
I
n his celebrated paper Haimovici (1982), studied the

growth of a two species ecological system divided on age

groups. In this paper, we establish that his processual

regularities and procedural formalities can be applied for

consummation of system of oxygen consumption by terrestrial

organisms. Notations are changed towards the end of obtaining

higher number of equations in the holistic study of the global

climate models. Quintessentially, Haimovician diurnal

dynamics, are used to draw interesting inferences, from the

simple fact that terrestrial organisms consume oxygen due to

cellular respiration.
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ABSTRACT

A system of green plants absorbing nutrients vis-à-vis decomposer organisms attested to terrestrial organisms dissipating consumption

of oxygen due to cellular respiration and parallel system of consumption of dead organic matter concatenated to oxygen due to cellular

respiration that contribute to the dissipation of the velocity of production of decomposer organisms vis-à-vis terrestrial organisms is

investigated. It is shown that the time independence of the contributions portrays another system by itself and constitutes the equilibrium

solution of the original time independent system. A system of nutrients consolidated with dead organic matter that reduces the dissipation

coefficient of the green plants correlated to decomposer organism   annexed to the oxygen consumption-terrestrial organism system. With

the methodology reinforced and revitalized with the explanations, we write the governing equations with the nomenclature for the

systems in the foregoing. Further papers extensively draw inferences upon such concatenation process thus consummating the fait

accompli desideratum of the food web cycle, towards which the consubstantiation process was undertaken for execution.
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Capra in his scintillating and brilliant synthesis of such

scientific breakthroughs as the “Theory of Dissipative

structures”, ‘Theory of complexity’, ’Gia theory’, ’Chaos

theory’ in his much acclaimed ‘The Web of life’ elucidates

dissipative structures as the new paradigm in ecology.

Heylighen (2001) also concretises the necessity of self-

organization and adaptability. Matsuit et al. (2006) made a

satellite based assessment of marine low cloud variability,

atmospheric stability and diurnal cycle. Steven’s Feingold

(2010) studied untangling aerosol effects on clouds and

precipitation in a buffered system. Illan koren and Graham
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Feingold et al. (2010) studied the aerosol cloud precipitation

system. One other study that eminently calls for such a study

of application is by Wood (2007) in which he studied the loss

of cloud droplets by coalescence in warm clouds. On the same

lines the investigation of Xue H, Fiengold G where in indirect

effects of aerosol on large eddy simulations of trade wind

provides a rich repository and fertile ground for prosecution

of investigation based on our theoretical analysis. Aerosol

effects on clouds itself is a pointer to the food cycle—

dissipative structure discussed by Prigogine.

All the studies centre on the possibility of application

of Haimovician analysis to “dissipative structures”. In this

paper we study the following systems:

– Oxygen consumption-Terrestrial organism

– Dead organic matter-Decomposer organisms

We elucidate the governing equations of (b)

Methodology for obtaining of solution  follows from the one

herein given

In the next part we analyze the following systems:

– Plant investment-Nutrients

– Solar radiation-Chemical process

– Systems structure-Change

Green plants play a vital role in the flow of energy through

all ecological cycles. Their roots take in water and mineral

salts from the earth, and the resultant juices rise up to the

leaves, where they combine with CO
2
 from air leading to the

formulation of sugar and other organic compounds. Here solar

energy is converted into chemical energy and encapsulated

in organic substances, while oxygen is released in air to be

taken up again by other plants and by animals in the process

of cellular respiration. By the blend of water and minerals with

sunlight and CO
2
, green plants form link between earth and

sky. Bulk of cellulose and the other organic compounds

produced through photosynthesis consists of heavy carbon

and oxygen atoms, which plants take directly from the air in

the form of CO
2
. Thus the weight of a wooden log comes

almost entirely from air. A log burnt, combines oxygen and

carbon combine once more in to CO
2 
and in the light and heat

of fire is recovered part of the solar energy that went into

making the wood.

As terrestrial organisms dissipate oxygen in the

atmosphere, due to cellular respiration the plants nutrients

are passed through the food web, while energy is dissipated

as heat through respiration and as waste through excretion.

Dead animals and plants are disintegrated by decomposer

organisms, which break them into basic nutrients to be taken

up by plants. Nutrients and other basic elements continually

cycle through the ecological system, while energy is

dissipated at each stage in accord with Eugene Odum’s dictum

“matter circulates, energy dissipates”. Waste generated by

the ecological system as a whole is the heat energy of cellular

respiration, which is radiated into the atmosphere and is

reimbursed continually by photosynthesis.

Prigogine’s theory interlinks/entangles the main

characteristics of living forms in to a coherent, cogent

conceptualization and mathematical framework. We give a

model for his framework. Perhaps the most fundamental

necessity of the systemic dynamics is the optimality

considerations. Taking cognizance of the critical issues

involved emphasizes need for  setting out dynamic

programming in order to capture systemic structural changes.

Axiomatic predications of systemic dynamics in

question are essentially “laws of accentuation and dissipation’.

It includes once over change, continuing change, process of

change, functional relationships, predictability, cyclical

growth, cyclical fluctuations, speculation theory, cobweb

analyses, stagnation thesis, perspective analysis etc. Upshot

of the above statement is data produce consequences and

consequences produce data.

Nutrients vis a vis dead organic matter vis a vis oxygen

consumption due to cellular respiration:

Assumptions :

– Nutrients(NR) reinforced with DEAD ORGANIC

MATTER(DOM-) concatenated with Oxygen Consumption

due to cellular respiration are classified into three categories;

- Category 1 representative of the NR-DOM

CONCATENATED WITH oxygen consumption due to cellular

respiration in the first interval vis a vis category1 of terrestrial

organisms

- Category 2 (second interval ) comprising of NR- DOM

CONSOLIDATED WITH consumption due to cellular

respiration corresponding to category 2 of terrestrial organisms

- Category 3 constituting NR-dead organic matter

(DOM) concretised with consumption due to cellular respiration

which belong to higher age than that of category 1 and category

2.This is concomitant to category 3 of terrestrial organism

In this connection, it is to be noted that there is no

sacrosanct time scale as far as the above pattern of

classification is concerned. Any operationally feasible scale

with an eye range of consumption due to cellular respiration.

Similarly, a “less than scale” for on the terrestrial organisms

made out of the total oxygen consumption due to cellular

respiration would be in the fitness of things, as it would be

with the quantum of dead organic matter (see capra food cycle

p. 174) For category 3. “Over and above” nomenclature could

be used to encompass a wider category 1 can be used.

– The speed of growth of NUTRIENTS (NR)

CONCOMITANT with dead organic matter(DOM) attributable

and ascribable to oxygen consumption due to cellular

respiration under category 1 is proportional to the total amount

of oxygen consumption due to cellular respiration under

category 2. In essence the accentuation coefficient in the model

is representative of the constant of proportionality between

90-106
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consumption due to nutrients(NR) linked to dead organic

matter (DOM) consubstatiated with  cellular respiration under

category 1 and category 2 this assumptions is made to

foreclose the necessity of addition of one more variable, that

would render the systemic equations unsolvable

– The dissipation in all the three categories is

attributable to the following two phenomenon :

- Aging phenomenon : The aging process leads to

transference of the balance of nutrients(NR) CORELATED

WITH dead organic matter (DOM)concatenated with  oxygen

consumption due to cellular respiration to the next category,

no sooner  than the age of the terrestrial organism crosses the

boundary of demarcation.

- Depletion phenomenon : Death of consumer viz.,

terrestrial organism dissipates the growth speed by an

equivalent extent of NUTRIENTS(NR)dead organic matter

(DOM). The model is not concerned with the end uses of

consumption due to cellular respiration –dissipation other

than for terrestrial organisms.

Notation :

G
20

 : Quantum of NR-DOM vis-a-vis oxygen consumption

(OC) due to cellular respiration in category 1 of terrestrial

organism

G
21

: Quantum of NR-DOM vis-a-vis oxygen consumption

(OC)due to cellular respiration in category  2 of terrestrial

organism

G
22

:  Quantum of NR- DOM vis-a-vis oxygen

consumption (OC) due to cellular respiration in category 3 of

terrestrial organism

(a
20

)(3), (a
21

)(3), (a
22

)(3) : Accentuation coefficients

(á
20

)(3), (á
 21

)(3), (á
 22

)(3) : Dissipation coefficients

Formulation of the system :

In the light of the assumptions stated in the foregoing,

we infer the following:-

– The growth speed in category 1 is the sum of a

accentuation term (a
20

)(3)G
21

  and a dissipation term  –(á
21

)(3)G
20

,

the amount of dissipation taken to be proportional to the total

quantum NUTRIENTS(NR) vis-à-vis of oxygen consumption

(OC) due to cellular respiration in the concomitant category

of terrestrial organisms(TO).

–  The growth speed in category 2 is the sum of two

parts  (a
21

)(3)G
20

  and –(á
21

)(3)G
21 

 the inflow from the category 1

dependent on the total amount standing in that category.

– The growth speed in category 3 is equivalent to

(a
22

)(3)G
21

  and –(á
22

)(3)G
22

  dissipation ascribed only to depletion

phenomenon.

Model makes allowance for the new quantum of DOM

RELATIVE TO consumption due to new entrants in terrestrial

organisms (TO) and deceleration in the oxygen consumption

(OC) attributable and ascribable to death of terrestrial

organisms (TO) LEADING to the accentuation,

CORROBORATION AND AUGMENTATION OF THE DOM

(Dead organic matter).

Governing equations:

The differential equations governing the above system

can be written in the following form

20
(3)

2021
(3)

20
20 G )a(–  G )(a  

dt

dG
′= 1

21
(3)

2120
(3)

21
21 G )a(–  G )(a  

dt

dG
′= 2

22
(3)

2221
(3)

22
22 G )a(–  G )(a  

dt

dG
′= 3

(a
i
)(3) > 0 , i = 20, 21, 22 4

(á
i
)(3) >0, i = 20, 21, 22 5

(a
21

)(3)  < (á
20

)(3) 6

(a
22

)(3)  < (á
21

)(3) 7

We can rewrite equation 1, 2 and 3 in the following form

dt 
G)a(–  G)(a

dG

20
(3)

2021
(3)

20

20 =
′ 8

dt 
G)a(–  G)(a

dG

21
(3)

2120
(3)

21

21 =
′ 9

Or we write a single equation as

=
′

=
′

 
G)a(–  G)(a

dG
  

G)a(–  G)(a

dG

21
(3)

2120
3

21

21

20
(3)

2021
(3)

20

20

dt 
G)a(–  G)(a

dG

22
(3)

2221
(3)

22

22 =
′ 1 0

The equality of the ratios in equation (10) remains

unchanged in the event of multiplication of numerator and

denominator by a constant factor.

For constant multiples α, β, γ all positive we can write

equation (10) as

=
′

=
′

 
]G)a(–  G)β[(a

βdG21
  

]G)a(–  G)α[(a

αdG

21
(3)

2120
(3)

2120
(3)

2021
(3)

20

20

dt 
]G)a(–  G)γ[(a

γdG

22
(3)

2221
(3)

22

22 =
′ 1 1

The general solution of the consumption of oxygen due

to cellular  respiration system can be written in the form

α
i
G

i
 + β

i
G

i
 + γ

i
G

i
 = C

i
e

i
λit

 
where i = 20, 21, 22 and C

20
, C

21
,

C
22

 are arbitrary constant coefficient.

Stability analysis :

Supposing G
i
(0) = G0

i
 (0) > 0 , and denoting by λ

i
 the

characteristics roots of the system, it easily results that

– If (á
20

)(3) (á
21

)(3) – (a
20

)(3)(a
21

)(3) > 0 all the components

of the solution, i.e. all the three parts of the consumption of

oxygen due to cellular respiration tend to zero, and the solution

is stable with respect to the initial data.

ACCENTUATION-A TROPHICATION MODEL OF FOOD WEB CYCLE

90-106
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– If (á
20

)(3) (á
21

)(3) – (a
20

)(3)(a
21

)(3) < 0 and

(λ
21

 + (á
20

)(3) G0
20 

(3) – (a
20

)(3) G0
21 

≠ 0, (λ
21

 < 0), the first

two components of the solution tend to infinity as t→∞, and

G
22

 →0, i.e. The category 1 and category 2 parts grows to

infinity, whereas the third part category 3 of NR-DOM

RELATIVISTIC TO consumption of oxygen due to cellular

respiration tends to zero.

– If (á
20

)(3) (á
21

)(3) – (a
20

)(3)(a
21

)(3) < 0 and

(λ
21

 + (á
20

)(3) G0
20 

(3) – (a
20

)(3) G0
21 

= 0 Then all the three

parts tend to zero, but the solution is not stable i.e. at a small

variation of the initial values of G
i
, the corresponding solution

tends to infinity.

Actual food cycles can be understood on a much broader

canvass, in which nutrient elements appear in a variety of

chemical compounds. Gaia theory has refined indications of

interweaving of living and non living systems throughout the

biosphere. Key to comprehension of such dissipative

structures is that these systems maintain themselves in a

“stable state” far from equilibrium. For instance chemical and

thermal equilibrium exists when all these processes come to a

halt. Organism in equilibrium is a dead organism. Living

organisms, like terrestrial organisms, continually maintain

themselves in a state far from equilibrium. Notwithstanding

the fact, that such a maintained state is stable over a period of

time, the same overall holistic structure is maintained, despite

continual ongoing flow and change of components.

Prigogine realized that classical thermodynamics is not

the appropriate tool to explain systems far from equilibrium,

owing to the fact mathematical structure is linear. Close on the

heels to equilibrium, there will be “fluxes”, “vortices”, however,

weak nevertheless. System shall evolve towards a stationary

state in which generation of “entropy” (disorder) is as small

as possible. By implication, there shall be a minimization

problem mathematically, around the equilibrium state. In and

around this range, linear equation would explain the

characteristics of the system.

On the other hand, away from “equilibrium”, the “fluxes”

are more emphasized. Result is increase in “entropy”. When

this occurs, the system no longer tends towards equilibrium. On

the contrary, it may encounter instabilities that culminate into

newer orders that move away from equilibrium. Thus, dissipative

structures revitalize and resurrect complex forms away from

equilibrium state. Ludwig VAN bertlanfly called living structures

open systems to emphasize their theme and potentialities and

interdependence on continual flow of energy and resources

(14). All these are textual and contextual investigations are

epitomized in the word “recycling” in ecology.

Prigogine’s statement(15) that the locus of essence of

characteristics and essence of a dissipative structure cannot

be derived from the properties of its parts ,but are ramifications

and consequences of ‘SUPRAMOLECULAR

ORGANISATION'. LINEAR EQUATIONS CAN BE ANALYSED

IN TERMS OF POINT ATTRACTORS, regardless and

irrespective of the initial conditions of the system and it shall

be attracted towards the stationery state of minimum entropy

as close to equilibrium. cytoplasm, nucleolus, ribosome,

gogylapparatus, lysosome, mitochondrion, adenosine and

chloroplast are the parts of the plant cell (CAPRA(2).

IN PRINCIPLE, THE MODEL REPRESENTS THE

FULLER COMPLEXITY OF THE SYSTEM. Timescale

parameters are coupled with other variables. Towards that

end, the study explores underlying simplicity of and insight

in to structurally orientational and systemically canonical

ideas. Process orientation has also eneged our attention in

the factotum principle that plant cell is studied in further papers

(see references).

From the above stability analysis we infer the following:

– The adjustment process is stable in the sense that

the system of oxygen consumption converges to equilibrium.

– The approach to equilibrium is a steady one, and

there exists progressively diminishing oscillations around the

equilibrium point.

– Conditions 1 and 2 are independent of the size and

direction of initial disturbance

– The actual shape of the time path of oxygen

consumption in the atmosphere by the terrestrial organism is

determined by λ , the strength of the response of the portfolio

in question, and the initial disturbance

– Result 3 warns us that we need to make an exhaustive

study of the behaviour of any case in which generalization

derived from the model do not hold

– Growth studies as the one in the extant context are

related to the systemic growth paths with full employment of

resources that are available in question, in the present case

terrestrial organisms–oxygen consumption-dead organic

matter available for decomposer organisms

–  Some authors Nober F J, Agee, Winfree were

interested in such questions, whether growing system could

produce full employment of all factors, whether or not there

was a full employment natural rate growth path and perpetual

oscillations around it. It is to be noted some systems pose

extremely difficult stability problems. As an instance, one can

quote example of pockets of open cells and drizzle in complex

networks in marine strato cumulus. Other examples are

clustering and synchronization of lightning flashes adjunct

to thunderstorms, coupled studies of microphysics and

aqueous chemistry.

Green plants (GP) - Decomposer organism (DO) concatenated

with terrestial organism (TO) portfolio : Governing equations

thereof:

Assumptions:

– GP-DOM vis-a-vis terrestrial organisms (TO) are

classified into three categories analogous to the stratification

that was resorted to in consumption of oxygen due to DOM

related to cellular respiration sector. When consumption of

K.N. PRASANNA KUMAR, B.S. KIRANAGI AND C.S. BAGEWADI
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oxygen due to cellular respiration in a particular category is

transferred to the next sector, (such transference is attributed

to the aging process of  terrestrial organisms), terrestrial

organisms(TO) from that category apparently would have

become qualified for classification in the corresponding

category, because we are in fact classifying terrestrial

organisms(TO)-DOM –GP as consistent with that  based on

stratification of consumption of oxygen due to cellular

respiration.

– Category 1 is representative of GP-decomposer

organisms(DO) RELATIVISTIC TO terrestrial organisms(TO)

corresponding to oxygen consumptions due to cellular

respiration under category 1

– Category 2 constitutes those GP- DO VIS A VIS

terrestrial organisms (TO) whose age is higher than that

specified under the head category 1 and is in correspondence

with the similar classification of oxygen consumption (OC)

due to cellular respiration.

– Category 3 of terrestrial organisms encompasses

those terrestrial organisms with respect to category 3 of oxygen

Consumption due to cellular respiration of terrestrial organisms

with respect to concomitant categorical constitution. OF green

plants (GP).

It is assumed for the sake of simplicity that amount of

oxygen taken in    water is slowly divided into that of utilization

due to terrestrial organisms, Cellular respiration, clouds, and

decomposer organisms (DO) GREEN plants (GP) etc.

– The speed of growth of (GP)-terrestrial organism TO)

sector in category 1 is a linear function of the amount of

terrestrial organism (TO) sector in category 2 at the time of

reckoning. As before the accentuation coefficient that

characterizes the speed of growth in category 1 is the

proportionality factor between balance in category 1 and

category 2.

– The dissipation coefficient in the growth model is

attributable to two factors;

– With the progress of time GP-DO vis-a-vis terrestrial

organism sector gets aged and become eligible for transfer to

the next category.  Notwithstanding Category 3 does not have

such a provision for further transference     for there shall not

be complete systemic obliteration without any vestiges when

terrestrial organisms (TO) die.

– GP- DO CONCANTENATED WITH THAT OF THE

Terrestrial organism(TO) sector when become irretrievable

(dead from which no cells can be obtained) are the other outlet

that ecelerates the speed of growth of  terrestrial organism

sector (TO).

– Inflow into category 2 is only from category 1 in the

form of transfer of balance of GP RELATIVISTIC to terrestrial

organism sector from the category 1.This is evident from the

age wise classification scheme. As a result, the speed of growth

of category 2 is dependent upon the amount of inflow, which

is a function of the quantum of balance of terrestrial organism

sector under the category 1.

– The balance of (GP)-terrestrial organism (TO) sector

in category 3 is because of transfer of balance from category

2. It is dependent on the amount of terrestrial organism sector

under category 2.,THAT CONSUBSTATIATES AND

CONCATENATES WITHGREEN PLANTS(see reference).

Notation :

T
20

 : Balance standing in the category 1 of (GP) vis-a-vis

terrestrial organism

T
21

: Balance standing in the category 2 of terrestrial

organism that corresponds to the concomitant category of

green plants.

T
22

: Balance standing in the category 3 of terrestrial

organism with the stratification of green plants

(b
20

)(3), (b
21

)(3), (b
22

)(3) : Accentuation coefficients

(b’
20

)(3), (b’
21

)(3), (b’
22

)(3) : Dissipation coefficients

Formulation of the system :

Under the above assumptions, we derive the following :

The growth speed in category 1 is the sum of two parts:

– A term (b
20

)(3)T
21 

proportional to the amount of

balance of GP-terrestrial organisms(TO) in the category 2

– A term (b’
20

)(3)T
21

 representing the quantum of balance

dissipated from category 1 .This comprises of GREEN PLANTS

-terrestrial organisms which  have grown old, qualified to be

classified under category 2 and loss of green plants and

corresponding terrestrial organisms due to death (dead organic

matter- for concatenated equations see end of the paper)

– The growth speed in category 2 is the sum of two

parts:

– A term (b
21

)(3)T
20

 constitutive of the amount of inflow

from the category 1

– A term (b’
21

)(3)T
21 

the dissipation factor arising due to

aging of green plants(GP) coincidental with the terrestrial

organism(TO) and the oxygen saved on account of death of

green plants and terrestrial organisms. A NOTIONAL chart

would spruce up the memory of the whole gamut of

concatenation of the Food Cycle.

– The growth speed under category 3 is attributable to

inflow from category 2 and oxygen consumption stalled

irrevocably and irretrievable due to death of the GP- terrestrial

organisms, and hence cannot deplete oxygen quantum in the

atmosphere due to cellular respiration any further.

GP-Herbivorous-Carnivorous-DOM (Dead organic matter) -

DO (Decomposer organisms) Nutrients - Back to green plants

(GP). Notice that respiration takes place due to terrestrial

organism (TO) and green plants (GP):

Governing equations:

Following are the differential equations that govern the

ACCENTUATION-A TROPHICATION MODEL OF FOOD WEB CYCLE
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growth in the terrestrial organisms portfolio

20
(3)

2021
(3)

20
20 T)b(–  T)(b  

dt

dT
′= 1 2

21
(3)

2120
(3)

21
21 T)b(–  T)(b  

dt

dT
′= 1 3

22
(3)

2221
(3)

22
22 T)b(–  T)(b  

dt

dT
′= 1 4

(b
i
)(3) > 0 , i = 20, 21, 22 1 5

(b
i
)(3) >0, i = 20, 21, 22 1 6

(b
21

)(3)  < (b’
20

)(3) 1 7

(b
22

)(3)  < (b’
21

)(3) 1 8

Following the same procedure outlined in the previous

section, the general solution of the governing equations is
tiλ

iiiiiii eCTγTβTiα
′′=′+′+′  i=20, 21, 22, where 222120 C ,C ,C ′′′   are

arbitrary constant coefficients and 222120222120 γ ,γ ,γ , , , ′′′′′′ ααα

corresponding multipliers to the characteristic roots of the

terrestrial organism system.

Nutrients-oxygen consumption (OC) due to cellular

respiration dead organic matter (DOM) visa vis green plants

(GP) - Terrestrial organism (TO) decomposer organism (DO)

- dual system analysis:

In the previous section, we studied the growth of

NUTRIENTS (NR) RELATIVISTICALLY with oxygen

consumption (OC) due to cellular respiration and GP

corresponding to terrestrial organisms separately. In this

section, we study the two-portfolio model comprising six-

storey nutr ients-oxygen consumption due to cellular

respiration and green plants -terrestrial organisms.-

decomposer organisms. Scheme of age wise classification

however remains the same. We make an explicit assumption

that only category 2 of green plants-decomposer organisms-

terrestrial organisms is responsible for the increase in the

dissipation coefficient of the oxygen consumption due to

cellular respiration. Terrestrial organisms of three categories

dissipating three portfolios of oxygen consumption due to

cellular respiration levels follows by mere substitution of

corresponding variables. Dissipation coefficients of the

terrestrial organism’s portfolio are diminished by the

contribution of all three categories of nutrients-oxygen

consumption due to cellular respiration portfolio of green

plants-decomposer organism’s terrestrial organisms. This is

to facilitate circumvention of the nonlinearity of the equations

and consequent unsolvability thereof

We will deonote

– T
i
(t), i = 20, 21, 22, the three parts of the GP-DO-

terrestrial organisms system analogously to the G
i
 of the

consumption of oxygen due to cellular respiration-DOM-NR

takes place due to terrestrial organisms (TO) and green plants

(GP).

– By (a”
i
)(3) (T

21
, t) (T

21
 > 0, t > 0), the contribution of the

GP-DO- oxygen consumption (OC) due to cellular respiration

of terrestrial organisms takes place due to terrestrial organisms

(TO) and green plants (GP) SYSTEM.

- By (–b”
i
)(3) (G

20
, G

21
, G

22
, t) = – (b”

i
)(3) (G, t), the contribution

of the NR-DOM-consumption of oxygen due to cellular

respiration to the dissipation coefficient of the NR-DOM-

terrestrial organisms SYSTEM.

Governing equations :

The differential system of this model is now

2021
(3)

20
(3)

2021
(3)

20
20 t)]G,(T)a()a[(G)(a

dt

dG
′′+′−= 19

2121
(3)

21
(3)

2120
(3)

21
21 t)]G,(T)a()a[(G)(a

dt

dG
′′+′−= 20

2221
(3)

22
(3)

2221
(3)

22
22 t)]G,(T)a()a[(G)(a

dt

dG
′′+′−= 21

2023
(3)

20
(3)

2021
(3)

20
20 t)]T,(G)b()b[(T)(b

dt

dT
′′+′−= 22

2123
(3)

21
(3)

2120
(3)

21
21 t)]T,(G)b()b[(T)(b

dt

dT
′′+′−= 23

2223
(3)

22
(3)

2221
(3)

22
22 t)]T,(G)b()b[(T)(b

dt

dT
′′+′−= 24

+ (a”
20

)(3) (T
21

, t) = First augmentation factor attributable

to cellular respiration of terrestrial organism, to the dissipation

of oxygen consumption

– (b”
20

)(3) (G
23

, t) = First detrition factor contributed by

oxygen consumption to the dissipation of terrestrial organisms

Where we suppose

– (a
i
)(3), (a’

i
)(3), (a”

i
)(3), (b

i
)(3), (b’

i
)(3), (b”

i
)(3) > 0,

i, j = 20, 21, 22

– The functions (a”
i
)(3), (b”

i
)(3) are positive continuous

increasing and bounded.

Definition of (p
i
)(3), (r

i
)(3) :

(3)
20

(3)
i21

(3)
i )Â(  )(p   t),(T )a( ≤≤′′ 25

(3)
20

(3)
i

(3)
i

(3)
i )B̂( )b(  )(r   t)(G, )b( ≤′≤≤′′ 26

–
(3)

i21
(3)

i T )(p   t),(T )a( lim
2

=′′
∞→ 27

(3)
i

(3)
iG )(r   t)(G, )b( lim =′′∞→ 28

Definition of  : (3)
20

(3)
20 )B̂(,)Â(

where (3)
i

(3)
i

(3)
20

(3)
20 )(r , )(p , )B̂( , )Â(   are positive

constants

and   i = 20, 21, 22 

The satisfy Lipschiz condition :

 t)M̂(
2121

(3)
2021

(3)
i21

(3)
i

(3)
20e|TT|)k̂(|t),(T)a(t),T()a( −′−≤′′−′′′ 29

  
t)M̂–((3)

20
(3)

i
(3)

i

(3)
20e||GG||)k̂(|t)(G,)b(t)(G,)b( ′−<′′−′′ 30
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With the Lipschitz condition, we place a restriction on

the behavior of functions (a”
i
)(3) (T’

21
, t) and (a”

i
)(3) (T

21
, t) .

(T’
21

, t) and (T
21

, t) are points belonging to the interval

])M̂(,)k̂[( (3)
20

(3)
20 . It is to be noted that (a”

i
)(3) (T

21
, t) is

uniformly continuous. In the eventuality of the fact, that if

1)M̂( (3)
20 = then the function (a”

i
)(3) (T

21
,  t),  the first

augmentation coefficient attributable to terrestrial organisms,

would be absolutely continuous.

Definition of (3)
20

(3)
20 )k̂(,)M̂(  :

– (3)
20

(3)
20 )k̂(,)M̂(  , are positive constants

1  
)M̂(

)(b
 ,

)M̂(

)(a

(3)
20

(3)
i

(3)
20

(3)
i < 31

– There exists two constants  (3)
20 )P̂( and (3)

20 )Q̂(

which together with (3)
20 )M̂( , (3)

20 )k̂( ,   (3)
20 )Â( and  (3)

20 )B̂(

and the constants (a
i
)(3), (a’

i
)(3), (b

i
)(3), (b’

i
)(3), (p

i
)(3), (γ)(3) i=20, 21,

22 satisfy the inequalities

 1])k̂()P̂()Â()a()[(a
)M̂(

1 (3)
20

(3)
20

(3)
20

(3)
i

(3)
i(3)

20

<++′+   32

 1])k̂()Q̂()B̂()b()[(b
)M̂(

1 (3)
20

(3)
20

(3)
20

(3)
i

(3)
i(3)

20

<++′+  33

Theorem 1 :

If the conditions (A) – (E) above are fulfilled, there exists

a solution satisfying the conditions

0  G  Gi(0) , e )P̂( Gi(t)
0
i

t)M̂((3)
20

(3)
20 >=≤

0  T  Ti(0) , e )Q̂( Ti(t)
0
i

t)M̂((3)
20

(3)
20 >=≤

Proof :

Consider operator A(3) defined on the space of sextuples

of continous functions G
i
, T

i
 : R

+
 → R

+
 which satisfy

(3)
20

0
i

(3)
20

0
i

0
ii

0
ii )Q̂(  T , )P̂(  G,T  (0)T , G(0)G ≤≤== 34

t)M̂((3)
20

0
ii

(3)
20e )P̂( G–  (t)G  0 ≤≤ 35

t)M̂((3)
20

0
ii

(3)
20e )Q̂( T–  (t)T  0 ≤≤ 36

By

∫ ′′+′−+= t
0

(3)
20

(3)
20(20)21

(3)
20

0
2020 )a()a(()(SG)[(a G  (t)G

(20)(20)20(20)(20)21 )]ds(S))GS),(S(T 37

∫ ′′+′−+= t
0

(3)
21

(3)
21(20)20

(3)
21

0
2121 )a()a(()(SG)[(a G  (t)G

(20)(20)21(20)(20)21 )]ds(S))GS),(S(T 38

∫ ′′+′−+= t
0

(3)
22

(3)
22(20)21

(3)
22

0
2222 )a()a(()(SG)[(a G  (t)G

    (20)(20)22(20)(20)21 )]ds(S))GS),(S(T 39

∫ ′′−′−+= t
0

(3)
20

(3)
20(20)21

(3)
20

0
2220 )b()b()(ST)[(b T  (t)T

(20)(20)20(20)(20) )]ds(S))TS),(G(S 40

∫ ′′−′−+= t
0

(3)
21

(3)
21(20)20

(3)
21

0
2121 )b()b()(ST)[(b T  (t)T

(20)(20)21(20)(20) )]ds(S))TS),(G(S 41

∫ ′′−′−+= t
0

(3)
22

(3)
22(20)21

(3)
22

0
2222 )b()b()(ST)[(b T  (t)T

(20)(20)22(20)(20) )]ds(S))TS),(G(S
42

where S
(20)

 is the integrand over an interval (0, t)

– The operator A(3) maps the space of functions

satisfying 34, 35, 36 into itself. Indeed it is obvious that

∫ =++≤ t
0 (20)

S)M̂(
20

0
21

(3)
20

0
2020 ds )]e )(3)P̂(  (G )(a  G (t)G (20)

(3)
20









++ 1 - e 

)M̂(

)P̂( )(a
  G t))(a(1 t)M̂(

(3)
20

(3)
20

(3)
0
21

(3)
20

(3)
2020

43

From which it follows  that

 
)M̂(

)(a
  e )G–  (t)(G

(3)
20

(3)
20)M̂(–0

2020
t

(3)
20 ≤

( )




















++












 +

(3)
20

G

G  )P̂(
–

0
21

(3)
20 )P̂(eG  )P̂( 

0
21

0
21

(3)
20

44

Analogous inequalities hold also for G
21

, G
22

, T
20

, T
21

, T
22

It is now sufficient to take  
)M̂(

)(b
 , 

 )M̂(

)(a

(3)
20

(3)
i

(3)
20

(3)
i < 1 and to

choose  )P̂( (3)
20 and  )Q̂( (3)

20
large to have

      ( )


















≤++












 +

(3)
20

G

G  )P̂(

0
j

(3)
20

(3)
20(3)

20

(3)
i )P̂(e  G  )P̂()P̂( 

)M̂(

)(a 0
j

0
j

(3)
20

–

45

   ( ) (3)
20

(3)
20

T

T  )Q̂(
–

0
j

(3)
20(3)

20

(3)
i )Q̂(   )Q̂(e  T  )Q̂( 

)M̂(

)(b
0
j

0
j

(3)
20

≤





















++












 +

46

In order that the operator A(3) transforms the space of

sextuples of functions G
i
, T

i
 satisfying 34, 35, 36 into itself.

The operator A(3) is a contraction with respect to the metric

( ) ( )= ))(T , )(G , )(T , )((Gd (2)
23

(2)
23

(1)
23

(1)
23

++ ℜ∈ℜ∈    t                                          t   t

}e |(t) T–  (t)T|max  , e |(t) G–  (t) G|{max  sup t
(3))20M̂–((2)

t
(1)
t

t
(3))20M̂–((2)

i
(1)
i

47
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Indeed if we denote

Definition of  2323 T
~

 ,G
~

 :

( ) ( ))(T , )(G   )T
~

( ),G
~

( 2323
)3(

2323 Α=
48

It results

(20)
(20)ds(20)S(3))20M̂(–(20)S(3))20M̂(–

(20)
(2)
21

(3)
20(20)

(1)
21

(3)
20

(2)
20

(20)ds(20)S(3))20M̂(–(20)S(3))20M̂(–(2)
20

(1)
20(20)

(1)
21

(3)
20

(20)ds(20)S(3))20M̂(–(20)S(3))20M̂(–(2)
20

(1)
20

(3)

20

t

0

(20)ds(20)S
(3)

)20M̂–((20)S
(3)

)20M̂–((2)
21

t

0

(1)
21

(3)
20

(2)
20

(1)
20

}dse e                                         

|)S , (T)a( -)S , (T)a(|G               

e e |G–  G|)S , (T)a(

e e |G–  G|)a{(

e e |G– G | )(a  |G
~

–  G
~

|

′′′′

+′′

+∫ ′

+∫≤

49

where S
(20)

 represents integrated that is integrated over

the interval [0, t]

From the hypotheses on 25, 26, 27, 28 and 29 it follows

( )

( )))(T , )(G ; )(T , )((G d

d )k̂( )P̂(  )Â(  )a(  )a(  
)M̂(

1

 e |G–  G|

(2)
23

(2)
23

(1)
23

(1)
23

(3)
20

(3)
20

(3)
20

(3)
20

(3)
20(3)

20

 t(3))20M̂–((2)(1)

++′+′

≤

50

And analogous inequalities for G
i
 and T

i
. Taking into

account the hypothesis (34, 35, 36) the result follows

Remark 1: The fact that we supposed (a”
20

)(3) and (b”
20

)(3)

depending also on t can be considered as not conformal with

the reality, however we have put this hypothesis, in order that

we can postulate condition necessary to prove the

uniqueness of the soloution bounded by t(3))20M̂((3)
20 e)P̂(  and

t(3))20(3)M̂((3)
20 e)Q̂( ,  respectively of R

+
.

If instead of proving the existence of the solution on R
+
,

we have to prove it only on a compact then it suffices to

consider that (a”
i
)(3) and (b”

i
)(3) , i=20, 21, 22 depend only on T

21

and respectively on (G
23

) (and not on t) and hypothesis can

replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G
i
(t) = 0 and

T
i
 (t) = 0

From 19 to 24 it results

0  eG Gi(t)
(20)dst

0 )}(20)S ),(20)(s 21(T (3))ia(–  (3))ia{(– 
0
i ≥≥






∫ ′′′

52

0 for t  0   e T  (t) T
t)(3))ib(–(0

ii >>≥ ′

Definition of : 3
(3)

202
(3)

201
(3)

20 ))M̂(( and ))M̂((,))M̂((

Remark 3 : If G
20

 is bounded, the same property have

also G
21

 and G
22

 indeed if

(3)
2020 )M̂(  G <  it follows  21

(3)
211

(3)
20

21 G)a(–))M̂((
dt

dG
′≤

and by integrating 53

(3)
211

(3)
20

(3)
21

0
212

(3)
2021 )a( / ))M̂(( )2(a  G  ))M̂((  G ′+=≤

In the same way, one can obtain

 
(3)

222
(3)

20
(3)

22
0
223

(3)
2022 )a( / ))M̂(( )2(a  G  ))M̂((  G ′+=≤

If G
21

 or G
22

 is bounded, the same property follows for

G
20

, G
22 

and G
20

, G
21

, respectively

Remark 4 : If G
20

 is bounded, from below, the same

property holds for G
21 

and G
22

. The proof is analogous with

the proceeding one. An analogous property is true if G
21

 is

bounded from below : 54

Remarks 5 : If T
20

 is bounded, from below and lim
t→∞

((b”
i
)(3) ((G

23
)(t), t)) = (b’

21
)(3) then T

21
→∞ 55

Definition of (m)(3) and ε
3
 :

Indeed let t
3
 be so that for t > t

3

(b
21

)(3) – (b”
i
)(3) ((G

23
) (t), t) < ε

3
, T

20
(t) > (m)(3)

Then  213
(3)(3)

21
21 Tε–  (m))(a  

dt

dT
≥  which leads to

t–0
21

t–

3

(3)(3)
21

21
33 e T  )e-(1 

(m) )(a
  T

εε

ε
+














≥ . If we take t such

that  
2

1
 e

t– 3 =ε  it results

33

(3)(3)
21

21
ε

2
 log  t , 

ε

(m) )(a
  T =














≥  By taking now ε

3

sufficiently small one sees that T
21

 is unbounded. The same

property holds for T
22

 if lim
t→∞

 ((b”
22

)(3) ((G
23

)(t), t)) = (b’
22

)(3)

We now state a more precise theorem about the

bahaviors at infinity of the solutions of equations 37 to 42.

Behaviour of the solutions of equation 37 to 42 56

Theorem 2 : If we denote and define

Definition of (σ
1
)(3) , (σ

2
)(3) , (τ

1
)(3)  , (τ

2
)(3) :

– (σ
1
)(3) , (σ

2
)(3) , (τ

1
)(3)  , (τ

2
)(3)  four constants satisfying

–  ( σ
2
)(3) < –(a’

20
)(3) + (a’

21
)(3) – (a”

20
)(3) (T

21
, t) + (a”

21
)(3) (T

21
, t)

< –(σ
1
)(3) 57

– (τ
2
)(3) < –(b’

20
)(3) + (b’

21
)(3) – (b”

20
)(3) (G, t) + (b”

21
)(3) ((G

23
), t)

< –(τ
1
)(3) 58

Definition of (ν
1
)(3) , (ν

2
)(3) , (u

1
)(3)  , (u

2
)(3) : 59

By (ν
1
)(3) > 0, (ν

2
)(3) < 0 and, respectively (u

1
)(3)  > 0, (u

2
)(3)

< 0 the roots of the equations

(a
21

)(3) (ν(3))2 + (σ
1
)(3) ν(3) – (a

20
)(3) = 0 60

and (b
21

)(3) (u(3))2 + (τ
1
)(3) u(3) – (b

20
)(3) = 0  and 61

By   0)( 0,)ν( (3)
2

(3)
1 <> ν  and, respectively

 0)u( 0,)u( (3)
2

(3)
1 <>   the 62

roots of the equations (a
21

)(3) (ν(3))2 + (σ
2
)(3) ν(3) – (a

20
)(3)=0

63

and (b
21

)(3) (u(3))2 + (τ
2
)(3)u(3) – (b

20
)(3) = 0 64

Definition of (m
1
)(3) , (m

2
)(3) , (µ

1
)(3)  , (µ

2
)(3) : 65
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If we define (m
1
)(3) , (m

2
)(3) , (µ

1
)(3)  , (µ

2
)(3) by

(m
2
)(3) = (ν

0
)(3) , (m

1
)(3) = (ν

1
)(3) , if (ν

0
)(3) < (ν

1
)(3) 66

(3)
1

(3)
0

(3)
1

(3)
1

(3)
1

(3)
1

(3)
2 )(  )(  )( if , )(  )(m , )(  )(m ννννν <<==

67

and  0
21

0
20(3)

0
G

G
  )( =ν  

 )(  )( if , )(  )(m , )(  )(m (3)
0

(3)
1

(3)
0

(3)
1

(3)
1

(3)
2 νννν <== 68

and analogously

(µ
2
)(3) = (u

0
)(3) , (µ

1
)(3) = (u

1
)(3) , if (u

0
)(3) < (u

1
)(3) 69

and 0
21

0
20(3)

0
T

T
  )(u =  70

 )(u  )u( if , )(u  )(µ , )(u  )(µ (3)
0

(3)
1

(3)
0

(3)
1

(3)
1

(3)
2 <== 71

Then the solution of 19, 20, 21, 22, 23 and 24 satisfies the

inequalities

 t)(S0
2020

)t)(p–  )((S0
20

(3)
1

(3)
20

(3)
1 e G  G  e G ≤≤ 72

(p
i
)(3) is defined by equation 25

 t)(S0
20(3)

2

21
 t))(p–  )((S0

20(3)
1

(3)
1

(3)
20

(3)
1 e G 

)(m

1
  (t) G  e G 

)(m

1
≤≤

73

    

)e G  e–e

))a(–  )((S)(m

G)(a
   (t)G e 

e–e
))(S–  )(p–  )((S)(m

G)(a
(

t)(a– 0
22

t)a(–)((S

(3)
22

(3)
1

(3)
2

0
20

(3)
22

22
t )(S–0

22

t)(S–)t )(p–  )((S

(3)
2

(3)
20

(3)
1

(3)
1

0
20

(3)
22

(3)
22

(3)
22

(3)
1

(3)
2

(3)
2

(3)
20

(3)
1

+






′
≤≤+








′

G

74

 t))(r  )((R0
2020

(3)
1

0
20

(3)
20

(3)
1e T  (t) T t )e(R T +≤≤  75

)t)(r  )((R0
20(3)

2

20
 t)(R0

20(3)
1

(3)
20

(3)
1

(3)
1 e T 

)(µ

1
  (t) T  e T 

)(µ

1 +≤≤  76

t)(R– 0
22

t)(R–t)(r)((R

(3)
2

(3)
20

(3)
1

(3)
2

0
20

(3)
22

22
t )b(–0

22

t)b(– )((R

(3)
22

(3)
1

(3)
1

0
20

(3)
22

(3)
2

(3)
2

(3)
20

(3)
1

(3)
22

(3)
22

(3)
1

e T  e–e

))(R )(r–  )((R)(µ

T)(a
   (t)T e T

e–e
))b(–  )((R)(µ

T)(b

+






+
≤≤+








′

+

′

′

77

Definition of (S
1
)(3) , (S

2
)(3) , (R

1
)(3)  , (R

2
)(3) : 78

where (S
1
)(3) = (a

20
)(3) (m

2
)(3) – (a’

20
)(3)

(S
2
)(3) = (a

22
)(3) – (p

22
)(3) 79

(R
1
)(3) = (b

20
)(3) (µ

2
)(3) – (b’

20
)(3)

(R
2
)(3) = (b’

22
)(3) – (r

22
)(3)

Proof : From 19, 20, 21, 22, 23, 24 we obtain

      
( )

(3)(3)
21

(3)
21

(3)
21

21
(3)

20
(3)

21
(3)

20
(3)

20

(3)

ν)(a–   t),(T )νa(                                                              

– t),(T)a(  )a(–  )a(–    )(a  
dt

d

′′

′′+′′=
ν

80

Definition of νννν(3) : - 
21

20(3)

G

G
  =ν  

It follows

 
( )

( ) )(a–   )(    )(  )(a –                                            

   
dt

d
     )(a–   )(  )( )(a – 

(3)
20

(3)(3)
1

2(3)(3)
21

(3)
(3)

20
(3)(3)

2
2(3)(3)

21

νσν

ν
νσν

+

≤≤+

81

From which one obtains

(a) For (3)
1

(3)
10

21

0
20(3)

0 )ν(  )(ν  
G

G
  )(ν  0 <<=>

         
 ] e (C)  1

] e )(ν (C)  )(ν
  (t) ν

)t)(ν–  ))((ν )[–(a(3)

)t)(ν–  ))((ν )[–(a(3)
2

(3)(3)
1(3)

(3)
0

(3
1

(3)
21

(3)
0

(3
1

(3)
21

+

+
≥ ,

(3)
2

(3)
0

(3)
0

(3)
1(3)

)(ν–  )(ν

)(ν–  )(ν
  (C) =  

It follows (ν
0
)(3) <  ν(3) (t) < (ν

1
)(3)

In the same manner, we get

 
 ] e )C(  1

] e )ν( )C(  )ν(
  (t) ν

)t)ν(–  ))ν(( )[–(a(3)

)t)ν(–  ))ν(( )[–(a(3)
2

(3)(3)
1(3)

(3)
0

(3
1

(3)
21

(3)
0

(3
1

(3)
21

+

+
≥ ,

(3)
2

(3)
0

(3)
0

(3)
1(3)

)ν(–  )(ν

)(ν–  )ν(
  )C( =  

 82

Definition of  (3)
1 )ν(  :-

From which we deduce (3)
1

(3)(3)
0 )ν(  (t) ν  )(ν ≤≤ 83

(b) If  (3)
10

21

0
20(3)

0
(3)

1 )ν(   
G

G
 )(ν )(ν  0 <=< we find like in the

previous case,

≤≤
+

+
≥  (t)   

 ] e (C)  1

] e )(ν (C)  )(ν
  )(ν (3)

)t)ν (–  ))ν (( )[–(a(3)

)t)ν (–  ))ν (( )[–(a(3)
2

(3)(3)
1(3)

1 (3)
2

(3
1

(3)
21

(3)
2

(3
1

(3)
21

ν

84

 )(  

 ] e (C)  1

] e )(ν (C)  )(ν
  )(ν (3)

1
)t)ν (–  ))ν (( )[–(a(3)

)t)ν (–  ))ν (( )[–(a(3)
2

(3)(3)
1(3)

1 (3)
2

(3
1

(3)
21

(3)
2

(3
1

(3)
21

ν≤
+

+
≥

(c)    
G

G
)ν( )ν( )(ν  0

0
21

0
20(3)

0
(3)

1
(3)

1 =≤≤< If  we obtain

  

(3)
0

)t)ν (–  ))ν (( )[–(a(3)

)t)ν (–  ))ν (( )[–(a(3)
2

(3)(3)
1(3)(3)

1 )(  

 ] e )C(  1

] e )ν( )C(  )ν(
  (t)    )(ν

(3)
2

(3
1

(3)
21

(3)
2

(3
1

(3)
21

νν ≤
+

+
≤≤
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85

And so with the notation of the first part of condition

(c), we have

Definition of ν(3) (t) :

(m
2
)(3) <  ν(3) (t) < (m

1
)(3) , 

(t) G

(t)G
  (t) )(

21

20(3) =ν  86

In a completely analogous way, we obtain

Definition of  u (3) (t) :

(µ
2
)(3) <  u(3) (t) < (µ

1
)(3) , 

(t) T

(t)T
  (t) (u)

21

20(3) =  87

Now, using this result and replacing it in 19, 20, 21, 22, 23

and 24 we get easily the result stated in the theorem.

Paricular case :

If (a”
20

)(3) = (a”
21

)(3), then (σ
1
)(3)=(σ

2
)(3) and in this case  if in

addition (ν
0
)(3) =(ν

1
)(3) then ν(3) (t) = (ν

0
)(3) and as a consequence

G
20

 (t) = (ν
0
)(3) G

21
 (t)

Analogously if (b”
20

) = (b”
21

)(3), then

(3)
1

(3)
1 )u(  )(u =  if in addition (u

0
)(3) = (u

1
)(3) then T

20
(t) =

(u
0
)(3)T

21
(t). This is an important consequence of the relation

between (3)
1

(3)
1 )ν( and )(ν

Stationary solutions and stability:

Stationary solutions and stability curve representative

of the variation of oxygen consumption due to cellular

respiration of terrestrial organisms via-a-vis that of terrestrial

organism variation curve lies below the tangent at G=G
0
 for

G<G
0
 and above the tangent G>G

0
. Wherever such a situation

occurs the point G
0
 is called the “point of inflexion”. In this

case, the tangent has a positive slope that simply means the

rate of change of oxygen consumption due to cellular

respiration is greater than zero. Above factor shows that it is

possible, to draw a  curve that has a point of inflexion at a

point where the tangent (slope of the curve) is horizontal.

Stationary value :

In all the cases G=G
0
, G<G

0
, G>G

0
 the condition that the

rate of change of oxygen value of oxygen consumption is

maximum or minimum holds. When this condition holds we

have stationary value. We now infer that :

– A necessary and sufficient condition for there to be

stationary value of (G) is that the rate of change of oxygen

consumption function at G
0
 is zero.

– A sufficient conditon for the stationary value at G
0
,

to be maximum is that the acceleration of the oxygen

consumption is less than zero.

– A sufficient condition for the stationary value at G
0
,

minimum is that acceleration of oxygen consumption is greater

than zero.

– With the rate of change of G namely oxygen

consumption defined as the accentuation term and the

dissipation term, we are sure that the rate of change of oxygen

consumption is always positive. 88

– Concept of stationary state is mere methodology

although there might be closed system exhibiting symptoms

of stationariness.

We can prove the following

Theorem 3 : If (a”
i
)(3) and (b”

i
)(3)  are independent on t, and

the conditions (with the notations 25, 26, 27, 28)

(a’
20

)(3) (a’
21

)(3) – (a
20

)(3) (a
21

)(3) <0

(a’
20

)(3) (a’
21

)(3) – (a
20

)(3) (a
21

)(3) + (a
20

)(3) (p
20

)(3) + (a’
21

)(3) (p
21

)(3)

+ (p
20

)(3) (p
21

)(3) > 0

(b’
20

)(3) (b’
21

)(3) – (b
20

)(3) (b
21

)(3) >0

(b’
20

)(3) (b’
21

)(3) – (b
20

)(3) (b
21

)(3) – (b
20

)(3) (r
21

)(3) – (b’
21

)(3) (r
21

)(3)

+ (r
20

)(3) (r
21

)(3) > 0

with (p
20

)(3), (r
21

)(3) as defined by equation 25 are satisfied,

then the system

(a
20

)(3)G
21

– [(a’
20

)(3) + (a”
20

)(3) (T
21

)]G
20

=0 89

(a
21

)(3)G
20

– [(a’
21

)(3) + (a”
21

)(3) (T
21

)]G
21

=0 90

(a
22

)(3)G
21

– [(a’
22

)(3) + (a”
22

)(3) (T
21

)]G
22

=0 91

(b
20

)(3)T
21

– [(b’
20

)(3) + (b”
20

)(3) (G
23

)]T
20

=0 92

(b
21

)(3)T
20

– [(b’
21

)(3) + (b”
21

)(3) (G
23

)]T
21

=0 93

(b
20

)(3)T
21

– [(b’
22

)(3) + (b”
22

)(3) (G
23

)]T
22

=0 94

has a unique positive solution, which is an equilibrium

solution for (19 to 24)

Proof :

(a) Indeed the first two equations have a nontrivial

solution G
20

, G
21

 if

F(T
23

)= (a’
20

)(3)(a’
21

)(3) – (a
20

)(3) + (a
21

)(3) + (a’
20

)(3) (a”
21

)(3)(T
21

)

+ (a’
21

)(3)(a”
20

)(3) (T
21

) + (a”
20

)(3) (T
21

)(a”
21

)(3)(T
21

) = 0 95

Definition and uniqueness of T*

21
 :

After hypothesis f(0) < 0, f(∞) > 0 and the functions

(a”
i
)(1)(T) being increasing, it follows that there exists a unique

T*
21

 for which f(T*
21

) = 0. With this value, we obtain from the

three first equations

)](T)(a  )[(a

G)(a
  G

*
21

(3)"
20

(3)'
20

21
(3)

20
20

+
=  , 

)](T)(a  )[(a

G)(a
  G

*
21

(3)"
22

(3)'
22

21
(3)

22
22

+
=

96

– By the same argument, the equations 92, 93 admit

solutions G
20

, G
21

 if

ϕ(G
23

) = (b’
20

)(3) (b’
21

)(3) – (b
20

)(3) (b
21

)(3) – [(b’
20

)(3) (b”
21

)(3) (G
23

)

+ (b’
21

)(3) (b”
20

)(3) (G
23

)] + (b”
20

)(3) (G
23

) (b”
21

) (G
23

) = 0 97

where in G
23

 (G
20

, G
21

, G
21

, G
22

) G
20

, G
22

 must be replaced

by their values from 96. It is easy to see that ϕ is a decreasing

function in G
21

 taking into account the hypothesis ϕ (0) >0, ϕ
(∞) <0 it follows that there exists a unique G*

21
 such that ϕ

(G
23

)* = 0

Finally G*
21

 such that ϕ ((G
23

)*) = 0, T*
21

 given by f(T*
21

)=0

and
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)](T)(a  )[(a

G)(a
  G

*
21

(3)"
20

(3)'
20

*
21

(3)
20*

20
+

=  , 
)](T)(a  )[(a

G)(a
  G

*
21

(3)"
20

(3)'
20

*
21

(3)
22*

22
+

=

98

)](G)(b – )[(b

T)(b
  T

*
23

(3)"
20

(3)'
20

*
21

(3)
20*

20 =  , 
)](G)(b – )[(b

T)(b
  T

*
23

(3)"
22

(3)'
22

*
21

(3)
22*

22 =

99

Obviously, these values represent an equilibrium

solution of 19, 20, 21, 22, 23, 24

Asymptotic stability analysis :

Theorem 4 : If the conditions of the previous theorem

are satisfied and if the functions (a”
i
)(3) and (b”

i
)(3) belongs to

C(3) (R
+
) then the above equilibrium point is asymptotically

stable.

Proof : Denote

Definition of G
i
 T

i
:

G
i
 = G*

i
+G

i
,  T

i
 = T*

i
+T

i
100

ij
*

23
j

)3("
i(3)

21
*
21

21

(3)"
21 S  ))((G 

G

)(b
 ,  )(q)(T

T

)(a 
=

∂

∂
=

∂

∂
101

Then taking into account equations 89 to 94 and

neglecting the terms of power 2, we obtain from 19 to 24

dG
20—–– = – ((a’

20
)(3) + (p

20
)(3))G

20
 + (a

20
)(3)G

21
 – (q

20
)(3)G*

20
T

21
   102

 dt

dG
21—–– = – ((a’

21
)(3) + (p

21
)(3))G

21
 + (a

21
)(3)G

20
 – (q

21
)(3)G*

21
T

21
   103

 dt

dG
22—–– = – ((a’

22
)(3) + (p

22
)(3))G

22
 + (a

22
)(3)G

21
 – (q

22
)(3)G*

22
T

21
   104

 dt

dT
20—–– = – ((b’

20
)(3) – (r

20
)(3))T

20
 + (b

20
)(3)T

21
 +  (S

(20)(j)
T*

20
G

j
)  105

 dt

dT
21—–– = – ((b’

21
)(3) – (r

21
)(3))T

21
 + (b

21
)(3)T

20
 +  (S

(21)(j)
T*

21
G

j
)  106

 dt

dT
22—–– = – ((b’

22
)(3) – (r

22
)(3))T

22
 + (b

22
)(3)T

21
 +  (S

(22)(j)
T*

22
G

j
)  107

 dt

The characteristic equation of this system is

0)}TS)(bTS ))(r–)(b)(((

)G)(q

)(a)(aG )(q)(a ))(p)(a)((

G))(q)( )(p)(p)(a)((a))(((

))()(r)(r–)(b)((b))(((

))()(p)(p)(a)((a))(((

)TS)(bT)S)(r–)(b )(((   

)G)(q)(aG))(q)(p)(a  )(((

)TS)(bTS)(r–)(b  )(((

)]G)(q )(aG )(q ))(p  )(a )[(((

))(p)(a{((λ()(r–)(b )((

*
21(22)(20),

(3)
21

*
21(22) (21),

(3)
20

(3)'
20

(3)

*
20

(3)
20

(3)
22

(3)
21

*
21

(3)
21

(3)
22

(3)
20

(3)'
20

(3)

22
(3)

22
(3)(3)

21
(3)

20
(3)'

21
(3)'

20
2(3)

(3)(3)
21

(3)
20

(3)'
21

(3)'
20

2(3)

(3)(3)
21

(3)
20

(3)'
21

(3)'
20

2(3)

*
20(20)(20),

(3)
21

*
21(20)(21),

(3)
20

(3)'
20

(3)

*
21

(1)
21

(3)
20

*
20

(3)
20

(3)
21

(3)'
21

(3)

*
21(21)(20),

(3)
21

*
21(21) (21),

(3)
20

(3)'
20

(3)

*
20

(3)
20

(3)
21

*
21

(3)
21

(3)
20

(3)'
20

(3)

(3)
22

(3)'
22

(3)(3)
22

(3)'
22

)3(

=++

+++++

+++++

+++

++++

+

++++

++

+++

+++

λ

λ

λλ

λλ

λλ

λ

λ

λ

λ

λ

108

And as one sees, all the coefficients are positive. It

follows that all the roots have negative real part, and this

proves the theorem.

More often than not, models begin with the assumption

of ‘steady state’ and then proceed to trace out the path, which

will be followed when the steady state is subjected to some

kind of exogenous disturbance. Breathing pattern of terrestrial

organisms is another parametric representation to be taken

into consideration. It cannot be taken for granted that the

sequence generated in this manner will tend to equilibrium i.e.

a traverse from one steady state to another.

In our model , we have using the tools and techniques

by Haimovici, Levin, Volttera,  Lotka have brought out

implications of steady state, stability, asymptotic stability,

behavioral aspects of the solution without any such

assumptions, such as those mentioned in the fore going.

In the following, we give equations for the ‘dead organic

matter-decomposer organism-terrestrial organism-oxygen

consumption’ system. Solutions and sine-qua-non theoretical

aspects are dealt in the next paper (part II)

Governing equations :

Oxygen consumption (OC):

13
)1('

1314
(1)

13
13 G )(a–  G )(a  

dt

dG
= 1a

14
)1('

1413
(1)

14
14 G )(a–  G )(a  

dt

dG
= 2a

15
)1('

1514
(1)

15
15 G )(a–  G )(a  

dt

dG
= 3a

Terrestrial organisms (TO):

13
)1('

1314
(1)

13
13 T )(b–  T )(b  

dt

dT
= 4a

14
)1('

1413
(1)

14
14 T )(b–  T )(b  

dt

dT
= 5a

15
)1('

1514
(1)

15
15 T )(b–  T )(b  

dt

dT
= 6a

Dead organic matter (DOM):

16
)2('

1617
(2)

16
16 G )(a–  G )(a  

dt

dG
= 7a

17
)2('

1716
(2)

17
17 G )(a–  G )(a  

dt

dG
= 8a

18
)2('

1817
(2)

18
18 G )(a–  G )(a  

dt

dG
= 9a

Decomposer organism (DO):

16
)2('

1617
(2)

16
16 T )(b–  T )(b  

dt

dT
= 10a

17
)2('

1716
(2)

17
17 T )(b–  T )(b  

dt

dT
= 11a

18
)2('

1817
(2)

18
18 T )(b–  T )(b  

dt

dT
= 12a
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Nutrients :

20
)3('

2021
(3)

20
20 G )(a–  G )(a  

dt

dG
= 13a

21
)3('

2120
(3)

21
21 G )(a–  G )(a  

dt

dG
= 14a

22
)3('

2221
(3)

22
22 G )(a–  G )(a  

dt

dG
= 15a

Green plants :

20
)3('

2021
(3)

20
20 T )(b–  T )(b  

dt

dT
= 16a

21
)3('

2120
(3)

21
21 T )(b–  T )(b  

dt

dT
= 17a

22
)3('

2221
(3)

22
22 T )(b–  T )(b  

dt

dT
= 18a

Chemical process:

24
)4('

2425
(4)

24
24 G )(a–  G )(a  

dt

dG
= 19a

25
)4('

2524
(4)

25
25 G )(a–  G )(a  

dt

dG
= 20a

26
)4('

2625
(4)

26
26 G )(a–  G )(a  

dt

dG
= 21a

Solar radiation:

24
)4('

2425
(4)

24
24 T )(b–  T )(b  

dt

dT
= 22a

25
)4('

2524
(4)

25
25 T )(b–  T )(b  

dt

dT
= 23a

26
)4('

2625
(4)

26
26 T )(b–  T )(b  

dt

dT
= 24a

Governing equations of dual concatenated systems terrestrial

organisms-oxygen consumption system:

(–b”
i
)(1) (G

13
, G

14
, G

15
, t) = –(b”

i
)(1) (G, t), i=13, 14, 15 the

contribution of the consumption of oxygen due to cellular

respiration to the dissipation coefficient of the terrestrial

organisms

Oxygen consumption (OC):

[ ] 1314
(1)"

13
(1)'

1314
(1)

13
13 G    t),(T )(a    )(a–    G )(a  

dt

dG
+= 25a

[ ] 1414
(1)"

14
(1)'

1413
(1)

14
14 G    t),(T )(a   )(a –    G )(a  

dt

dG
+= 26a

[ ] 1514
(1)"

15
(1)'

1514
(1)

15
15 G    t),(T )(a   )(a –    G )(a  

dt

dG
+= 27a

where  t),(T )(a   14
)1("

13+   ,  t),(T )(a   14
)1("

14+ ,  t),(T )(a   14
)1("

15+  

are first augmentation coefficients for category 1, 2 and 3 due

to terrestrial organism

Terrestrial organisms (TO):

[ ] 13
(1)"

13
(1)'

1314
(1)

13
13 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
=  28a

[ ] 14
(1)"

14
(1)'

1413
(1)

14
14 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
= 29a

[ ] 15
(1)"

15
(1)'

1514
(1)

15
15 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
=  30a

where  t)(G, )(b –  )1("
13  ,  t)(G, )(b –  

)1("
14  ,  t)(G, )(b –  )1("

15   are

first detrition coefficients for category 1, 2 and 3 due to oxygen

consumption

Dead organic matter-decomposer organism system:

(–b”
i
)(2) (G

16
, G

17
, G

18
, t) = –(b”

i
)(2) (G

19
, t), i=16, 17, 18 the

contribution of the decomposer for the distegration of dead

organic matter

[ ] 1617
(2)"

16
(2)'

1617
(2)

16
16 G    t),(T )(a   )(a –    G )(a  

dt

dG
+= 31a

[ ] 1717
(2)"

17
(2)'

1716
(2)

17
17 G    t),(T )(a   )(a –    G )(a  

dt

dG
+= 32a

 [ ] 1817
(2)"

18
(2)'

1817
(2)

18
18 G    t),(T )(a   )(a –    G )(a  

dt

dG
+= 33a

where  t),(T )(a   17
)2("

16+   ,  t),(T )(a   17
)2("

17+  ,  t),(T )(a   17
)2("

18+  

are first augmentation coefficients for category 1, 2 and 3 due

to decomposer organism

Decomposer organism (DO):

[ ] 1619
(2)"

16
(2)'

1617
(2)

16
16 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 34a

[ ] 1719
(2)"

17
(2)'

1716
(2)

17
17 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 35a

[ ] 1819
(2)"

18
(2)'

1817
(2)

18
18 T    t),(G )(b –   )(b –    T )(b  

dt

dT
=  36a

where  t),(G )(b –  19
)2("

16  ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

Green plants vis a vis nutrients:

Nutrients:

(–b”
i
)(3) (G

20
, G

21
, G

22
, t) = –(b”

i
)(3) (G

23
, t), i=20, 21, 22

[ ] 2021
(3)"

20
(3)'

2021
(3)

20
20 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  37a

[ ] 2121
(3)"

21
(3)'

2120
(3)

21
21 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  38a

[ ] 2222
(3)"

22
(3)'

2221
(3)

22
22 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  39a

where  t),(T )(a   21
)3("

20+ ,  t),(T )(a   21
)3("

21+  ,  t),(T )(a   21
)3("

22+  

are first augmentation coefficients for category 1, 2 and 3 due

to plants

Green plants :

[ ] 2023
(3)"

20
(3)'

2021
(3)

20
20 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 40a
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[ ] 2123
(3)"

21
(3)'

2120
(3)

21
21 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 41a

[ ] 2223
(3)"

22
(3)'

2221
(3)

22
22 T    t),(G )(b –  )(b –    T )(b  

dt

dT
= 42a

where  t),(G )(b –  20
)1("

20
 ,  t),(G )(b –  23

)1("
21  ,  t),(G )(b –  23

)1("
22  

are first detrition coefficients for category 1, 2 and 3 due to

nutrients

Chemical process v/s solar radiation-solar radiation

dissipates chemical chemical process (lack of photosynthesis)

(inside sun also chemical process may be affected due to sun

cycles)

Chemical process :

(–b”
i
)(4) (G

24
, G

25
, G

26
, t) = –(b”

i
)(3) (G

27
, t), i=24, 25, 26

[ ] 2425
(4)"

24
(4)'

2425
(4)

24
24 G    t),(T )(a    )(a –    G )(a  

dt

dG
+= 43a

[ ] 2525
(4)"

25
(4)'

2524
(4)

25
25 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=

44a

[ ] 2626
(4)"

26
(4)'

2625
(4)

26
26 G    t),(T )(a    )(a –    G )(a  

dt

dG
+= 45a

Solar radiation:

[ ] 2427
(4)"

24
(4)'

2425
(4)

24
24 T   t),(G )(b –   )(b –   T )(b  

dt

dT
= 46a

[ ] 2527
(4)"

25
(4)'

2524
(4)

25
25 T    t),(G )(b –  )(b –   T )(b  

dt

dT
=  47a

[ ] 2627
(4)"

26
(4)'

2625
(4)

26
26 T    t),(G )(b –   )(b –   T )(b  

dt

dT
=  48a

+(a”
24

)(4) (T
25

, t) = First augmentation factor attributable

to solar radiation

– (b”
24

)(4) (G, t) = First detrition factor contributed by

chemical process

Governing equations of concatenated system of two

concatenated dual system:

Terrestrial organisms-Dead organic matter system

Dead organic matter dissipates terrestrial organism-Contagion/

Pestilence

Dead organic matter (DOM):

[ ] 1614
1) (1,"

1317
(2)"

16
(2)'

1617
(2)

16
16 G  t),(T)(a–    t),(T )(a   )(a –G)(a  

dt

dG
+=

49a

[ ] 1714
1) (1,"

1417
(2)"

17
(2)'

1716
(2)

17
17 G  t),(T)(a–    t),(T)(a   )(a –G)(a  

dt

dG
+=

50a

[ ] 1814
1) (1,"

1517
(2)"

18
(2)'

1817
(2)

18
18 G  t),(T)(a–    t),(T)(a   )(a –G)(a  

dt

dG
+=  

51a

where  t),(T )(a   17
)2("

16+  ,  t),(T )(a   17
)2("

17+  ,  t),(T )(a   17
)2("

18+  

are first augmentation coefficients for category 1, 2 and 3 due

to decomposer organism

 t),(T )(a –  14
)1,1("

13  ,  t),(T )(a –  14
)1,1("

14  ,  t),(T )(a –  14
)1,1("

15    are

second detrition coefficients for category 1, 2 and 3 due to

terrestrial organisms

Terrestrial organisms (TO):

      
[ ] 1319

2) (2,"
16

(1)"
13

(1)'
1314

(1)
13

13 T    t),(G)(b      t)(G, )(b –  )(b –T)(b  
dt

dT
+=

52a

      
[ ] 1419

2) (2,"
17

(1)"
14

(1)'
1413

(1)
14

14 T    t),(G)(b      t)(G, )(b –  )(b –T)(b  
dt

dT
+=

53a

      
[ ] 1519

2) (2,"
18

(1)"
15

(1)'
1514

(1)
15

15 T    t),(G)(b      t)(G, )(b –  )(b –T)(b  
dt

dT
+=  

54a

where  t)(G, )(b –  )1("
13  ,  t)(G, )(b –  

)1("
14  ,   t)(G, )(b –  )1("

15   are

first detrition coefficients for category 1, 2 and 3 due to oxygen

consumption and

 t),(G )(b   19
)2,2("

16+  ,  t),(G )(b   19
)2,2("

17+  ,   t),(G )(b   19
)2,2("

18+  

are second augmentation coefficients for category 1, 2 and 3

due to dead organic matter

Oxygen consumption (OC):

[ ] 1314
(1)"

13
(1)'

1314
(1)

13
13 G    t),(T )(a    )(a–    G )(a  

dt

dG
+= 55a

[ ] 1414
(1)"

14
(1)'

1413
(1)

14
14 G    t),(T )(a    )(a –   G )(a  

dt

dG
+= 56a

[ ] 1514
(1)"

15
(1)'

1514
(1)

15
15 G    t),(T )(a    )(a –   G )(a  

dt

dG
+= 57a

where  t),(T )(a   14
)1("

13+  ,  t),(T )(a   14
)1("

14+ ,  t),(T )(a   14
)1("

15+  

are first augmentation coefficients for category 1, 2 and 3 due

to terrestrial organism

Decomposer organism (DO):

[ ] 1619
(2)"

16
(2)'

1617
(2)

16
16 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 58a

[ ] 1719
(2)"

17
(2)'

1716
(2)

17
17 T    t),(G )(b –   )(b –    T )(b  

dt

dT
= 59a

[ ] 1819
(2)"

18
(2)'

1817
(2)

18
18 T    t),(G )(b –   )(b –    T )(b  

dt

dT
=  60a

where  t),(G )(b –  19
)2("

16 ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

Decomposer organism dissipates chemical process:

Chemical process:

[ ] 2417
2) (2,"

1625
(4)"

24
(4)'

2425
(4)

24
24 G t),(T)(a   t),(T )(a  )(a –G)(a

dt

dG
++=

61a
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[ ] 2517
2) (2,"

1725
(4)"

25
(4)'

2524
(4)

25
25 G t),(T)(a   t),(T )(a  )(a –G)(a

dt

dG
++=

62a

[ ] 2617
2) (2,"

1825
(4)"

26
(4)'

2625
(4)

26
26 G t),(T)(a   t),(T )(a  )(a –G)(a

dt

dG
++=

63a

 t),(T )(a   25
)4("

24+  ,  t),(T )(a   25
)4("

25+  ,  t),(T )(a   25
)4("

26+  are

first augmentation coefficients for category 1, 2 and 3

, ,   are second augmentation coefficients for category 1,

2 and 3 due to decomposer organism

Decomposer organism:

  
[ ] 1627

4) (4,"
2419

(2)"
16

(2)'
1617

(2)
16

16 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  
dt

dT
=  

64a

      
[ ] 1727

4) (4,"
2519

(2)"
17

(2)'
1716

(2)
17

17 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  
dt

dT
=  

65a

      

[ ] 1823
4) (4,"

2619
(2)"

18
(2)'

1817
(2)

18
18 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=

66a

where  t),(G )(b –  19
)2("

16 ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

 t),(G )(b –  23
)3,3("

20  ,  t),(G )(b –  23
)3,3("

21  ,  t),(G )(b –  23
)3,3("

22  

are second detrition coefficients for category 1, 2 and 3 due to

chemical process

Terrestrial organism dissipates nutrients:

Nutrients:

[ ] 2014
1) (1,"

1321
(3)"

20
(3)'

2021
(3)

20
20 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

67a

[ ] 2114
1) (1,"

1321
(3)"

21
(3)'

2120
(3)

21
21 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

68a

[ ] 2214
1) (1,"

1521
(3)"

22
(3)'

2221
(3)

22
22 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

69a

where
 t),(T )(a   21

)3("
20+

,
 t),(T )(a   21

)3("
21+  

,
 t),(T )(a   21

)3("
22+  

are

first augmentation coefficients for category 1, 2 and 3 to plants

 t),(T )(a –  14
)1,1("

13  ,  t),(T )(a –  14
)1,1("

14   ,   t),(T )(a –  14
)1,1("

15  

are second detrition coefficients for category 1, 2 and 3 due to

terrestrial organism

Terrestrial organism:

[ ] 1323
3) (3,"

20
(1)"

13
(1)'

1314
(1)

13
13 T    t),(G)(b–   t)(G, )(b –  )(b –T)(b  

dt

dT
=

70a

[ ] 1423
3) (3,"

21
(1)"

14
(1)'

1413
(1)

14
14 T    t),(G)(b–   t)(G, )(b –  )(b –T)(b  

dt

dT
=  

71a

[ ] 1523
3) (3,"

21
(1)"

15
(1)'

1514
(1)

15
15 T    t),(G)(b–   t)(G, )(b –  )(b –T)(b  

dt

dT
=

72a

where  t)(G, )(b –  )1("
13  ,  t)(G, )(b –  )1("

14  ,  t)(G, )(b –  )1("
15   are

first augmentation coefficients for category 1, 2 and 3 to oxygen

consumption.

    where  t),(G )(b –  23
)3,3("

20 ,  t),(G )(b –  23
)3,3("

21  ,  t),(G )(b –  23
)3,3("

22

are second detrition coefficients for category 1, 2 and 3 due to

nutrients.

Plants dissipate dead organic matter:

Dead organic matter:

     
[ ] 1621

3) (3,"
2017

(2)"
16

(2)'
1617

(2)
16

16 G  t),(T)(a    t),(T )(a   )(a –G)(a  
dt

dG
++=  

73a

     
[ ] 1721

3) (3,"
2117

(2)"
17

(2)'
1716

(2)
17

17 G  t),(T)(a    t),(T )(a   )(a –G)(a  
dt

dG
++=  

74a

    
[ ] 1822

3) (3,"
2217

(2)"
18

(2)'
1817

(2)
18

18 G  t),(T)(a    t),(T )(a   )(a –G)(a  
dt

dG
++=

75a

where  t),(T )(a   17
)2("

16+  ,  t),(T )(a   17
)2("

17+  ,  t),(T )(a   17
)2("

18+

are first augmentation coefficients for category 1, 2 and 3 due

to decomposer organism

where  t),(T )(a   21
)3,3("

20+  ,  t),(T )(a   17
)3,3("

21+  ,  t),(T )(a   21
)3,3("

22+  

are second augmentation coefficients for category 1, 2 and 3

due to plants

Plants:

[ ] 2019
2) (2,"

1623
(3)"

20
(3)'

2021
(3)

20
20 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=

76a

[ ] 2119
2) (2,"

1723
(3)"

21
(3)'

2120
(3)

21
21 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

77a

[ ] 2219
2) (2,"

1823
(3)"

22
(3)'

2221
(3)

22
22 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=

78a

where  t),(G )(b –  23
)1("

20  ,  t),(G )(b –  23
)1("

21
,  t),(G )(b –  23

)1("
22  
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are first augmentation coefficients for category 1, 2 and 3 due

to nutrients

 t),(G )(b –  19
)2,2("

16  
, 

 t),(G )(b –  19
)2,2("

17  
,  

 t),(G )(b –  19
)2,2("

18  

are second detrition coefficients for category 1, 2 and 3 due to

dead organic matter

Decomposer organism dissipates nutrients:

Nutrients:

[ ] 2017
2) (2,"

1621
(3)"

20
(3)'

2021
(3)

20
20 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

79a

[ ] 2117
2) (2,"

1721
(3)"

21
(3)'

2120
(3)

21
21 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

80a

[ ] 2217
2) (2,"

1821
(3)"

22
(3)'

2221
(3)

22
22 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

81a

where  t),(T )(a   21
)3("

20+  ,  t),(T )(a   21
)3("

21+  ,  t),(T )(a   21
)3("

22+  

are first augmentation coefficients for category 1, 2 and 3 to

plants

 t),(T )(a –  17
)2,2("

16  ,  t),(T )(a   17
)2,2("

17+  ,   t),(T )(a –  17
)2,2("

17  

are second detrition coefficients for category 1, 2 and 3 due to

decomposer organism

Decomposer organism:

   
[ ] 1623

3) (3,"
2019

(2)"
16

(2)'
1617

(2)
16

16 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  
dt

dT
=  

82a

      
[ ] 1723

3) (3,"
2119

(2)"
17

(2)'
1716

(2)
17

17 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  
dt

dT
=  

83a

      
[ ] 1823

3) (3,"
2219

(2)"
18

(2)'
1817

(2)
18

18 T    t),(G)(b–   t),(G )(b –  )(b –T)(b  
dt

dT
=  

84a

where  t),(G )(b –  19
)2("

16 ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

 t),(G )(b –  23
)3,3("

20  ,  t),(G )(b –  23
)3,3("

21   ,   t),(G )(b –  23
)3,3("

22  

are second detrition coefficients for category 1, 2 and 3 due to

nutrients

Oxygen consumption-Decomposer organism system

decomposer organism dissipates oxygen consumption :

Decomposer organism (DO):

[ ] 16
1) (1,"

1319
(2)"

16
(2)'

1617
(2)

16
16 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

85a

[ ] 17
1) (1,"

1419
(2)"

17
(2)'

1716
(2)

17
17 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

86a

[ ] 18
1) (1,"

1519
(2)"

18
(2)'

1817
(2)

18
6 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

87a

where  t),(G )(b –  19
)2("

16  ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18  

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

 t)(G, )(b –  )1,1("
13  ,  t)(G, )(b –  )1,1("

14   ,   t)(G, )(b –  )1,1("
15  are

second detrition coefficients for category 1, 2 and 3 due to

oxygen consumption

Oxygen conusmption (OC):

[ ] 1317
2) (2,"

1614
(1)"

13
(1)'

1314
(1)

13
13 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

88a

[ ] 1417
2) (2,"

1714
(1)"

14
(1)'

1413
(1)

14
14 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

89a

[ ] 1517
2) (2,"

1814
(1)"

15
(1)'

1514
(1)

15
15 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

90a

where  t),(T )(a   14
)1("

13+  ,  t),(T )(a   14
)1("

14+  ,  t),(T )(a   14
)1("

15+  

are first augmentation coefficients for category 1, 2 and 3 to

terrestrial organism

 t),(T )(a   17
)2,2("

16+  
, 

 t),(T )(a   17
)2,2("

17+  
,  

 t),(T )(a   17
)2,2("

18+  

are second detrition coefficients for category 1, 2 and 3 due to

decomposer organism

Dead organic matter (DOM):

[ ] 1617
(2)"

16
(2)'

1617
(2)

16
16 G    t),(T )(a    )(a –    G )(a  

dt

dG
+= 91a

[ ] 1717
(2)"

17
(2)'

1716
(2)

17
17 G    t),(T )(a    )(a –    G )(a  

dt

dG
+= 92a

[ ] 1817
(2)"

18
(2)'

1817
(2)

18
18 G    t),(T )(a    )(a –    G )(a  

dt

dG
+= 93a

where  t),(T )(a   17
)2("

16+  ,  t),(T )(a   17
)2("

17+  ,  t),(T )(a   17
)2("

18+  

are first augmentation coefficients for category 1, 2 and 3 due

to decomposer organism

Terrestrial organisms (TO):

[ ] 13
(1)"

13
(1)'

1314
(1)

13
13 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
=  94a

[ ] 14
(1)"

14
(1)'

1413
(1)

14
14 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
=  95a

[ ] 15
(1)"

15
(1)'

1514
(1)

15
15 T    t)(G, )(b –   )(b –    T )(b  

dt

dT
=  96a
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where  t)(G, )(b –  )1("
13   ,  t)(G, )(b –  )1("

14  ,  t)(G, )(b –  )1("
15   are

first detrition coefficients for category 1, 2 and 3 due to oxygen

consumption

Plants dissipate oxygen consumption:

Oxygen conusmption (OC):

[ ] 1321
3) (3,"

1614
(1)"

13
(1)'

1314
(1)

13
13 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

97a

[ ] 1417
3) (3,"

2114
(1)"

14
(1)'

1413
(1)

14
14 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

98a

[ ] 1521
3) (3,"

2214
(1)"

15
(1)'

1514
(1)

15
15 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

99a

where  t),(T )(a   14
)1("

13+  ,  t),(T )(a   14
)1("

14+  ,  t),(T )(a   14
)1("

15+  

are first augmentation coefficients for category 1, 2 and 3 to

terrestrial organism

 t),(T )(a   21
)3,3("

20+  ,  t),(T )(a   21
)3,3("

21+   ,   t),(T )(a   21
)3,3("

22+  

are second detrition coefficients for category 1, 2 and 3 due to

decomposer organism

Plants:

[ ] 20
1) (1,"

1323
(3)"

20
(3)'

2021
(3)

20
20 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

100a

[ ] 21
1) (1,"

1423
(3)"

21
(3)'

2120
(3)

21
21 T    t)(G,)(b–    t),(G )(b –  )(b –T)(b  

dt

dT
=  

101a

[ ] 22
1) (1,"

1523
(3)"

22
(3)'

2221
(3)

22
22 T    t)(G,)(b–     t),(G )(b –  )(b –T)(b  

dt

dT
=  

102a

where  t),(G )(b –  23
)1("

20  ,  t),(G )(b –  23
)1("

21 ,  t),(G )(b –  23
)1("

22  

are first augmentation coefficients for category 1, 2 and 3 due

to nutrients

 t)(G, )(b –  )1,1("
13  ,  t)(G, )(b –  )1,1("

14  ,  t)(G, )(b –  )1,1("
15   are

second detrition coefficients for category 1, 2 and 3 due to

oxygen consumption

Nutrients :

[ ] 2021
(3)"

20
(3)'

2021
(3)

20
20 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  103a

[ ] 2121
(3)"

21
(3)'

2120
(3)

21
21 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  

104a

[ ] 2222
(3)"

22
(3)'

2221
(3)

22
22 G    t),(T )(a    )(a –    G )(a  

dt

dG
+=  105a

where  t),(T )(a   21
)3("

20+   ,  t),(T )(a   21
)3("

21+  ,  t),(T )(a   21
)3("

22+  

are first augmentation coefficients for category 1, 2 and 3 due

to plants

Decomposer organism dissipates oxygen consumption:

Terrestrial organisms dissipates dead organic matter:

Dead organic matter (DOM):

[ ] 1614
1) 1, (1,"

1317
(2)"

16
(2)'

1617
(2)

16
16 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

106a

[ ] 1714
1) 1, (1,"

1417
(2)"

17
(2)'

1716
(2)

17
17 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

107a

[ ] 1814
1) 1, (1,"

1517
(2)"

18
(2)'

1817
(2)

18
18 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=  

108a

where  t),(T )(a   17
)2("

16+   ,  t),(T )(a   17
)2("

17+  ,  t),(T )(a   17
)2("

18+

are first augmentation coefficients for category 1, 2 and 3 due

to decomposer organism

       and  t),(T )(a   14
)1,1,1("

13+  ,  t),(T )(a   14
)1,1,1("

14+  ,  t),(T )(a   14
)1,1,1("

15+  

are second augmentation coefficients for category 1, 2 and 3

due to terrestrial organisms

Terrestrial organisms (TO):

[ ] 1319
2) 2, (2,"

16
(1)"

13
(1)'

1314
(1)

13
13 T    t),(G)(b   t)(G, )(b –  )(b –T)(b  

dt

dT
+=  

109a

[ ] 1419
2) 2, (2,"

17
(1)"

14
(1)'

1413
(1)

14
14 T    t),(G)(b   t)(G, )(b –  )(b –T)(b  

dt

dT
+=

110a

[ ] 1519
2) 2, (2,"

18
(1)"

15
(1)'

1514
(1)

15
15 T    t),(G)(b   t)(G, )(b –  )(b –T)(b  

dt

dT
+=

111a

where  t)(G, )(b –  )1("
13  ,  t)(G, )(b –  )1("

14  ,  t)(G, )(b –  )1("
15   are

first augmentation coefficients for category 1, 2 and 3 due to

oxygen consumption

 t),(G )(b –  19
)2,2,2("

16  ,  t),(G )(b –  19
)2,2,2("

17  ,  t),(G )(b –  19
)2,2,2("

18

are second detrition coefficients for category 1, 2 and 3 due to

dead organic matter

Oxygen conusmption (OC):

[ ] 1317
(2,2,2)"

1614
(1)"

13
(1)'

1314
(1)

13
13 G  t),(T)(a    t),(T )(a   )(a –G)(a  

dt

dG
++=

112a

[ ] 1417
(2,2,2)"

1714
(1)"

14
(1)'

1413
(1)

14
14 G t),(T)(a   t),(T )(a   )(a –G)(a  

dt

dG
++=  

113a
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[ ] 1521
(2,2,2)"

2214
(1)"

15
(1)'

1514
(1)

15
15 G t),(T)(a   t),(T )(a   )(a –G)(a  

dt

dG
++=  

114a

where  t),(T )(a   14
)1("

13+   ,  t),(T )(a   14
)1("

14+  ,  t),(T )(a   14
)1("

15+  

are first augmentation coefficients for category 1, 2 and 3 to

terrestrial organism

t),(T)(a   17
)2,2,2("

16+  , t),(T)(a   17
)2,2,2("

17+ , t),(T)(a   17
)2,2,2("

17+  

are second detrition coefficients for category 1, 2 and 3 due to

decomposer organism

Decomposer organism (DO):

[ ] 16
(1,1,1)"

1319
(2)"

16
(2)'

1617
(2)

16
16 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=

115a

[ ] 17
(1,1,1)"

1419
(2)"

17
(2)'

1716
(2)

17
17 T    t)(G,)(b–  t),(G )(b –  )(b –T)(b  

dt

dT
=  

116a

[ ] 18
(1,1,1)"

1519
(2)"

18
(2)'

1817
(2)

18
18 T    t)(G,)(b–   t),(G )(b –  )(b –T)(b  

dt

dT
=  

117a

where  t),(G )(b –  19
)2("

16 ,  t),(G )(b –  19
)2("

17  ,  t),(G )(b –  19
)2("

18  

are first detrition coefficients for category 1, 2 and 3 due to

dead organic matter

 t)(G,)(b –  )1,1,1("
13  ,  t)(G,)(b –  )1,1,1("

14  ,  t)(G,)(b –  )1,1,1("
15   are

second detrition coefficients for category 1, 2 and 3 due to

oxygen consumption
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