

Agriculture Update______ Volume 8 | Issue 1 & 2 | February & May, 2013 | 138-140

Research Article

Constraints percived and suggestion offered in adoption of coriander production technology

SANDIP KUMBHANI, KIRAN CHANDRAVADIA AND HIREN PATEL

ARTICLE CHRONICLE : Received : 25.05.2012; Revised : 28.02.2013; Accepted : 28.03.2013

KEY WORDS: Constraints, Suggestion

Author for correspondence :

SANDIP KUMBHANI Sardar Smruti Kendra (J.A.U.), JUNAGADH (GUJARAT) INDIA

See end of the article for authors' affiliations

SUMMARY : The present study was conducted to find out constraints perceived and suggestion offered in adoption of coriander production technology. The constraints which were most perceived by coriander growers were inadequate and irregular power supply, weight and quality loss during storage and transportation and high charges of electricity. Farmers offered suggestions of coriander production technology were irrigation sources should be increased, remunerative price should be given to coriander growers and market facilities should be strengthened.

How to cite this article : Kumbhani, Sandip, Chandravadia, Kiran, and Patel, Hiren (2013). Constraints percived and suggestion offered in adoption of coriander production technology. *Agric. Update*, **8**(1&2): 138-140.

BACKGROUND AND OBJECTIVES

Coriander (Coriandrum sativum L.) is an annual aromatic herb, grown for its leaves, seed, essential oil and oleoresin. Coriander, also known as cilantro and Chinese parsley is a member of family Apiaceae (Umbelliferae). Its name is derived from the Greek world 'Koris' meaning bedbug because of the unpleasant fetid bug-like odour of the green herb and unripe fruits, it was eventually loaned to Latin Coriandrum. Coriander has originated in the Mediterranean region from where it had moved eastward to Asia (Nawata et al., 1995). It is commonly known as "Dhania" or "Dhana". India has been known as the "home of the spices" from very ancient times. Spices play pivotal role in human dietary as they give an agreeable flavour and aroma to food and add greatly to the pleasure of eating (Aiyanduai, 1966). They also constitute an important group of agricultural commodities which are virtually indispensable in culinary art.

Coriander is used since long as coriander seeds were found in Egyptian tombs of 960 BC. Further, Persia grew coriander 3000 years ago and it added fragrance to hanging gardens of Babylon. In 3rd century BC, Romans also found coriander seed as an excellent seasoning for popular foods. India also exports coriander seeds but the quantity is negligible compared to demand levels in major consuming countries like USA, Saudi Arabia and Germany (Raju, 1990). However, among seed spices, coriander export quantum is the highest, followed by cumin seed. But value wise, cumin seeds stand first, followed by coriander.

Coriander is well known for its uses as medicine, oil, perfumery and culinary purposes, consumed in large quantities and earns a large sum of foreign exchange.

Resources and Methods

The parts of constraints were kept open ended in the questionnaire. The responses were recorded in the schedule itself. The constraints under each of the practice required to be rated by each and every respondent, in one of the three categories *viz.*, most important, important and less important. The frequency was calculated for each constraint and converted in to percentage and rank was given. The higher ranks indicated higher perception of the respondents for that constraint and vice versa. The constraints and the mean score are given in the following Table A.

Table A : Constraints faced by the farmers in adoption of recommended coriander production technology (n = 160)						
Sr. No.	Constraints	Frequency	Percentage	Rank		
1.	Insufficient availability of quality seed	64	40.00	XV		
2.	Inadequate storage facilities	120	75.00	IV		
3.	Lack of marketing infrastructure facilities	114	71.25	V		
4.	Insufficient plant protection measures	104	65.00	VIII		
5.	Weight and quality loss during storage and transportation	125	78.12	Π		
6.	Lack of proper post harvest management facilities	112	70.00	VI		
7.	High wages of labour	69	43.12	XIV		
8.	Non- availability of irrigated water at the time of requirement	72	45.00	XIII		
9.	High price of fertilizers	80	50.00	XI		
10.	Inadequate and irregular power supply	131	81.87	Ι		
11.	High cost of pesticides	60	37.50	XVI		
12.	Lack of knowledge about recommended coriander production technology	77	48.12	XII		
13.	High cost of seeds	95	59.37	IX		
14.	High cost of weedicides	82	51.25	Х		
15.	Inadequate guidance by extension personnel	53	33.12	XVIII		
16.	Lack of training at village level	50	31.25	XIX		
17.	High charges of electricity	124	77.50	III		
18.	Fluctuation of coriander price in the market	110	68.75	VII		
19.	Soil testing laboratory is far away from village	60	37.50	XVII		
20.	Less availability of FYM	48	30.00	XX		

SANDIP KUMBHANI, KIRAN CHANDRAVADIA AND HIREN PATEL

OBSERVATIONS AND ANALYSIS

The highest percentage observed in constraints were inadequate and irregular power supply (rank first), weight and quality loss during storage and transportation (rank second), high charges of electricity (rank third), inadequate storage facilities (rank forth), lack of marketing infrastructure facilities (rank fifth), lack of post harvest management facilities (rank sixth), fluctuation of coriander price in the market (rank seventh).

This might be due to the facts that income and risk

orientation compels them to sell their produce immediately after the harvest at the prevailing market price.

Suggestions from the farmers to overcome the constraints in adoption of coriander production technology:

For ascertaining the suggestion to overcome the constraints in adoption of recommended coriander production technology, the suggestions were invited openly from respondents. The frequency was calculated for each suggestion and converted in to percentage and rank was given. The suggestions along with their percentages are presented

Sr. No	Suggestions	Frequency	Percentage	Rank
1.	Inputs should be made available at subsidized rate	96	60.00	v
2.	Regular supply of electricity for irrigation purpose should ensured	115	71.87	IV
3.	Sufficient and timely credit facility should be made available	79	49.37	VII
4.	Soil testing facilities should be available at least at taluka level	49	30.62	Х
5.	Available of organic manure should be increased	87	54.37	VI
6.	Remunerative price should be given to coriander growers	118	73.75	п
7.	Market facilities should be strengthened	115	71.87	III
8.	Financial procedure should be simple	56	35.00	IX
9.	Effective soil moisture conservation technology should be developed	42	26.25	XI
10.	Agriculture literature should be provided	38	23.75	XII
11.	Training should be imported to the coriander growers	64	40.00	VIII
12.	Irrigation sources should be increased	130	81.25	Ι

Table 1 : Suggestions from the respondents to overcome the constraints in adoption of recommended coriander production technology (n= 160)

Agric. Update, 8(1&2) Feb. & May, 2013 : 138-140 Hind Agricultural Research and Training Institute in Table 1.

The most important suggestions offered by the coriander growers to over come the constraints in adoption of improved coriander production technology were: provision of irrigation water 81.25 per cent, remunerative price should be given to the coriander growers 73.75 per cent, market facilities should be strengthened 71.87 per cent, regular supply of electricity for irrigation purpose should ensured 71.87 per cent, inputs should be made available at subsidized rate 60.00 per cent, available of organic manure should be increased 54.37 per cent.

It is clear from the Table 1 about the suggestions made by the majority of the farmers that these suggestions are based on the facilities have been availed but are not sufficient and satisfied up to the extent of their expectations.

Thus, it can be concluded from the facts mentioned above that the facilities to the coriander growers' are already being provided by the human resources or by natural resources needs to be strengthened and tailored according to the requirements of coriander growers. The other suggestions offered by the farmers need to be looked in to account very carefully by the appropriate agencies to improve the productivity of coriander crop.

Conclusion:

From the above discussion, it can be concluded majority of farmer's constraints about coriander production technology were inadequate and irregular power supply, weight and quality loss during storage and transportation and high charges of electricity. Farmers offered suggestions of coriander production technology were irrigation sources should be increased, remunerative price should be given to coriander growers and market facilities should be strengthened.

Authors' affiliations :

KIRAN CHANDRAVADIA, Department of Agricultural Extension, Junagadh Agricultural University, JUNAGADH (GUJARAT) INDIA HIREN PATEL, Department of Soil and Water Engineering, Junagadh Agricultural University, JUNAGADH (GUJARAT) INDIA

REFERENCES

Chauhan, N.B. (2008). Capacity building of farmers' through training on organic farming practices in surendranagar district of gujarat state.M.Sc. (Ag.) Thesis, Junagadh Agricultural University, Junagadh, GUJARAT (INDIA).

Kamani, A.B. (2007). A Quintessential paradigm of a quintessential paradigm of organic farming in relation to adoption of organic farmers in saurashtra. M.Sc.(Ag.) Thesis, Junagadh Agricultural University, Junagadh, GUJARAT (INDIA)..

Kanani, P.R. (1998). Indigenous practices of groundnut cultivation followed by the farmers of South Saurashtra Zone in Gujarat State. Ph.D. (Ag.) Thesis, Gujarat Agricultural University, Sardar Krushinagar, GUJARAT (INDIA).

Meena, S.R. and Sisodia, S.S. (2005). Constraints as perceived by the respondents in adoption of recommended guava production technology. *Raj. J. Extn. Edu.*, **12-13** : 146-153.