Geo-statistics and heavy metal indexing of surface water around Okaba coal mines, Kogi State, Nigeria

AMEH E.G.

Article Chronicle : *Received* : 27.11.2012; *Revised* : 02.04.2013; *Accepted* : 01.05.2013

Key Words :

Okaba coal mines, Heavy metal indexing, Multivariate analysis, Anthropogenic factor

Author for correspondence :

AMEHE.G Department of Earth Science, Kogi State University, Anyigba, NIGERIA Email:enewin@yahoo.com **SUMMARY :** Because of the role of surface water and indeed water in our daily lives, this research was carried out to evaluate the impact of coal mining. Consequently, ten (10) dry season water samples were collected and analysed for major ions, physiochemical and heavy metals. The data acquired were subjected to factor /cluster analysis. The heavy metals were further evaluated using anthropogenic factor (AF), heavy metal pollution index (HPI) and metal index (MI). The factor/cluster analysis suggested significant heavy metal inputs into the water due to coal mining and related activities. The relatively enhanced level of these heavy metals was also due to the acidic nature of the environment. NO₃ and SO₄ were also high for the same reason, particularly SO₄. AF result suggested higher input from mining with respect to all heavy metals, particularly Cd, Zn, Ni and Fe. The HPI though below the critical value of 100 was above the half mark while the MI implies water contamination. Geostatistical and heavy metal indices key to data evaluation. Mining companies need to put in control measures to forestall surface water contamination. The communities and regulators also need to be sensible and responsible to what happens in their environment.

HOW TO CITE THIS ARTICLE : Ameh, E.G. (2013). Geo-statistics and heavy metal indexing of surface water around Okaba coal mines, Kogi State, Nigeria. *Asian J. Environ. Sci.*, **8** (1): 1-8.

oal mining either by surface or underground methods has irreparable consequences on the environment if not properly executed (Chad, 2003). Surface and underground mining methods involve exploration for and removal of minerals from the earth. Mining ruins the land, water, forests and air. It can barren land, pollute water, denude forests, defile the air and degrade the quality of people that work and live in the area (Concas et al., 2006) Associated with mining are physical, chemical and biological alterations of soil/sediment, alteration of drainage patterns, erosion and siltation of streams (Navarro et al., 2008). Also associated with mining is heavy metal pollution of soil/sediment and water bodies (Eze and Chukwu, 2011). This study was carried out to evaluate the degree of contamination associated with coal mining on surface water around the coal mines.

Study area:

The coal measures found in Nigeria occur

within the geological units represented by the Mamu Formation (Lower Maestrichtian) and the Nsukka Formation (Upper Maestritchtian to Danian) (Obianuju, 2005). Okaba coal mine is located in the Anambra Basin in eastern Nigeria. The area is underlain by two formations: the Mamu (Early to Late Maestritchan) and Ajali (Middle to Late Maestritchtian) Formations (Obaje et al., 2000). The coal bearing sequence is found in Mamu Formation (Lower Maestrichtian). This Formation is underlain by Enugu shales (Campanian) and overlain by the false-bedded Ajali sandstones of Middle Maestrichtian age. Mamu Formation (Lower Coal Measures) consists of sandstone bands, mudstones, sandy shale/carbonaceous shale and coal measures at several horizons. The shales and mudstones often alternate with thin bands and lenses of siltstones (Offodili, 1976). Ajali Formation (False bedded sandstones) is made up of friable coarse-grained, white sandstones and sometimes iron stained. The Formation consists of gravelly

and coarse sandstone within the upper horizons and grades into medium, fine-grained at greater depths. Clay and coal units occur towards the bottom indicating transition between Ajali and Mamu formations (Offodili, 1976; Obaje *et al.*, 2000). Overlaying this formation is red earthy sands due to weathering and ferruginisation (Fig. A).

Fig. A: Geological map of study area (modified after Objanuja, 2005)

EXPERIMENTAL METHODOLOGY

Grab sampling technique was used for surface water samples. Surface water was collected using stainless steel bucket sampler and Teflon lined PVC Niskin bottles (water sampler). Water samples were collected randomly, ensuring their fair distribution over the entire study area. Water samples were taken about a foot/mid depth below the surface 0-15 cm) (APHA, 2002). Water sample bottles were acid soaked in dilute nitric acid before the analysis. New bottles and those used before were soaked and cleaned with strong metal-free acid, rinsed thoroughly first with tap water and then with distilled water. Finally, they were dried and stored in a clean place. On

2

the field, all sample bottles were rinsed again with sample water before collection. The samples were collected by (filling a sample bottle pointing upward) rapid immersion in water and capping to minimize exposure to the atmosphere and air borne particulate matter (Sweat, 1999).

Upon collection of water samples, *in situ* measurement of conductivity, temperature, pH, and Tds were carried out using portable meters (APHA, 2002). Water samples were collected in two separate sets of sterilized polythene bottles: one for the determination of anions and the other acidified with dilute nitric acid to a pH of 1-2 and stored at 4 °C prior to analysis for cations and heavy metal determination. The samples were preserved and properly labeled polythene bottles with plastic stoppers were used. Filtration was done immediately after sample collection by vacuum at low pressure. Cellulose nitrate filter papers with pores of 0.45 micron in diameter were used. pH, temperature, conductivity and Tds were determined on unfiltered sub samples.

Analytical methods :

In situ measurements of temperature, pH, Tds and Ec were determined intrusively with their appropriate probes. Spectrophotometer (Model Genesys 20) was used to determine the concentrations of K, Na and Ca. Atomic absorption spectrophotometer (Model 210 VGP) was used to determine the concentrations of Mg, Pb, Zn, Ni, Cu, Cd, and Fe. All analyses were performed at Soil Science Deptartment, Faculty of Agriculture Lab., Kogi State University, Anyigba according to (APHA, 2002).

SPSS v 11.0 was used to perform all data analysis after performing auto-scaling for all parameters. Mathematically, PCA and PFA involve the following five major steps: code variables to have zero means and unit variance. calculate the covariance matrix find eigenvalues and corresponding eigenvectors discard any component that only account for small proportion of variation in data set and develop the factor loading matrix and perform varimax rotation on the factor loading matrix to infer the principal parameters (Pathak *et al.*, 2008; Yang *et al.*, 2009). In this study, only components or factors exhibiting an eigenvalues greater than one were retained. Component loadings were used to determine the relative importance of variables as compared to other variables in a PC and do not reflect the importance of the components (Lokhande *et al.*, 2008).

Hierarchical cluster analysis:

Cluster analysis was used to find the true groups of data. In clustering, objects were grouped such that similar objects fell into the same class. Hierarchical clustering joins the most similar observations and successively the next most similar observations. The levels of similarity at which observations are merged were used to construct dendrogram. In this study, squared euclidean distance method was used to construct dendrogram. A low distance shows the two objects are similar or close together whereas a large distance indicating dissimilarity (Reghunath *et al.*, 2002).

Factor analysis:

The raw data were treated first with Z-scale transformation to make the data standardized. Multivariate data analysis was utilized to identify the correlations among the measured parameters. Principal component analysis was done to reduce the number of input variables. Spearman's correlation matrix was performed to illustrate the correlation coefficients among the variables (Reghunath *et al.*, 2002; Pathak *et al.*, 2008).

Heavy metal assessment of water:

Anthropogenic factor (AF) is quantification of the degree of contamination relative to either average crustal composition of the respective heavy metal or to measured background values from geologically similar and uncontaminated area. It is expressed as: AF = Cm/Bm where, Cm is the measured concentration in sediment or water and Bm is the background concentration (value) of heavy metal m, either taken from the literature (average shale/ average crustal abundance) or directly determined from a geologically similar area.

Metal index (MI) as proposed by Tamasi and Cini (2004) is: $MI = \Sigma [Ci / (MAC)i]$ where, MAC is maximum allowable concentration, C is the concentration of each element. The higher the concentration of a metal compared to its respective MAC value, the worst the quality of the water. MI value > 1 is a threshold of warning.

Heavy metal pollution index (HPI) is a method of rating that shows the composite influence of individual heavy metal on the overall quality of water. The rating is a value between zero and one, reflecting the relative importance of individual quality considerations and defined as inversely proportional to the recommended standard (Si) for each parameter (Reza and Singh, 2010). The calculation involves the following steps: first, the calculation of weightage of ith parameter; second, the calculation of the quality rating for each of the heavy metal; third, the summation of these sub-indices in the overall index.

The heavy metal pollution index (HPI) model is given

by **HPI** = $\frac{\sum_{i=1}^{n} (QiWi)}{\sum_{i=1}^{n} Wi}$

where, Qi is the sub index of the ith parameter, Wi = K/Si is the unit weightage of ith parameter taken as value inversely proportional to the recommended standard Si of the corresponding parameter and n is the number of parameters considered (i=1-6 in this study) (Reza and Singh, 2010; Bakan *et al.*, 2010). The sub index of the parameter is calculated by Qi = $\sum_{i=1}^{n}$ (Mi (-) Ii)/ (Si- Ii) where Mi is the monitored value of heavy metal of ith parameter, Ii, is the ideal value of ith

parameter, Si is the standard value of ith parameter. The sign (-) indicates the numerical difference of the two values, ignoring the algebraic sign. The proposed index is intended for the purpose of drinking water. The critical pollution index value for drinking water is 100. The HPI value has been determined by taking the average value of heavy metals. It is used to study and compare variations of overall pollution level that include many parameters together and to assess overall pollution level with respect to heavy metals (Prasad and Kumari, 2008; Reza and Singh, 2010). Aggregation process is important in calculating any environmental index. Six functions were utilized to calculate an aggregated score (index score) for the sampled media.

EXPERIMENTAL FINDINGS AND DISCUSSION

It evident from Table 1 temperature varied from 25.40 - 27.00°C with 26.15°C mean. pH has a mean of 6.37 indicting acidic water. Tds varied from 1.80 - 1999.00 and has a mean of 886.38. Ec has a mean of 1.70, alkalinity 1.09, K 9.81 mg/l, Na 4.38 mg/l, Ca 6.42 mg/l and Mg 0.13 mg/l. Average order among major cations was K>Ca>Na>Mg. Cl has a mean of 0.73 mg/l, NO₃ 8.27 mg/l and SO₄ 3.99 mg/l. Average trend among major anions was $NO_3 > SO_4 > Cl$. Fe ranged from 0.35 - 20.17 mg/l with a mean of 2.87 mg/l, Cu has a mean of 0.11 mg/l and ranged from 0.03 - 0.5 mg/l. Zn varied from 0.29 - 1.65 mg/l with a mean value of 0.85 mg/l. Pb has a mean of 0.54 mg/l and varied between 0.21 - 0.92 mg/l. Ni varied from 2.55 - 7.81 mg/l but has a mean of 4.13 mg/l and Cd varied from 0.40 - 0.87 mg/l with mean value of 0.57 mg/ 1. Ni > Fe > Zn > Cd > Pb > Cu was the average concentration trend among the heavy metals (Table 1).

pH correlated significantly with the anions, same for Tds and Pb. Ec also showed strong correlation with Cl and Pb. Among the cations, Ca correlated with K and Na. The relationship between NO_3 and SO_4 ; Fe and SO_4 ; Fe and Ni were also significant. These indicate some degree of affinity. Other parameters recorded moderate to weak correlation (Table 2).

R-mode varimax rotated factor analysis performed extracted three factors. Factor 1 has eigenvalue of 1.881 and total variance of 31.351%. Factor 1 is characterized by high factor loadings of Ni, Fe and weak loading of Pb. Factor 2 consists of Zn and Cd with eigenvalue of 1.521 and total variance of 25.345%. High, positive loadings of Cu and Pb were recorded in factor 3. This factor has eigenvalue of 1.458 and 24.304% total variance (Table 3).

The R-mode cluster analysis of the heavy metals extracted two clusters. Cluster 1 consists of Fe, Ni, Cu and Pb with Fe and Ni showing highest similarities. Cluster 2 is an association between Zn and Cd (Fig. 1).

Factor one in Q-mode factor analysis consists of pH, Tds, Ec, K, Ca, Mg and Cl with eigenvalue of 3.159 and total

Table 1 : (Okaba drv se	Bason wa	ter sample	([/am) &	and desci	riptive sta	tistics											
Sample location	Temp.	Ηd	Tds	E	c Alk	K	Na	Ca	Mg	a	NO ₃	SO_4	Fe	Cu	Zn	Ρb	ī	Cd
OK01	26.70	3.50	1999.00	3.9	10. 7	3.80	5.64	8.50	.08	1.77	34.89	13.63	20.17	90.	.78	.90	7.05	.43
OK02	26.80	6.40	1999.00	3.4	9 .10	18.00	6.23	10.75	.06	1.77	7.05	6.62	1.05	80.	69	.83	7.81	.62
OK03	25.50	7.70	1999.00	3.2	6 .10	18.90	6.58	10.73	.03	.33	9.15	1.63	1.33	60.	1.65	.71	2.60	.87
OK05	26.50	7.40	202.00	.28	8 1.8	9.40	6.45	9.75	.02	.04	2.68	2.81	.35	90.	36	.29	4.90	.70
0X06	25.50	5.80	40.00	;0 [.]	5 .30	00.6	2.67	2.25	.12	.04	7.31	6.29	09.	60'	29	.49	3.37	.54
0X08	26.50	5.30	1999.00	3.6	0.10	11.60	2.29	5.75	.08	1.77	1.84	98.	.80	.50	.40	.92	2.55	.40
OK10	25.90	7.40	532.00	:0	5 6.2	3.80	44	2.75	70.	.05	4.42	2.68	.37	.03	1.29	.56	4.10	.47
0K15	27.00	7.20	1.80	.0.	2 .60	3.00	4.26	.50	.21	.03	4.15	.45	.45	90.	.87	.24	3.11	.56
OK14	25.70	7.50	42.00	, O	5 .80	8.50	4.10	5.10	.50	.04	5.15	2.82	1.29	.04	79	.21	2.60	.45
OK17	25.40	5.50	50.00	2.1	86. 8	12.14	5.18	8.16	0].	1.50	6.05	2.01	2.31	.08	1.37	.25	3.25	.61
Min	25.40	3.50	1.80	.0.	2 .01	3.00	44	.50	.02	.03	1.84	.45	.35	.03	29	.21	2.55	.40
Max	27.00	7.70	1999.00	3.9	7 6.15	18.90	6.58	10.75	.50	1.77	34.89	13.63	20.17	.50	1.65	.92	7.81	.87
Mean	26.15	6.37	886.38	1.7	0 1.09	9.81	4.38	6.42	.13	.73	8.27	3.99	2.87	II.	85	.54	4.13	.57
Std Dev.	.61	1.35	969.36	1.7	5 1.86	5.57	2.05	3.71	4.	.84	9.61	3.95	6.11	.14	.46	.29	1.89	.14
Ĵ	27.00	7.30	127.00	0.8	4 0.48	3.12	0.34	0.22	0.07	0.03	7.13	0.17	1.02	0.06	0.02	0.22	1.42	10.0
Table 2:	Okaha dry a	eason wa	ter correls	ation co-	efficient													
1 4010 4	The second secon	TI TI				11		C		đ	014	00	L.	C	C	i c		ç
ŧ	1 emp.	Нd	Ids	EC	AIK	Y	Na	La	Mg	5	NG	SU 4	re	Cu	7U	2	N	2
I emp.	1.000	000																
hd	- 66	000.1																
Ids	. 016.	9/5-	1.000															
Ec	.208	580	.903	000.1														
Alk	161	.380	329	493	1.600													
K	-271	.183	.469	.514	418	1.000												
Na	.176	019	.262	301.	594	498	1.000											
Ca	001	-117	.576	.668	-321	705	.768	1.000										
Mg	- 152	235	- 449	-437	- 104	-276	161	-407	1.000									
CI	. 299	749	.665	.866	405	305	.226	.488	324	1.000								
NO ₃	. 193	709	.432	.490	258	250	.291	257	129	.410	1.000							
SO_4	- 226	708	.370	.387	222	180	.221	.255	149	.416	.885	1.000						
Ff	.265	766	.407	.494	237	-331	.250	.238	102	.474	.978	.849	000.1					
Cu	- I69	308	.438	.440	283	208	286	007	178	.469	227	253	.127	1.000				
Zn	429	.271	960.	.160	.281	206	.113	.187	-079	050	.062	242	.002	340	1.000			
Pb	.292	515	.934	208.	205	297	008	366	508	.652	.454	.478	.430	.495	071	1.000		
N	.547	402	.420	397	053	034	.381	.456	361	.484	.547	.753	.526	287	212	.445	1.000	
Cd	245	492	074	620	- 159	635	679	532	- 398	- 749	- 145	- 176	. 310	-319	431	- 140	-053	1 000

4 Asian J. Environ. Sci., 8(1) June, 2013: 1-8 HIND INSTITUTE OF SCIENCE AND TECHNOLOGY variance of 31.588%. Factor 2 is characterized by high factor loadings of pH, NO_3 and SO_4 with weak loading of K. It has eigenvalue of 2.862 and total variance of 28.619%. Factor 3 has eigenvalue of 2.270 and 22.703% total variance. Factor 3 consists of high positive factor loadings of Na, Ca and moderate loading of K (Table 4).

The R-mode cluster analysis extracted three clusters. Cluster 1 is an association of Tds, Ec, Cl, Na, Ca and K. Na, Ca and K are linked to this cluster at a farther Euclidean (Fig. 2). Clusters 2 and 3 are made up of NO_3 , SO_4 and pH, Mg, respectively.

AF =Cm/Cp: Cm = measured concentration; Cp = control point concentration.

The anthropogenic factor (AF) calculated using average heavy metal concentrations revealed the following percentages: Cd 98.26%, Zn 97.70%, Ni 74.43%, Fe 73.79%, Pb 71.05% and Cu has the lowest AF of 64.50%. AF trend of Okaba dry season water samples was Cd > Zn > Ni > Fe > Pb > Cu (Table 5 and Fig. 3).

The HPI of Okaba dry season water samples was 56.21

Table 3 : R-mode varin	nax rotated factor analysis	of heavy metals		
Variables		Factor		Communalities
v arrables	1	2	3	Communanties
Fe	.839	104	.088	.723
Cu	313	335	.867	.962
Zn	027	.857	062	.739
Pb	.527	.041	.819	.950
Ni	.883	080	062	.790
Cd	144	.810	142	.696
Eigenvalue	1.881	1.521	1.458	
% total variance	31.351	25.345	24.304	
Cumulative %	31.351	56.696	81.000	

Table 4: R-mode varimax rotated factor analysis of major ions and physiochemical

Variable	0					Factor					Con	omunoliti	iac	
v al lable	8			1		2			3		Con	linnunanti	les	
pН			-	.475		778			.201			.872		
Tds				.810		.230			.269			.782		
Ec				.854		.321			.336			.944		
К				.503		423			.653			.858		
Na				.034		.178			.931			.900		
Ca				457		.086			.834			.911		
Mo			_	634		019			- 098			412		
Cl				806		302			.090			.412 811		
NO				125		.392			151			.011		
NO ₃				107		.942			.131			.929		
SU ₄ Figenvalu	0			3 150		2.862		2	.127			.872		
% total va	riance		-	31.588		28.619		2	2 703					
Cumulativ	/e %			31.588		60.206		8	2.910					
CASE	0	5	10	15	20	25	CASE	0) 5	10	15	20	25	
Label	Num-					+	Label	Num	++-		++	+	+	
							Trde	2	U x UUU~					
Fe	1						Ec	3			kı			
Ni	5	√∕>		цЛ,			Cl	8	0000b2	아				
Cu	2	Muranna	nnnn	www.		•••••	Na	5			\Leftrightarrow \Leftrightarrow			
	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	~~~~~~	~~~~~		Ca	6	00002		?			
·~∕								HANNA V			44			4
Pb	4					$\langle \Rightarrow \rangle$	K.	4		~~~~~	↔ , חחחחחח	、 、		
Zn	3						NO ₃	10	T.A		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	~~`
							рН	10	VLZ				~~	
Cd	6							ww					WW.	
	-						Cd	7	000000			1. 1. j		

Fig. 1: R-mode cluster analysis of heavy metals

Fig. 2: R-mode cluster analysis of anions and physiochemical

Asian J. Environ. Sci., 8(1) June, 2013: 1-8 HIND INSTITUTE OF SCIENCE AND TECHNOLOGY

5

Table 5: AF of Okaba	dry season water samp	oles.			
Heavy	Mean	Ср	AF	AF %	Geogenic
Metals (mg/l)	Value	Value	Value		%
Fe	2.872	1.02	2.84	73.79	26.21
Cu	0.109	0.06	1.82	64.50	35.50
Zn	0.849	0.02	42.45	97.70	2.30
Pb	0.54	0.22	2.45	71.05	28.95
Ni	4.134	1.42	2.91	74.43	25.57
Cd	0.565	0.01	56.50	98.26	1.74

Fig. 3: AF of Okaba dry season water samples

(Table 6). This is above the half mark of the critical pollution index value of 100 (Prasad and Kumari, 2008; Reza and Singh, 2010). Metal indexing (MI) also was 460.46 (Table 7). Values of MI>1 is a threshold of warning (Bakan *et al.*, 2010; Al-Oud *et al.*, 2011).

The major cations and heavy metal trends in Okaba dry season water were: K (9.81) > Ca (6.42) > Na (4.38) > Mg (0.13) and Ni (4.13) > Fe (2.87) > Zn (0.85) > Cd (0.57) > Pb (0.54) > Cu (0.11). The average pH of the dry season water was 6.37. This is attributable to the presence of pyrite, sulphide minerals which are reactive to atmospheric oxygen and water under humid conditions. The initial products of oxidation are ferrous and ferric sulphates, suphuric acid and hydrated ferric oxide (Nelson, 2004). Apart from the association of the major cations,

Table 6 : Heavy metal pollutio	n indexing (HPI) of O	kaba dry season wa	ter			
Heavy metals (mg/l)	Mean value (m/l) (Mi)	Standard value (Si) NIS, 2007	Baseline Value (Ii)	Unit Weightage (Wi)	Subindex (Qi)	Wi *Qi
Fe	2.87	0.30	1.02	3.333	2.57	8.57
Cu	0.11	1.00	0.06	1.00	0.05	0.05
Zn	0.85	3.00	0.02	0.333	0.28	0.09
Pb	0.54	0.01	0.22	100.00	1.52	152
Ni	4.13	0.02	1.42	50.00	1.94	97.00
Cd	0.57	0.003	0.01	333.333	80.00	26666.64
				$\Sigma Wi =$		ΣWi *Qi =
				487.999		26924.35
		Okaba dry	season water H	PI = 56.21		

Table 7 : Metal indexing (MI) of Oka	aba dry season water			
Heavy metals (mg/l)	Ci	MAC	MI	
Fe	2.87	0.30	9.57	
Cu	0.11	1.00	0.11	
Zn	0.85	3.00	0.28	
Pb	0.54	0.01	54.00	
Ni	4.13	0.02	206.5	
Cd	0.57	0.003	190.00	
		Okaba dry season	water $MI = 460.46$	

anions and heavy metals to pyrite and sulphide minerals, their generally high concentration can also be related to their susceptible to leaching out by surface and infiltrating waters (Concas *et al.*, 2006). The low water pH also favours the residence of heavy metals in solution leading to an amplification of water contamination (Concas *et al.*, 2006).

The relationship between heavy metals and physiochemical, major ions and the relationships among the heavy metals were relatively weak except that between FepH, Pb-Tds, Fe-NO₃, Fe-SO₄ and Ni-SO₄ (r = > 0.70). These pair with relatively strong correlation imply significant relation. Weak relationships were also experienced between major ions and physiochemical and among major ions, the exception being the significant relation between Cl, NO₃, SO₄ and pH; Cl-Ec, Ca-K, Ca-Na and SO₄-NO₃. This significant regression may suggest anthropogenic source (Tijani *et al.*, 2004; Abimbola *et al.*, 2005).

R-mode factor analysis of heavy metals yielded three factors. Factors 1 and 2 consist of Ni, Fe, Pb and Zn. Factor 3 consists of Cu and Pb. These three factors suggest anthropogenic source due to coal mining and related activities given the high factor loadings. The R-mode cluster extracted two clusters. Cluster 1 suggests a mixture of natural and anthropogenic sources while cluster 2 is related to anthropogenic input (Reghunath *et al.*, 2002).

In R-mode factor analysis of major ions and physiochemical, factor 1 suggests natural/anthropogenic factors. This factor could be related to salinization of water as it contains Ec and some important inorganic salts. It also could represent contamination of water by domestic sewage (Pathak et al., 2008). Given the significant relationship between pH, NO₂ and SO₄, factor 2 suggests anthropogenic sources such as leaching of sulphide minerals, solubilization of previously precipitated hydrated sulphates, fertilized farmyards and probably denitrification of NH₃ which may have resulted from underground coal gasification (Nganje et al., 2010). Factor three on the other hand may be due to dissolution of feldspathic minerals found in sandstones and shales in the study area - natural processes. Cluster one (R-mode) suggests also water, rock interaction and domestic contamination while cluster two suggests anthropogenic. Cluster three indicates natural processes (Lokhande et al., 2008, Yang et al., 2009).

The anthropogenic factor (AF) used for heavy metal evaluation of Okaba dry season water samples revealed this trend: Cd > Zn > Ni > Fe > Pb > Cu. Cu and Pb were least and dissolved Fe was lower than expected because Fe was oxidized, hydrolyzed and precipitated rapidly, which explains the yellow-red ferric precipitates observed in the channels (Concas *et al.*, 2006; Navarro *et al.*, 2008). The relatively lower concentrations of Pb may be attributable to its immobile nature and strong affinity for sediments and suspended particles and so it was strongly sorbed onto sediments (Eze and Chukwu, 2011; Navarro *et al.*, 2008). While low acidities of water allow heavy metals such as Cd, Zn, Ni, Fe, Pb and Cu to enter into solution phase and be transported, the total heavy metal content was very high with respect to Cd, Zn and Ni, high for Fe and lower for Cu and Pb as these metals appear associated to sulphides in this type of mine (Navarro *et al.*, 2008).

The potential for acid mine drainage and the release of toxic heavy metals from mine wastes exist throughout Okaba area. This poses major environmental hazard to fresh water resources. Acid mine drainage has enhanced the levels of heavy metals due to low pH as a result of sulphide minerals. The implication of this is increasing bioavailability, bioaccumulation and toxicity which may result to serious health and environmental consequences (Tijani *et al.*, 2004; Nganje *et al.*, 2010).

The HPI for Okaba dry season water samples was 56.21 and signifies that the water is not contaminated (Reza and Singh, 2010; Bakan *et al.*, 2010). Metal indexing on the other hand was 460.46, which imply low water quality (Prasad and Kumari, 2008; Tamasi and Cini, 2004; Caiero *et al.*, 2005; Al-Oud *et al.*, 2011).

Conclusion:

The potential for heavy metal contamination of surface water resource exist in Okaba coal area. The need to restore the mine area is urgent now than before. This is to reduce the effects of wide spread contamination and consequently heavy metal toxicity, given the role of surface water in our rural communities.

REFERENCES

Abimbola, A.F., Laniyan, T.A., Okunola, O.W., Odewande, A.A., Ajibade, O.M and Kolawole, T. (2005). Water quality test of areas surrounding selected refuse dumpsites in Ibadan, southwestern Nigeria. *Water Resources J. NAH*, **16**: 39-48.

Al-Oud, S.S, Nadeem, M.E.A. and Al-Shbel, B.H. (2011). Distribution of heavy metals in soils and plants around a cement factory in riyhadh city, Central of Saudi Arabia. *American-Eurasian J. Agric. & Environ. Sci.*, **11** (2): 183-191.

APHA (2002). Standard Methods for the examination of water and waste water. APHA, Washington, D.C., U.S.A.

Bakan, G., Hulya, B.O., Sevtap, T. and Huseyin, C. (2010). Integrated environmental quality assessment of the Kizilirmak River and its coastal environment. *Turkish J. Fisheries & Aquatic Sci.*, **10**: 453-462.

Caeiro, S., Costa, M.H., Ramos, T.B., Fernandes, F., Silveira, N., Coimbra, A., Medeiros, G. and Painho, M (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. *Ecological Indicators*, **5** (2) : 151-169. **Concas**, **A.**, Ardau, C., Cristini, A., Zuddas, P. and Cao, G. (2006). Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. *Chemosphere*, **63** (2) : 244-253.

Chad Montrie (2003). To save the land and people. A history of opposition to surface coal mining in appalachian. Center for Appalachian studies and services, U.T. Press, 600 Henley St.

Ezeh, H.N. and Chukwu, E. (2011). Small scale mining and heavy metals pollution of agricultural soils: The case of Ishiagu mining district, south eastern Nigeria. *J. Geology & Mining Res.*, **3**(4) : 87-104.

Lokhande, P.B, Patit, V.V and Mujawar, H.A (2008). Multivariate statistical analysis of groundwater in the vicinity of Mahad industrial area of Konkan region, India. *Internat. J. Appl. Environ. Sci.*, **3**(2) : 149-163.

Navarro, M.C. Pere-Sirvent, C, Martinez-Sanchez, Vidal, J., Tovar, P.J. and Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. *J. Geochemical Exploration*, **96** (2&3) : 183-193.

Nelson, Eby G. (2004). *Principle of environmental geochemistry*. Brooks/Cole, Cengage Learning, USA.

Nganje, T.N, Adamu, C.I, Ntekim, E.E.U, Ugbaja, A.N, Neji, P. and Nfor, E.N. (2010). Influence of mine drainage on water quality along River Nyaba in Enugu south-eastern Nigeria. *African J. Environ. Sci. & Technol.* **4** (3) : 132-144.

Obaje N.G, Abaa, S.I., Najime, T. and Suh, C.E. (2000). A brief petrographic review on Nigerian coal resources. *J. Mining & Geology*, **36**(1): 19-28.

Obianuju, P.U. (2005). Palynological study of the Okaba coal mine section in the Anambra basin, southeastern. *Nigeria J. Mining & Geology*, **41** (2) : 193-203.

Offodile, M.E. (1976). A review of the geology of the Cretaceous of the Benue valley. In : *Geology of Nigeria* (C.A. Kogbe, Ed.). Elizabethan Publishing Co., Lagos.

Pathak, J.K., Mohd. Alam and Sharma, Shikha (2008). Interpretation of groundwater quality using multivariate statistical technique in Moradabad city, Western Uttar Pradesh State, India. *E-Journal Chemistry*, **5** (3):607-619.

Prasad, B. and Kumari, S. (2008). Heavy metal pollution index of groundwater of an abandoned open cast mine filled with fly ash: A case study. *Mine Water Environ*, **27** (4) : 265-267.

Reghunath Rajesh, Sreedhara, T.R. Murthy and Raghavan, B.R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. *Water Res.*, **36** (10) : 2437-2442.

Reza, R. and Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. *Internat. J. Environ. Sci. Tech.*, **7** (4): 785-792.

Sweat, M.J. (1999). Contaminants distribution in sediments and groundwater on and near Grassy Island. USGS, Water Resources of Michigan.

Tamasi, G. and Cini, R. (2004). Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. *Science of the Total Environment*, **327** (1-3) : 41-51.

Yang, Li, Linyu, Xu, and Shun, Li (2009). Water quality analysis of the Songhua River Basin using Multivariate techniques. *J. Water Resources & Protection* (JWARP), **1**(2) : 110-121.

ØYear ★★★★★ of Excellence ★★★★★

8