Pattern of assimilate partitioning in chickpea (*Cicer arietinum* L.) cultivars for high yield

PRATIBHA KATIYAR

Department of Crop Physiology, Agricultural Biochemistry and Herbal Science, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, RAIPUR (C.G.) INDIA (Email : pratibhakatiyar@redifmail.com)

Abstract : Twenty divergent cultivars of chickpea (*Cicer arietinum* L.) grouped into four categories on the basis of seed index ranged between 12-24 g were tested in field conditions in *Rabi* season in RBD replicated thrice at IGAU, Raipur (C.G.) to study the variability in pattern of assimilate partitioning for high yield. The highest magnitude of genotypic variation was observed for seed yield per plant. The study revealed that the cultivars with higher in CGR, HI, seed index, chlorophyll b and total chlorophyll content at flowering stage, sugar content in seed, lesser nodes and branches per plant and higher pods per plant had the significantly higher economic yield. The results elucidated the number of primary and secondary branches per plant, pod bearing length, effective secondary branches were not affected by seed index. The low test weight cultivars had higher seed yield per unit area. However, the optimum filling stages showed significant impact in assimilate partitioning and economic yield in low and medium seed index cultivars. Higher chlorophyll a, b and total chlorophyll content at flowering stage and lesser nodes and more productive secondary branches per plant contributed significant impact on seed yield.

Key Words : DAS (days after sowing),LAI (leaf area index) , LAR (leaf area ratio), LWR (leaf weight ratio), SLA (specific leaf area), SLW (specific leaf weight), CGR (crop growth rate), HI (harvest index)

View Point Article: Katiyar, Pratibha (2012). Pattern of assimilate partitioning in chickpea (*Cicer arietinum* L.) cultivars for high yield. *Internat. J. agric. Sci.*, **8**(1): 119-124.

Article History : Received : 26.04.2011; Revised : 12.09.2011; Accepted : 07.11.2011

INTRODUCTION

Chickpea is an important food legume widely consumed in Asia, the middle East and several mediterranean countries. Chhattisgarh state of India has good ecological conditions for chickpea production but the productivity of chickpea in the state is 528 kg/ha, which is very low in comparison to national average of 855 kg/ha. This gap needs more serious efforts to increase its productivity in the region (Rajput *et al.*, 2003). The study therefore, been planned to identify the morpho physiological traits to find out the pattern of assimilate partitioning in chickpea cultivars for high yield.

MATERIALS AND METHODS

The field experiment was conducted at instructional farm of Indira Gandhi Krishi Vishwavidyalaya, Raipur (CG) in *Rabi* season 2006-07 using twenty cultivars of chickpea grouped in to three categories on the basis of seed index (Seed weight 100 seed) ranged between 12-24g. The experiment was conducted in RBD replicated thrice. The morpho physiological and biochemical observations were taken at different physiological stages of crop growth. Chlorophyll content of leaves was estimated (Yoshida *et al.*, 1972) at 45 and 60 DAS. Sugar content was estimated (Duboise *et al.*, 1951) at 60 and 90 DAS.

Protein content by Microkjeldhal method (AOAC, 1965) at maturity in seed. Growth analysis was done for measuring the LAI (Watson, 1947) LAR (Radford, 1967), LWR (Beadle, 1982), SLA (Kevt *et al.*, 1971), SLW (Beadle, 1982), CGR (Patter and Jones, 1977) and HI (Synder and Carlson, 1984). The morpho-physiological observations were taken at 30 (S I), 60 (S II) 75 (S III) 90 (S IV), 105 (S V) and at physiological maturity. Yield attributes were recorded at physical maturity (dead ripe stage).

RESULTS AND DISCUSSION

The efficient partitioning of photo assimilates towards

3.53 2.20 24 93°. St 100 1. 18 5.5705 33.66 00 80 258 25 66180 7.7.13 000 533 Ne Z 1. 20 18. 3 133 202 203 61.00 22.55 2.50 2.5 29 C 200 10 0 25 23 23.58 3.61 36-38 3 Table 1: Mean performance morphological and yield parameters of chickpea cultivars at maturity 66 6 20.36 \$ 5262 59.3 Sen and 25.25 00.00 100 2000 36 36 an mer 22.55 200 5 6 G 223 0.23 53.56 27. 27.27 2. 5 500 22 3

Internat. J. agric. Sci. | Jan., 2012| Vol. 8 | Issue 1 | 119-124 Hind Agricultural Research and Training Institute

PRATIBHA KATIYAR

economic sink is prime factor for achieving maximum production potential of any cultivars. Dry matter partitioning and growth analysis studies indicated that LAI of chickpea cultivars increased significantly up to 90 DAS and optimum LAI was found in between 3-5.5 at 75-90 (SIII - SIV) during flowering stages of crop growth. Shantakumari and Sinha (1972) also found maximum rate of photosynthesis at flower bud initiation in chickpea. LAR was significantly low in high yielding cvs *i.e.*, JG-74, JG-1265, JG-79-38 at 75-90 DAS indicated that low leaf area increased the shoot biomass for plant and smaller leaf size increased photosynthetic efficiency. In these cultivars low LAR probably combined with better translocation and greater sink capacity ultimately resulted high seed yield. CGRwas maximum at 60-75 DAS (S II - S III) during vegetative to flower initiation stages. Slow increase in CGR during early vegetative phase was associated with stem and leaf number, size and weight. Rapid increase in CGR after flower bud initiation (60 DAS) was found significant contributor to increase the number of flowers and pods as well as seed index. CGR was significantly and positively correlated with pod index at 105 DAS (S VI), Prasad *et al.* (1978) also found similar results. CGR was negatively correlated with LAI at this stage 105

Table 2 : Corr	relation of physic	ological parameter	rs of chickpea cult	tivars at general	flowering stage (S	-III, 75 days)		
	HI	LAI	LAR	LWR	SLA	SLW	CGR	SI
SI	-0.0169	0.3942	0.3265	-0.1112	0.3308	-0.3069	-0.2436	1
CGR	-0.1026	-0.3064	-0.1919	0.0474	-0.2190	0.2968	1	
SLW	0.0708	-0.4663**	-0.8730**	0.3876	-0.9233**	1		
SLA	0.0166	0.4308	0.9419**	-0.3971	1			
LWR	-0.3665	-0.4600*	-0.0750	1				
LAR	-0.1084	0.2971	1					
LAI	0.0207	1						
HI	1							

Table 3 : Corr	relation of physio	logical paramete	ers of chickpea cul	tivars at general	l pod formation sta	nge (S-IV, 90 day	/s)	
	HI	LAI	LAR	LWR	SLA	SLW	CGR	SI
SI	-0.0169	-0.0835	0.0189	-0.0419	0.0001	-0.0355	-0.0319	1
CGR	-0.0170	0.1726	-0.3753	-0.1832	-0.3134	0.2656	1	
SLW	-0.3198	-0.2814	-0.8904**	0.0821	-0.9689**	1		
SLA	0.2281	0.2533	0.9050**	-0.0878	1			
LWR	-0.4355	-0.0523	0.3340	1				
LAR	0.0565	0.2113	1					
LAI	0.1159	1						
HI	1							

Table 4 :	Correlation o	f physiologica	l parameters of	f chickpea cult	ivars at pod fill	stage (S-V, 1	05 days)			
	HI	LAI	LAR	LWR	SLA	SLW	CGR	SY	SI	PW
PW	0.5031*	-0.4180	-0.2998	-0.0917	-0.2777	-0.1674	0.9102**	0.9864**	-0.2854	1
SI	-0.0169	0.2602	0.0869	-0.5668**	0.2274	-0.1485	-0.3756	-0.2754	1	
SY	0.5524*	-0.4117	-0.3473	-0.1141	-0.3229	-0.1459	0.9193**	1		
CGR	0.4602*	-0.4740*	-0.3781	0.0132	-0.3728	0.0167	1			
SLW	-0.5516*	-0.5672	-0.5897**	0.5610*	-0.6455**	1				
SLA	0.0873	0.6824**	0.9689**	-0.4315	1					
LWR	-0.3748	-0.3419	-0.2133	1						
LAR	0.0540	0.6723*	1							
LAI	0.3536	1								
HI	1									

SY = Seed yield, SI = Seed index, PW = Pod weight

Internat. J. agric. Sci. | Jan., 2012| Vol. 8 | Issue 1 | 119-124 Hind Agricultural Research and Training Institute

PRATIBHA KATIYAR

Table 5 : Corre	lation of	f biochen	nical para	meters of c	hickpea c	cultivars at	various g	rowth pha	ses											
			/5 days				65 dizys			95.	Jaya		ಟ್ಟೇಶ್ ರಾ	Keymer 2 com		Sug in			305	8,23,0
		2	9. 05.	and	5°.0° 88		19	e	$\langle \mathcal{L}'_{\mathcal{L}''_{\mathcal{L}'_{\mathcal{L}'_{\mathcal{L}'_{\mathcal{L}''_{\mathcal{L}'_{\mathcal{L}''_{\mathcal{L}'_{\mathcal{L}'''_{\mathcal{L}''_{\mathcal{L}''_{\mathcal{L}''_{\mathcal{L}''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}'''_{\mathcal{L}''''_{\mathcal{L}'''_{\mathcal{L}''''_{\mathcal{L}''''_{\mathcal{L}''''_{\mathcal{L}''''''_{\mathcal{L}''''''''_{\mathcal{L}'''''''''''''''''''''''''''''''''''$	5.00m		Sugar.	and the second	706. WE	Scott Sugar	S.arr 3ra/air	Soci. Scol	Scool. y'a'al		3d. wz."
														S.					2:02	2:02
Section weak		0.372.	6.278	03.3	0.033	0.0.3	0.08.	0.069	0.0.7	0.53.	0.5.0		0. 98		0.791	0.308	0.036	0.275	0.065	0.260
2			0.977.44	G 9854#	8788	0.027	0.038	1400	9200	0.230		0.025	5.00			0.2.3	280 0	1.07. 0	.80.0	126. 12
Ctr. 13				0.985**	0.073		0.016	0.037/	0.0.1	0.7.8	0.125	0.097	0.036	0.251	0.2/6	0.225	0.108			0.107
1. 20					0.035	0.078	0.077	0.036	0.011	0.2.2.1		0.078	0.093	0.187	0.203	0.222	0.097	0.181	0.096	0.139
Store sugar						0.977,44	0.037	0.298		0.789#	0.56744	0.109	0.959##	0.173		0.282	0.381	0.153	0.316	6.222
							0.065	0.329	0.187	0.763*	0.5180	81.0	0.956##	0.058	\$7.50	0.30.	0.7 03.		0.285	0.289
5.2								0.803##	0.963 **	0.072			0.095	0.3.8	0.056	0.380	0.078		0.268	0.62
C									0.937 ##	0.082	0.210	67.13	0.308	0.379	0.065	0,798	0.0/0		0,/3/	0.097/
and the second s										.90'0	0.206		0.195	0.379	0.063	0.36.		0.766	0.357	0.70
Sam sugar											0.990**	0.362	0.785*	0.375	0.392		0.352	0.067	0.0%	0.237
												0.38/	0.560##	0.26	0.3.6	0.357		0.083	0.039	1800
and the second of the second of the second s														0.367	0.905**			0,/30	0.252	0.057
																0.350	0.794		0.37	0.201
² odwa.''															0.753#	0.102	0.283	0.519 #	0.077	0.38/
Sugar																				
Scene 2. ger																0. 35	580.0	0.76/#		1
34																	0.087	0.067	0.536**	0.2.5
Same 2 2 an																			0.058	0.078
Security's alman																			0.028	0.079
and " same of the																				0.053
2.07.64																				
ociwe.																				-nd-
22202																				

Internat. J. agric. Sci. | Jan., 2012| Vol. 8 | Issue 1 | 119-124 [122] Hind Agricultural Research and Training Institute

DAS (S-VI) (Table 4). JG-1 had maximum CGR whereas, JG-74 had maximum seed yield and HI, pod weight, biological yield, total number of pods on primary branches.

The chlorophyll content 'b' and total chlorophyll content was positively correlated with seed yield. However, a negative correlation of chlorophyll content with seed yield was reported by Dhopte et al. (1985). The sugar content of leaves and stem varied significantly in leaves and stem. JG-1264 had maximum sugar content in shoot and also in seed. The association of leaf sugar at general pod formation stage (90 DAS, S-V) was also positively correlated with stem sugar. Stem sugar at maturity was positively correlated with seed sugar while, pod wall sugar was negatively correlated with seed sugar indicated that in most of the cultivars translocation of sugar from pericarp to cotyledons was inefficient (Table 5). Generally, the seed sugar was positively correlated with seed yield *i.e.*, JG-1258. Stem and leaf sugar at pod fill stage was positively correlated with seed index. In cv. J 78-44 relatively more efficient translocation of photo assimilates was found towards economic sink. The cultivars has significant variation in pod wall sugar. However, Shantakumari and Sinha (1972) reported non significant variation in pod wall sugar. A gradual decrease in stem sugar indicated a similar trend of translocation of photoassimilates towards economic sink in the study.

The protein content was significantly varied at maturity in seeds and it was not affected by seed index of the cultivars. The number of days to flower initiation was positively correlated with seed yield. JG-1 had required minimum period (45 days) for flower initiation and also had minimum yield (Table 1). Similar association was found by Jatasra et al. (1978). The plant height did not vary significantly while, Mishra (1972) reported the negative correlation of plant height with seed yield and on contrary of it Singh et al. (1977) and Mishra and Rao (1984) reported positive correlation. The number of primary branches per plant, pod weight and pod bearing length were not affected by seed index. There was a negative correlation between number of primary branches with seed index. However, Singh et al. (1973) reported a negative correlation of pod bearing length with seed yield. The positive association was found in primary branches and seed yield. There was a positive association between pod bearing length and seed yield in cultivars JG-74 and J 80-5. The significant variation was obtained in effective secondary branches in the cultivars but did not reveal a positive trend with regard to seed index. The number of pods on primary branches had significant variation in cultivars and positively correlated with seed yield. Tomar et al. (1982), Khedar et al. (1984) and Mishra and Rao (1984) also found positive correlation. It was observed that the pods on secondary branches had non significant difference and were not affected by seed index.

The biological yield was positively correlated with seed yield. The biological yield and harvest index did not show any positive trend with seed index (Table 5). Harvest index (HI) solely can not be a criteria for selection. It may fail to indicate accurately the comparative yield of seed per unit of land when cultivars and crop stand differ in LA, LAI, leaf senescence and abscission. Thus, shoot biomass may alter the HI and render the comparasion of biological yield and partitioning efficiency of the cultivars unrealistic if the sampling intervals are longer. HI can be a better selection criteria than any of its components (Singh et al., 1986). Pathcoefficient analysis exhibited that the characters such as biological yield/plant, pods/plant and 100 seed weight were found very important in chickpea. Indirect effects of all the other traits except harvest index through biological yield/plant were also positive. Therefore, biological yield/plant, pods/ plant and 100 seed weight appears to be the major yield components from the selection point of view in chickpea reported by Arora and Kumar (1994).

REFERENCES

A.O.A.C. (1965). Official methods analysis. The association of Official Agricultural Chemists, Washington, 4 D.C.

Arora, R.P. and Kumar, I. (1994). Path-coefficient analysis in chickpea. *Indian J. Pulses Res.*, 7(2): 177-178.

Beadle, C.I. (1982). Plant growth analysis in the techniques in bio productivity and photosynthesis. Pergamor press Ltd, England Ldt. England edt. Coombs and Hall: 21-25.

Dhopte, A.M. Zade, V.R. and Ingole, N.P. (1985). Chlorophyll variability in some genotypes of safflower and gram and its correlation with yield. *P.K.V. Res. J.*, 9(1): 75-78.

Duboise, M.K., Gill, J.K., Hamilton, P.A., Roberts and Smith F. (1951). A Calorimetric method for the determination of sugars. Nature 168:167.

Jatasra, D.S., Ram, Chandgi, Chandra, S. and Singh, Ajmer (1978). Correlation and path analysis in segregating populations of chickpea (*Cicer arietinum* L.) *Indian J. Agric. Res.*, **12**(4): 219-222.

Khedar, O.P., Maloo., S.R. and Mehrotra, H.N. (1984). Correlation and path analysis in chickpea. Agricultural experiment station, Sukhadia University, Durgapura, Jaipur in National seminar on New Dimentions in Pulse Research and Development, May 21-23.

Kvet, J., Ondok, J.P., Necas, J. and. Jarvis, P.G. (1971). *Methods of growth analysis in plant photosynthetic production (Eds. Z. Sestak, J. Catsky and P.G. Jarvis)* pp. 343-391.

Mishra, S.S. (1972). Relationship between yield attributes and yield of gram. *Madras Agric. J.*, **59**(3): 186.

Mishra, R. and Rao, S.K. (1984). Analysis of yield factors in chickpea (*Cicer arietinum* L.) in National seminar and New dimentions in Pulse Research and Development, May 21-23.

Patter, J.R. and Jones, J.W. (1977). Leaf area partitioning as an important factor in growth. *Plant Physiol.*, **59**: 10-14.

Prasad, V.V.S., Pandey, R.K. and Saxena, M.C. (1978). Physiological analysis of yield variation in gram (*Cicer arietinum* L.) genotypes. *Indian J. Plant Physiol.*, **21**(3): 228-234. Radford, P.J. (1967). Growth analysis formulae, their uses and abuse. *Crop Sci.*, 7: 171-175.

Rajput, A.S., Choubey, N.K., Kolhe, S.S., Shrivastava, G.K.,and Nair, S.K.(2003). Growth of late sown chickpea and weed in vertisol as influenced by irrigation schedules and weed management practices. Proceeding of the International Chickpea Conference organized by ICRISAT at IGAU, Raipur (CG) India from 20-22 Jan 2003. pp. 301-304

Shantakumari, P. and Sinha, S.K. (1972). Variation in chlorophyll and photosynthetic rates of cultivars of Bengal gram (*C. arietinum* L.). *Indian J. Exp. Biol.*, **13** (2): 208-209.

Singh, I.B., Singh H.G., Chauhan, Y.S. and Singh, K.N. (1986). Path coefficient analysis in chickpea (*Cicer arietinum L.*). *Crop Improvement*, **12** (1): 62-63.

Singh, K.P., Singh, V.P. and Choudhary, B.D. (1977). Path coefficient analysis in chickpea. *Zeitschrifit fur ptanzenzuchtung*, **79**(3): 219-223.

Singh, L., Tomar, G.S. and Mishra, P.K (1973). Variability inter relationship and path coefficient for some quantitative character in Bengal gram. *SABRAO Newsletter*, **5** (1): 23-28.

Synder, F.W. and Carlson, G.E. (1984). Selecting for partitioning of photosynthetic products in crops. *Adv. Agron.*, **37**: 47-72.

Tomar, G.S., Mishra, Y. and Rao, S.K (1982). Path analysis and its implications in selection of high yielding chickpea (*Cicer arietinum* L.). *Indian J. Plant Physiol.*, **25**(2): 127-132.

Watson, D.J. (1947). Comparative physiological studies on the growth of field crops I. Variation in net assimilation rate and leaf area between years. *Ann. Bot.* N.S., **11**: 41-76.

Yoshida, S., Forno, D.A., Cock, J.H. and Gomez, K.A (1972). Laboratory manual of physiological studies of rice, IRRI, pp. 30.

