under I_3D_2 (10.49 μ mol CO₂ m⁻² s⁻¹) followed by I_2D_2 , which was at par with I_1D_2 , I_3D_1 and I_2D_1 . During second year, maximum photosynthetic rate was obtained by I_3D_2 (11.04 μ mol CO₂ m⁻² s⁻¹) which was at par with I_2D_2 , and I_1D_2 , while rest of the treatments were at par with each other. Significantly lowest mean photosynthetic rate was obtained in I_1D_3 at all the growth stages.

Effect of mulching :

The data presented in Table 3 and 4 implies that the mean photosynthetic rate was significantly influenced due to mulching. The maximum and significantly higher mean photosynthetic rate was recorded in mulching compared to without mulching at all the days of observations during both the years of experimentation.

Interactions effect :

Treatments combination of irrigation levels with mulching (IxM) and planting dates with mulching (DxM) were

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 231 Hind Agricultural Research and Training Institute

ి కోవిడ్ చి. కి. ని ఇదుకర్తి ఇద్దం ఉకి కి.గి. ఒకాణండి వ్రామాణించిక ప	LI CITECCI DA VE		W.T. T. M. & R. W. & R. C.	07								
		28 DAD			26 DAP	ayrirci'o reis	™aotasynthatia rzta (" mai aoz, m* s *) 4.3	8/ DA3				
، ۲۰۰۵٬۰۰۰٬۰۰۰ ۲۵٬۰۰۰ ۲۵ ۱۹۰۰ - ۲۰۰۵٬۰۰۰ ۲۵٬۰۰۰ ۲۵	V.: (W ⁷	V.a (Welnow) 	V.02	W:	N.A. (W ^e .'rouit mui(oʻr)	V.Ger	N.: (W? ² /2 (****	V.3 (W?:"au") *****	Voar	V.: (W ² ::	W.2 (W ² / co.	V.92.
100-(0.8 DW/CD3.5 × 7 2 W.W)	.c.),	5.90	6.91		61.7.	867.1	3.33		S/		3.66	201
(M.M. 77 × 7207/M. 870)*C.1	ላ ለጉ ምሳት በትርጉ የአያ	11.3	3.39	907 / M	65.6	13 3 C	1.91.		\$ 0.3	Sec. 1.		6.33
(M.N.97×100/M.1810)*C1	79.		1.41	53	SS-0.	160.	.1.33	6.50	6.92	200°44	85 m	હીય કું કરય સ્કાર્ય વસ્
(W/CET * / 2 //W)	89 173 173	5.90		22,93	1.18.	14 8 + 1844 1884 + 1844	anan in	Se. 4 .	2.2.92		1 35	
(M.N. 77×302010, 01.0%)	££.0°,	4.C. 3	29°8	8.12	67.6.	23.79	anan C	45° E .	.6.25	88.35 355	$SI_{*}S$	5418+
(M.N.9 / X (201M) 01) 909	3,63	and and a		U.S.	50° 80°	14.1.	19	90 80 80	56.00.	in and		
305 (C.2. WKC3.5 × / 2. V.W)	50%	6.25	597.	73.91	158.		nn 9.	<i>05</i> .,	3.75	98°9	1.3.1	5.61
(M.N. 7775)%(2. MKC27%)	63	49°		31.12	22.35	28,38	anan "	056.	9.a.25	7,33		6/4.
(M/N 97×720/MC27×79/		200	6.21	SZ 1	2797	.5.8.	. 9.33	9.54	15.00.		SS .	2,53
V 52	68 [°] /,	28. 28. 2	96 96 04	22.42		11.6.					90% /	1821
		Ő	0.2.(2.0,05)		6.0	(500 0) 0:00		0	(500 0) (00)		00	(500 0) 000
Viele plot (CXCD)	19°42					96 S	Sec. as			0.36 M		2,59
			1.5 0	020			120		* 0° -0			0.55
Standard Construction												
	52. 4		9.1.	90°0		2.55			st / "	19 . S. S		SU.
N X C	0.33		S.L.	99°.4		2.55			m/	0.22		S.L.
(IXD)XV NS Nor significant:	150		4h.y =	6/ .		1.12	0.83		2,13	55.0		197.

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 Hind Agricultural Research and Training Institute

RATE OF PHOTOSYNTHESIS AS AFFECTED BY IRRIGATION LEVELS IN POTATO

ಿ ಕಿ.ವಿ.ಎ.ಡಿ. ಕಿ ಶಿ.:ಹ.ಡುತ್ತಿಗ್ ಇಕ್.ಡಿ. ಕಿ. ಸಿ.ಎ. ಡಿ. ಡಿ.ವಿ. ಎ. ಇಕು ಸಿ.ಹಿ. ಡಿ ೧೯	ranaca zy ve		ationals 2010 2011	×								
		18 DAD			56 DAP	الإستقرقة تقري		S/ DAP				
留い	W: (N., (W?(row) 	Vat	V: (W ^{2/1}	V. ³ (W ^{2/1} court mutation)	Vot	N: (W ^{2/2}	N., (W ^{2/} (0)) (m, (0 ⁽¹⁾)	Votr	W: (W ² (*) mu'(¢*)	V., (W ^{,,} , co.,	Vor
1.0.0.8.001037×7.2.0.00	967,	129		23.00	251	<i>91</i> , °.	38.85	16.8.	SC K	230	1.1.1	100 %
(M.N. 77×52000.809403	8, 5.8 8	P.R. L.		28,000		22.15			22.59	9,9,		87.8
(M.N. 9 / X TECHM. 810) 477				889.	05°.	16.2.	Stor	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2,840	2,99
2.5.6.9.WK23.x/2.VW		069			5.83	65.6.		80 6.	240 242		5.92	9 9
2001 X X 220100 C C X X X X X	196	20 80 80	6.79	A.B. and	90 90 90	23.25	25.09	20.15	12.2%	1997		9.72
303(0.9.1WK23.x7.6.NW)	/ ,63	anan /		1.9.0%	13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1212 Jun 1	16.9	151.	96.5.	677	1.34	0/1
3D. (L.2. WICES x / 2. WW)		587.	$g_{i,l}$	26.67	059.		m); /2	an and	22.10	6.66		9/0
30%(2.2.WKCE3.x77 MW)	49-69-55 19-55	2.82		anan ang		21.25	35,55	22,53	12.6%	37.72		Par
3-Da (1.2 "W/CEL × / 6 MW)	1067 / .	120		2. 33	. 3.33		88 Y 88	169.	897.		1.59	51.1
V 525**	98°/	63.	50° /.	21,22	.6.22	20.22	2	90°8°.	36.6.	96 l.	26.5	88 2.28
		0.0	(50'0 0) (0'0)		C.D.	C.D. (? 8.85)		00	C.D. (?) 0.05)		C.D.	(see 6) CO
N zim $\mathbb{P}(\sigma; \langle \mathbb{C} \times \mathbb{D})$	150			0.92		2.11	5 m.		145	3/.4		2.33
Suite plot.(N.)	0.73		12 + 42 45 + 43				- C- 42		. 37.	0,25		18+ 43
Sunday States												
М ж.			\$9.1.	51.0		2,23	88.0		2.69.	0.73		S
N×⊂			93. U	\$7.0		2,733	880. V		2,62,			SU
(IX)X V VS Vor s <u>Brifser</u> t	m/. m		2,09	10 CT		98° S			1.55	\$1.0		2,23

V.A. APOTIKAR, A.V. SOLANKI, J.D. JADHAV AND R.R. HASURE

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 233 Hind Agricultural Research and Training Institute

Irrigation levels	M ₁ (With mulch)	M ₂ (Without mulch)	Mean	Planting dates	M ₁ (With mulch)	M ₂ (Without mulch)	Mean
Photosynthetic ra	ate (µ mol co ₂ m ⁻²	s ⁻¹) 2009-2010					
I1 (0.8 IW/CPE)	18.93	15.89	17.41	D1 (42 MW)	21.67	18.27	19.97
I ₂ (1.0 IW/CPE)	21.95	17.36	19.65	D2 (44 MW)	29.56	20.56	25.06
I ₃ (1.2 IW/CPE)	25.19	19.11	22.15	D ₃ (46 MW)	14.83	13.53	14.18
Mean	22.02	17.45	19.74	Mean	22.02	17.45	19.74
S.E.±	0	.86		S.E.±	().86	
C.D. (P=0.05)	2			C.D. (P=0.05)	2	2.55	
Photosynthetic ra	ate (µ mol co ₂ m ⁻²	s ⁻¹) 2010-11					
I1 (0.8 IW/CPE)	22.44	14.50	18.47	D1 (42 MW)	24.56	15.61	20.08
I ₂ (1.0 IW/CPE)	24.22	15.89	20.06	D ₂ (44 MW)	28.67	20.17	24.42
I ₃ (1.2 IW/CPE)	26.00	18.28	22.14	D ₃ (46 MW)	19.44	12.89	16.17
Mean	24.22	16.22	20.22	Mean	24.22	16.22	20.22
S.E.±	0	0.75		S.E.±	().75	
C.D. (P=0.05)	2			C.D. (P=0.05)	2	2.23	

RATE OF PHOTOSYNTHESIS AS AFFECTED BY IRRIGATION LEVELS IN POTATO

Table 4 : Interaction effect of irrigation levels and planting dates with mulching on photosynthetic rate at 84 DAP M_2 M_1 M_2 M_1 Irrigation levels Mean Planting dates Mean (With mulch) (Without mulch) (Without mulch) (With mulch) 2009-2010 I1 (0.8 IW/CPE) 12.78 9.72 11.25 D1 (42 MW) 14.78 10.83 12.81 I2(1.0 IW/CPE) 15.22 11.06 13.14 D2 (44 MW) 19.22 15.17 17.19 I₃(1.2 IW/CPE) 16.44 13.50 14.97 D₃ (46 MW) 10.44 8.28 9.36 Mean 14.81 11.43 13.12 Mean 14.81 11.43 13.12 $S.E.\pm$ 0.47 S.E.± 0.47 C.D. (P=0.05) 1.40 C.D. (P=0.05) 1.40 2010-11 I1 (0.8 IW/CPE) 18.49 16.37 17.43 D1 (42 MW) 21.56 19.14 20.35 I2(1.0 IW/CPE) 20.92 17.93 19.43 D₂(44 MW) 28.54 21.05 24.80 I₃(1.2 IW/CPE) D₃ (46 MW) 26.21 19.87 23.04 15.51 13.98 14.75 Mean 21.87 18.06 19.96 Mean 21.87 18.06 19.96 $S.E.\pm$ 0.88 S.E.± 0.88 C.D. (P=0.05) 2.62 C.D. (P=0.05) 2.62

found non significant except 56 DAP and 84 DAP during the both years. The interaction combination of irrigation levels and planting dates with mulching (IxDxM) were found significant during both the years.

Interaction effect of (IxM):

At 56 DAP during first year, the interaction combination of different treatments, I_3M_1 recorded significantly highest

mean photosynthetic rate (25.19 μ mol CO₂ m⁻² s⁻¹) followed by I₂M₁ and I₃M₂, which were at par with rests of the treatments except I₁M₂ (Table 7). During second year the treatment combination of I₃M₁ registered maximum photosynthetic rate (26.00 μ mol CO₂ m⁻² s⁻¹) which was at par with I₂M₁ and I₁M₁.

At 84 DAP during first year, the interaction combination of different treatment, I_3M_1 recorded significantly highest mean photosynthetic rate (16.44 μ mol CO₂ m⁻² s⁻¹) which was at par with I_2M_1 (Table 6). During second year, I_3M_1 obtained maximum photosynthetic rate (26.21 μ mol CO₂ m⁻² s⁻¹) followed by I_2M_1 which was at par with I_3M_2 and I_1M_1 .

Interaction effect of (DxM):

At 56 DAP during first year, the interaction combination of different treatments, D_2M_1 recorded significantly highest photosynthetic rate (29.56 μ mol CO₂ m⁻² s⁻¹) followed by D_1M_1 , which was at par with D_2M_2 (Table 5). During second year, D_2M_1 registered maximum photosynthetic rate (28.67 μ mol CO₂ m⁻² s⁻¹) followed by D_1M_1 and D_2M_2 , which were at par with D_3M_1 .

At 84 DAP during first year, the interaction combination of different treatments, D_2M_1 recorded significantly highest photosynthetic rate (19.22 μ mol CO₂ m⁻² s⁻¹) followed by D_2M_2 , which was at par with D_1M_1 (Table 4). During second year, D_2M_1 obtained maximum photosynthetic rate (28.54 μ mol CO₂ m⁻² s⁻¹) followed by D_1M_1 which was at par with D_1M_2 .

Interaction effect of (IxDxM):

At 28 DAP, during first year, the treatment combination $I_3D_2M_1$ was significantly superior, recording highest mean photosynthetic rate (11.63 μ mol CO₂m⁻²s⁻¹) which was at par with I₂D₂M₂ I₂D₂M₁ and I₁D₂M₁ (Table 3). During second year the treatment combination $I_3D_2M_1$ recorded maximum photosynthetic rate (13.86 μ mol CO₂ m⁻² s⁻¹) followed by $I_3D_2M_2$, which was at par with $I_2D_2M_1$, $I_2D_2M_2$, $I_1D_2M_1$, $I_3D_1M_1$, $I_2D_1M_1$, $I_1D_1M_1$, $I_3D_3M_1$ and $I_1D_2M_2$ again at par with $I_2D_2M_1$ and $I_2D_2M_2$, while rests of the treatments were at par with each other (Table 4). At 56 DAP, during first year, the treatments combination $I_3D_2M_1$ was significantly superior, recording highest mean photosynthetic rate $(34.40 \ \mu \ mol \ CO_2 \ m^{-2} \ s^{-1})$ followed by $I_2D_2M_1$ which was at par with $I_1D_2M_1$, $I_3D_1M_1$ and $I_2D_1M_1$. During second year the treatment combination $I_3D_2M_1$ recorded maximum photosynthetic rate $(30.00 \,\mu \, mol \, CO_2 \,m^{-2} \, s)$ ¹) which was at par with $I_2D_2M_1$, $I_1D_2M_1$, $I_3D_1M_1$, while rests of the treatments were at par with each others.

At 84 DAP, during first year, the treatments combination $I_3D_2M_1$ was significantly superior, recording highest mean photosynthetic rate (21.00 μ mol CO₂ m⁻² s⁻¹) which was at par with $I_3D_3M_2$ The treatment combination $I_3D_3M_2$ was again at par with $I_2D_2M_1$ and $I_1D_2M_1$, while rests of the treatments were at par with each others. During second year the treatment combination I₃D₂M₁ recorded significantly highest mean photosynthetic rate (35.55 μ mol CO₂ m⁻² s⁻¹) followed by $I_2D_2M_1$, which was at par with $I_1D_2M_1$, $I_3D_1M_1$, $I_3D_2M_2$ and $I_2D_1M_1$. At harvest, during first year, the treatment combination $I_3D_2M_1$ was significantly superior, recording highest mean photosynthetic rate (12.80 μ mol CO₂ m⁻² s⁻¹) followed by $I_2D_2M_1$, which was at par with $I_3D_2M_2$ and $I_1D_2M_1$. During second year I₃D₂M₁ obtained highest mean photosynthetic rate (12.76 μ mol CO₂ m⁻² s⁻¹) which was at par with I₂D₂M₁ followed by I₁D₂M₁, I₃D₂M₂ and I₂D₂M₂ in descending orders.

Effect of different treatments on mean fresh weight of tubers plant⁻¹ :

Data referring to mean fresh weight of tubers plant⁻¹ as influenced by various treatments at different growth stages are presented in Table 5 and 6 for the corresponding *Rabi* seasons of 2009 and 2010.In general, mean fresh weight of tubers plant⁻¹ by potato was increased gradually at every phase of crop growth till harvest during both the years of investigation. The rate of increase was initially slow up to 56 DAP, rapid during 56 DAP to 84 DAP and attain maximum mean fresh tuber weight of 314.75 and 417.92 g at harvest during 2009 and 2010, respectively due to marked improvement in partitioning in dry matter towards tuber production.

Irrigation levels and planting dates (I x D) :

Data presented in Table 5 and 6 revealed that mean fresh weight of tubers plant⁻¹ was influenced significantly. At 56 DAP the maximum and significantly higher mean fresh weight of tubers plant⁻¹ was obtained with I_3D_2 (180.67 and 211.33 g) which was at par with I_3D_1 , I_3D_1 and I_2D_2 and superior over rest of the treatments, while rests of the treatments were at par with each others during both years.

At 84 DAP significantly maximum mean fresh weight of tubers plant⁻¹ was registered under I_3D_2 (283.65 g) and was at par with I_3D_1 and was superior over rest of the treatments. During second year, I_3D_2 (366.81g) recorded maximum mean fresh weight of tubers plant⁻¹ followed by I_2D_2 , significantly superior over rest of the treatments, while rests of the treatments were at par with each others. At harvest statistically maximum mean fresh weight of tubers plant⁻¹ was obtained in I_3D_2 (342.20 g) followed by I_3D_1 and was superior over rest of the treatments during first year. Significantly maximum mean fresh weight of tubers plant⁻¹ was recorded in I_3D_2 (481.81 g) followed by I_2D_2 , I_3D_3 , I_3D_1 and I_1D_2 . Significantly lowest mean fresh weight of tubers plant⁻¹ was observed in I_1D_1 at all the growth stages.

Effect of mulching :

The data presented in Table 5 and 6 implies that the mean fresh weight of tubers plant⁻¹ was significantly influenced due to mulching. The maximum as significantly higher mean was fresh weight of tubers plant⁻¹ was recorded in mulching compared to without mulching at all the days of observations during both the years of experimentation.

Interactions effect :

Treatments combination of irrigation levels with mulching (I_xM) and planting dates with mulching (D_xM) and (I_xD_xM) were found significant except at 28 DAP during the second year only.

Interaction effect of (IxM):

At 56 DAP Table 7 revealed that I_3M_1 (180.78 g) recorded significantly maximum mean fresh weight of tubers plant⁻¹

RATE OF PHOTOSYNTHESIS AS AFFECTED BY IRRIGATION LEVELS IN POTATO

ಿಟ್ರಿಂಟಿ ವಿಟ್ಟಾಳಿಕಾಗಿ ಗೋತಿಗಿ weight of thistory (name, as influenced, porfacting by verificus therinents 2009 2010	2015 2.2.1. 23		araa ax y		ar'a'.s 2.032	8000						
		58 DA 5			N.C.2.	res'r weig'n	Moze Bosh weight of Lines (3) pizet. M	2, 17.7			Nº " www.	
the second s		N _A		N.:	V.a			. Va		N.	V.z	
	(NV)	(N ²² frau() mulikir)	Varia	(NV2'): 	(Witch)	V.62.	(1,0,7 -;2.AV)	(W ² fred) muíse)	V.62	(NV2'	(N ^C fred) mu(s ⁽ⁿ)	Nez
(M.M. % × 5 ∉0/M. 8 °C) ?⊂?;		\$0°6;;	20.28	1.9 18 .	SE 611	anan 14	236.00	2.9.39	27.7.73	2,93,94	661112	235,65
(0.%) × / × / × / × / × / × / × /	2,6,05		23.10	66.67.		A	25/ 28	21.0.385	252.00	64 6 . E	307.07	382"506
C		" Por Andr	578.	- 16 - DED - 16	and for a	ener "	14	Self Bar	229.05	93% CC6	148"628%	
(M.N. % / X 750/M. 0) "C""	26.03	. 8 5 2	22.28	1.5 18.	work.	30.23	257.85	214.23	252.51		30/.32	
(M.K. 11×5:501M. 01)*C.4			10.25	1.57.2	88°67.	4040 404	28/8	3.57 . 3		3/0.19	322,38	3358
(M.N.97×7501ML07)*C*	20.03	25.52	8/.7/.	1.9 18 .	1.9"	1	2,56.35	233.33			30. 8.	308.25
5.0.4.2.000.0.47.2.000)	26.05		23.16	anan St.	1.978.	SX 85.	285.35	268.73	276.89	37. "61	375.73	337 '02
(M.N. 17 × 12 OM(27) × 17	21,05	22.55		55'88',	and St.	/.9"08".		2119.36	283.65	352,77	33. 32	312,20
(M.M. 9 / × 7201M. (77) *05	22,52	.96.		96,33	1.14.	\$7,98	272.56	21211.12		329.56	3.5.12	322,67
213 K	23. 5	80°6.			.5.66.	S0°88.	263.90	2/1/33	255.62	32, 95	307.55	\$1.7.8
		00	(\$000) 000		0°00	C.D. (2 8,65)			(see e) c e			(500) 00
Ver-Port (CXD)	05.				33.	33.60	9.10					· .09
\$	033		0.97	1.6";	28 - S	2.87			3.38	0		
$\mathbb{R} = \mathbb{O} \left[\sum_{i=1}^{n} \lambda_{i}^{i} \sum_{j=1}^{n} \lambda_{j}^{i} \sum_{j=$												
X X.	95.0		S.L.			S. /	1.6.			, 02		S.I.
DX XC	999		10 //			\$7. 	1.5%			50°.		S. 1.
XX(CX)	86.0		S.L.	5.92		.7.60			£	\$ 		213

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 236 Hind Agricultural Research and Training Institute

Othe & Neth Teshwelph and hisers same	12 DET. 23		A St. mar.	W VEL COLS LES	a tani'adiseliy iny verifaus (neet ments 2010-20	D 9.00						
	(((73), (70,) (70,	V spere		56 DA ³ 26 DA ³ 26 DA ³ (W ² routh (W ² routh	Vaim Trash wajight of hubars (A) plant A/ A/ A/ A/ A/ A/ A/ A/ A/ A/ A/ A/ A/	al histors (B) V.: (W) (M)	() () () () () () () () () () () () () (V.cc.	(59) 572(M) (M)	Al francost V.A (Without	V.Giim
(W/V 2 × 2 20/00 200) C.C.	15.6.	15.65	106.	ST 9.	1911.	and the .	232.19	1844	221.56	353.68	339.37	3/6.5%
(16.7%, 77%) (12.3)/16.1 8 8) ² CCC			08.82	19'69".	1511.	1. 1.5 .	W 887	2,65%	1.9.91%	and Sec.	67. Z26	15 656
CD₄ (0.8, 20//C35) ж / € /V.M)	.8.9/	99 S.S.	122.	ee 89 .	13.00	ws we	98°. / K	no 1.X	2.20.10	358.80	337.36	3/6.58
"∓"De € - D "WICC® C ≈ 22 WW)	156.	140 8 .	64.8.		war S.S.	1.15.	282.33		2.1. 21	399.33	318.36	388.81
(M/A. 77×5207ML&)*CE	27,05	205	20,55	. 86,33	1.9"69";	440 B/ .	3//35	377.60	379.78	16:35		116,18
(M.N. \$ / X (20)/AL \$ () %C	19.6.	.5.03	6674.	.6. 33	6598.	. / 8. 833	279.60	730.36	25/ .98	395.60	3/1/36	31.73
(M.N. 5 / X 520)/M. T.) T.E.	21.06	15.6.	23.30	243,44	88.9.	1. 83.	306.39	00 912	530,659		397.33	109.36
(M.N. 17×520)M. T.)*CE	76.57	22,255	21.32	196.2	203.00	233	382,96	1948	366.81	198.96	19'791	13, 3,
(M/N \$7% (2000) 200) 505	22,03	12.8		19'6	9% 9%	57 60 .		789.35	300.92	67647	106.35	267.7
V 566-	22,11	 20	92.92	the star	.13,78	677.5.	807.66	07,697	9,833.17	81.8.1	386.83	1 669 238
		0.00	(500 c) C		0.0.0	(50:0-0)-0:0		00	(500-0)/CD		0.0	(500 0) (0)
Vzinýci (TXD)			Ŷ.			37 23	2.33			967.		5.85
S. Dagor (N.)			SS.,	2,60		St. h.			3.89			3.39
Standy of States												
Ж.Ж.:	\mathcal{G}/\mathcal{O}		S.L.	1.50		188.	2.21					5.88
ХХС	61.0		S.		(°)	1.000	1. C. E					5.83
,292, ² M X (C X)			SV.	48° /.	23	36	3,93		80			80 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

V.A. APOTIKAR, A.V. SOLANKI, J.D. JADHAV AND R.R. HASURE

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 Hind Agricultural Research and Training Institute

which was at par with I_2M_1 and found significantly superior over rest of the treatments combinations during second year. At 84 DAP and harvest Table 7 revealed that I_3M_1 (334.95 and 449.95 g) followed by I_3M_2 and recorded significantly maximum mean fresh weight of tubers plant⁻¹, which was at par with I_2M_1 and found significantly superior over rest of the treatments combinations during second year.

Interaction effect of (DxM):

At 56 DAP during second year, the interaction combination of different treatments, D_2M_1 recorded significantly highest mean fresh weight of tubers plant⁻¹ (191.89 g) followed by D_1M_1 , which was at par with D_2M_2 (Table 7). At 84 DAP and harvest, during second year, the interaction combination of different treatments, D_2M_1 recorded significantly highest mean fresh weight of tubers plant⁻¹ (339.44 and 455.10 g) followed by D_2M_2 , and D_3M_1 .

Interaction effect of (IxDxM):

At 56 DAP, the treatments combination $I_3D_2M_1$ was significantly superior, recording highest mean fresh weight of tubers plant⁻¹ (188.33 and 219.67 g) which was at par with $I_3D_2M_2$, while rests of the treatments were at par with each others during both years. At 84 DAP, the treatments combination $I_3D_2M_1$ was significantly superior, recording

highest mean fresh weight of tubers plant⁻¹ (294.44 g) which was at par with $I_3D_1M_1$ followed by $I_2D_2M_1$ and $I_3D_2M_2$ during first year. Significantly treatments combination $I_3D_2M_1$ recorded maximum mean fresh weight of tubers plant⁻¹ (385.96 g) followed by $I_3D_2M_2$, $I_2D_2M_1$ and $I_2D_2M_2$, while rests of the treatments were at par with each others during second year.

At harvest, the treatments combination $I_3D_2M_1$ was significantly superior, recording highest mean fresh weight of tubers plant⁻¹ (352.44 g) followed by $I_3D_1M_1$, $I_2D_2M_1$ and $I_3D_2M_2$ during first year. Significantly treatments combination $I_3D_2M_1$ recorded maximum mean fresh weight of tubers plant⁻¹ (498.96 g) followed by $I_3D_2M_2$, $I_2D_2M_1$ and $I_2D_2M_2$, while rests of the treatments were at par with each others during second year. Similar findings were reported by Sarma and Dutta (1999), Zhang *et al.* (2004), Singh and Ahmad (2008) and Costa *et al.* (1997).

At higher levels of irrigation (1.2 and 1.0 IW/CPE) two peaks of net photosynthesis (Table 1 and 2) were evident at 11.00 to 12.30 and 14.00 to 14.30 hr. At lower levels of irrigation the second peak was absent. Increased stomatal conductance appeared to be the reason for the first peak whereas for the second peak non-stomatal characters may be responsible. Photosynthetic rates were highest when planting was carried out during the last week of October and mulch was applied during first earthing up. Similar findings were reported by Kar (2003), Ku *et al.* (1977), Kimball *et al.* (1983) and Stuttle *et al.*

Table 7: Interacti	on effect of irrigat	ion levels and plantin	g dates with	mulching on fresh wei	ght of tubers plan	ť ¹	
Irrigation levels	M ₁ (With mulch)	M ₂ (Without mulch)	Mean	Planting dates	M ₁ (With mulch)	M ₂ (Without mulch)	Mean
56 DAP							
I1 (0.8 IW/CPE)	164.67	122.44	143.56	D1 (42 MW)	175.22	153.00	164.11
I ₂ (1.0 IW/CPE)	169.67	153.00	161.33	D2(44 MW)	191.89	172.44	182.17
I ₃ (1.2 IW/CPE)	180.78	154.39	167.58	D ₃ (46 MW)	148.00	104.39	126.19
Mean	171.70	143.28	157.49	Mean	171.70	143.28	157.49
S.E.±	().50		S.E.±	(0.50	
C.D. (P=0.05)	1	3.37		C.D. (P=0.05)	1	3.37	
84 DAP							
I1 (0.8 IW/CPE)	254.20	234.82	244.51	D ₁ (42 MW)	273.84	252.90	263.37
I2(1.0 IW/CPE)	302.10	268.77	285.43	D2(44 MW)	339.44	309.13	324.29
I ₃ (1.2 IW/CPE)	334.95	304.01	319.48	D ₃ (46 MW)	277.97	245.57	261.77
Mean	297.08	269.20	283.14	Mean	297.08	269.20	283.14
S.E.±	2	2.37		S.E.±	,	2.37	
C.D. (P=0.05)	e	5.74		C.D. (P=0.05)	(6.74	
At harvest							
I1 (0.8 IW/CPE)	372.49	351.94	362.22	D1 (42 MW)	391.47	371.68	381.57
I ₂ (1.0 IW/CPE)	418.76	385.77	402.27	D2(44 MW)	455.10	426.13	440.62
I ₃ (1.2 IW/CPE)	449.95	422.78	436.37	D ₃ (46 MW)	394.63	362.69	378.66
Mean	413.73	386.83	400.28	Mean	413.73	386.83	400.28
S.E.±	1	1.98		S.E.±		1.98	
C.D. (P=0.05)	5	5.88		C.D. (P=0.05)		5.88	

Internat. J. Plant Sci., 7 (2) July, 2012: 230-239 238 Hind Agricultural Research and Training Institute

(1996).

It is observed from the data presented in Table 5 to 6 that during both the years of experimentation, of crop growth in respect of total dry matter accumulation plant⁻¹, while at all the days of observation regarding fresh tuber weight plant⁻¹, planting on 44th MW, the irrigation scheduled at 1.2 IW/CPE (I_3D_2) was comparable with 1.0 IW/CPE (I_2D_2) and produced significantly higher mean values of these attributes than rest of the treatments. The results are in the line of those reported by Sharma *et al.* (1999), Gadysiak *et al.* (2001), Kimball *et al.* (1983) and Khan *et al.* (2002).

Conclusion :

The application of irrigation at 1.2 IW/CPE ratio and planting on 44th MW with mulching of sugarcane trash @ 5 t ha⁻¹ recorded higher values of crucial microclimatic parameters beneficial for potato growth *viz.*, photosynthesis rate (34.40, 35.55 μ mol CO² m⁻² s⁻¹), CO₂ concentration (409.29, 414.26 μ mol CO₂ m⁻² s⁻¹), at tuber formation stage (56 DAP) obtaining maximum fresh weight of tuber yield (328.98 q ha⁻¹) and haulm yield (12.64 q ha⁻¹) on pooled basis. Mulching of sugarcane trash @ 5 t ha⁻¹ significantly reduced the consumptive use and increased the water use efficiency (19.62 %) by obtaining (231.00 q ha⁻¹) on pooled basis. Irrigation applied at 1.2 IW/CPE ratio and planting on 44th MW with mulching of sugarcane trash @ 5 t ha⁻¹ significantly obtained the higher tuber yield of 328.98 q ha⁻¹.

REFERENCES

- Costa, L.D., Vedove Delle, G., Gianquinto, G., Giovanardi, R. and Peressotti, A. (1997). Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. *Potato Res.*, **40**:19–34.
- Gadysiak, S., Rymaszewski, J., Czajka, M. and Grzes, S. (2001). Influence of irrigation on yields of three potato cultivars in the West Wielkopolski region. *Prace Zakresu Nauk Rolniczych*, **91**: 51-57.

- Kar, Gouranga (2003). Tuber yield of potato as influenced by planting dates and mulches. J. Agromet., 5(1): 60-67.
- Khan, I.A., Deadman, M.L. and Al. Habsi, K. (2002). Screening potato varieties for tuber production in arid regions: effect of planting date on yield potential. *Sultan Qaboos Univ. J. Scientific Res. Agric. Sci.*, 7(1):53-57.
- Kimball, B.A. (1983). Carbon dioxide and agriculture yield: An assemblage and analysis of prior observations. *Agron. J.*, 75:779-788.
- Ku, S.B., Edwards, G.E. and Tanner, C.B. (1977). Effects of light, carbon dioxide and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in *Solanum tuberosum. Plant Physiol.*, **59**:868–872.
- Sarma, Abhijit and Dutta, T.C. (1999). Effect of mulching technique with black plastic film (25 micro) on potato crop under rainfed condition. *Crop Res. Hissar*, 18(3):383-386.
- Sharma, Ramnik Dubey, Y.P. and Kaistha, B.P. (1999). Influence of irrigation and nitrogen on yield, total water expense and water expense efficiency of potato in Lahaul valley of Himalayas. J. Indian Soc. Soil Sci., 47(1): 19-22.
- Singh, Narendra and Ahmad, Zakwan (2008). Effect of mulching on potato production in high altitude cold arid zone of Ladakh. *Potato J.*, **35** (3-4):118-121.
- Stuttle, G.W., Yorio, N.C. and Wheeler, R.M. (1996). Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves. J. American. Soc. Hort. Sci., **121**:264-268.
- Zhang., YunQi., Cui., ZhiFeng. and Zhang., ZhenXian. (2004). Effect of different plastic film mulching patterns on yield of spring potato. *China Vegetables.*, 2:36-37.
