
INTRODUCTION

In the agriculture production system, the need of the

hour is to maximise the efficiency of each external inputs by

using the judicious combination of biological entities for

sustainable agricultural production. Beneficial plant-microbes

interactions in the rhizosphere are the determinants of plant

health and soil fertility (Jefferies et al., 2003). In the calciorthent

soil, the pH is above 8.0, and most of the mineral P is in the

form of poorly soluble calcium mineral phosphate (CaP) due

to their buffering capacity (Ae et al., 1991).

Pigeonpea [Cajans cajan (L.) Millspaugh] is a deep

rooted and drought tolerant crop (Troedson et al., 1990), can

fix atmospheric nitrogen up to 40 kg-1, and its root helps in

releasing soil bound phosphorus to make it available for plant

growth. Soil micro-organisms that mobilize phosphorus (P)

are important in providing this nutrient to plants (Patel et al.,

2008). Micro-organisms that dissolve poorly soluble CaPs are

termed as mineral phosphate solublizer (MPS) (Dobbelaere et

al., 2003 and Goldstein et al., 2003). A number of species of

bacteria are able to solublize phosphorus in-vitro and some

of them can moblize P in plants (Antoun et al., 1998 and Piex

et al., 2000). Phosphate solublizing microorganisms (PSM)

convert these insoluble phosphates into soluble forms

through the process of acidification, chelation, exchange

reactions and production of gluconic acid (Rodriguez et al.,
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2004 and Chung et al., 2005). Whereas, PGPR stimulate plant

growth either by direct or indirect mechanism which is broadly

based on production of enzymes and elicitors. Pseudomonads

are the most widely used and studied group of gram negative

bacteria that solublize phosphate and improve the growth of

plant.  Much attention has been given to both the

phytopathogens inhibitory and plant growth promotion (PGP)

activities of rhizobacteria from agricultural plants (Raupach

and Kloepper, 2000 and Barka et al., 2000), but scanty work

has so far been conducted to assess the comparative impact

of incorporation of native and exotic bioagents on shift in

total population of resident soil microbes.

An understanding of population dynamics of soil

biological parameters including fungal dominance under

influence of native and exotic bioagents in pigeonpea

cropping system is very critical, as microbial communities

inhabiting rhizosphere soil can be affected by root architect,

root age and plant age (Gomes et al., 2001; Kuske et al., 2002;

and Nicole et al., 2003) but the complex interaction between

soil type, plant species and root zone location probably is the

main factor (Marschener et al., 2001). Therefore, the aim of

this study was to document the consequences of use of native

and exotic bioagents in pigeonpea cropping system from area

of the study. So as to explore the new possibility to select the

native bioagents which are either at par or superior to exotic

bioagents in promoting the soil microbiological parameter, and

reduce the cost of transportation of nationally accepted

bioagents along with uncertainty regarding their adaptation

and performance.

MATERIALS  AND  METHODS

Site description and treatments:

The study was conducted at Research Farm, T.C.A.,

Dholi campus (25° – 39’N; 85° – 40’ E) of Rajendra Agricultural

University, Bihar in the north-eastern part of India during 2008-

10. The soil is calciorthent (Free CaCo3 33 per cent), with pH

(8.1), EC (0.14) and organic carbon (0.34 per cent). The

experiment was laid out in Randomised Block Design (RBD)

with plot size of 4.8 X 5 m² with five replications. The seed was

treated with Rhizobium (R) alongwith phosphorus solublizing

bacteria (PSB) and plant growth promoting rhizobacteria

(PGPR) of native (L) and exotic (E) isolates under following

treatment combinations.

T
1
 = Rhizobium + PSB (L)

T
2
 = Rhizobium + PSB (L) + PGPR (L)

T
3
 = Rhizobium + PSB(E) + PGPR (E)

T
4
 = Rhizobium + PGPR (E)

T
5
 = Control

Sample collection and isolation: 

The soil samples were collected from 10 points along a

diagonal transit from each block of different treatments pooled

separately. The total soil samples may yield around 25 in

number as one sample per block from 5 blocks of five treatments

was taken into consideration.

Fungal isolation:

Dilution plate method was used to estimate total fungal

count on two different media including MEA (Malt extract

agar) and Rose Bengal agar. One gram of composite soil

sample of different treatments was used separately by placing

9 ml sterilized distilled water in a sterilized universal tube. The

tubes were capped tightly and shook for 30 min for the

preparation of first (=10-1) dilution. Similarly, 2nd dilution (=10-

² dilution), 3rd and 4th dilutions were prepared by taking 1 ml

from respective dilutions and added it to a fresh 9 ml of

diluents. Plates with different media were added with 0.1 ml

(=10-4) of suspension and kept at 22 ± 2°C for 15 days. The

colonies were transferred to test tubes with PDA. Macroscopic

examination of fungal colonies that resembled Aspergillus

and Penicillium species were subcultured on malt extract agar

(MEA) for further identification. Fusarium was subcultured

on dichloran- chloramphenicol-peptone agar (DCPA),

Cladosporium on potato dextrose agar (PDA) and Geotrichum

on potato dextrose-novobiocin-agar medium. The fungi were

identified with the help of available literature (Thom and Raper,

1945; Ellis, 1971; Barnett and Hunter, 1972 and Nelson et al.,

1983).

Bacterial and PGPR isolation :

One gram of soil near the root surface was collected and

transferred to a 250 ml conical flask containing 100 ml of sterile

water followed by shaking for 15 min. in a shaker, different

dilutions were prepared. One millilitre of each 10-5 and 10-6

dilution was pipetted into sterile Petri-dishes containing

prepared (Hi-media Pvt. Ltd.) media viz., Pseudomonas agar

(flourescein) and Nutrient agar in triplicate, respectively. These

Petri-dishes were incubated in bacteriological incubator at

28+ 10C for 24 hrs.

RESULTS AND DISCUSSION

The results obtained from the present investigation as

well as relevant discussion have been summarized under

following heads :

Total fungal population:

The variation in total fungal population during different

months of the crop growth, as well as among the different

treatments was depicted in Fig 1. From August to November,

there was an increase in fungal population and decrease was

recorded thereafter. In Rhizobium + PSB (L) treatment, the

trend in fungal population was increasing during vegetative

phase and started decreasing with the onset of reproductive

phase of the crop. After 30 days of crop growth, there was
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Total bacterial population:

Bacterial population was highest (4.43 x 106 cfug-1 soil)

in Rhizobium + PSB (L) during the entire growth period of the

crop in comparison to other treatments, except in September

and January. Marked variation in total bacterial population

was observed under Rhizobium + PGPR (L) + PSB (L) during

the first four months of the crop period followed by constant

decline from January onwards. Under Rhizobium + PGPR +

PSB (E), highest (3.55 x 106 cfug-1 soil) population was recorded

in the month of August and lowest (2.93 x 106 cfug-1 soil) in

March. In Rhizobium + PSB (L), the effect of biological

treatment was found promotive on bacterial population during

August and September while sharp decline was observed in

October, which resumed their population thereafter with

decreasing trends till the harvest of the crop. Total bacterial

population was lowest under control in comparison to other

Total PGPR population:

Results presented in Fig.3 showed the variation in total

PGPR population under different biological treatments. Under

Rhizobium + PGPR + PSB (L), the highest (2.51, 2.70 and

2.37x104 cfug-1 soil) PGPR population was noticed during

August, September and November, respectively, compared to

other treatments. The highest (2.37 x104cfug-1soil) PGPR

population was observed in the month of September and

lowest (1.82 x104 cfug-1 soil) in November under Rhizobium +

PSB (L) treatment. Continuous decrease in total PGPR

population from the start of the crop growth was recorded,

with exception in the month of November and December where

fluctuations were marked in Rhizobium + PGPR (E) + PSB (E)

treatment. There was not much variation in PGPR population

throughout the growth period in Rhizobium + PSB (E). The

population of PGPR remained lower in control compared to

EFFECT OF NATIVE & EXOTIC BIOAGENTS ON MICROBIAL & DOMINANT FUNGAL POPULATION IN PIGEONPEA RHIZOSPHERE OF CALCIORTHENT SOIL
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Fig. 1 : Variation in total fungal population under

pigeonpea cropping system. Significant difference

(C.D. at 5%) is indicated by bar line

T
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-Rhizobium+PSB (L)

T
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-Rhizobium+PSB +PSB(L)

T
3
-Rhizobium+PGPR+PSB

T
4
-Rhizobium+PGPR

T
5
-Control

sharp decline (3.09 x 104 cfug-1 soil) in fungal population which

further resumed very soon and remained almost identical up

to 60 days in Rhizobium + PGPR + PSB (L). Fungal population

was highest (4.16 x 104 cfug-1 soil) in the month of August and

lowest (2.51x104cfug-1soil) in the month of March was recorded

in Rhizobium + PGPR (E) + PSB (E). Fluctuation in total fungal

population during the first four months of the crop growth

was quite wide which became constant afterwards in

Rhizobium + PGPR (E). The result indicates that the change in

fungal population was not following any definite trend. It was

probably due to the differential physical, chemical and

biological properties of the rhizospheric soil. It is well

established that the microbial life only occupies a minor volume

of soil being localised in hot spots such as the rhizosphere

soil (Nannipieri et al., 2003), where microflora has a continuous

access to a flow of low and high molecular weight organic

substrates derived from root. This flow, together with specific

physical, chemical and biological factors, can markedly affect

microbial activity and community structure of the rhizosphere

soil (Sorensen, 1977 and Brimecombe et al., 2001).
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Fig. 2 : Total bacterial population (106 cfu/g of soil) under

pigeonpea cropping system. Significant difference

(C.D. at 5%) is indicated by bar line

T
1
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T
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T
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5
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treatments during the entire growth period of crop. In the

month of October 2008, effect of treatments was negligible on

bacterial population as the values of all the treatments were

at par. Variation in total bacterial population was much wider

in treatments where exotic beneficial agents were used in

comparison to native bioagents, the reason ascribed to such

changes may be the differential release of different carbon

sources like glucose, oxalic acid and glutamic acid which are

readily utilised by the native bioagents than the exotic ones.

According to Fontaine et al. (2003) addition of easily available

organic C can stimulate the growth of r-strategist and the

successive growth of k- strategist is responsible for the

degradation of recalcitrant organic matter. Another hypothesis

explains the positive priming effect due to the increased

turnover of native microbial biomass (Chander and

Joergensen, 2001 and De Nobili et al., 2001) whereas

Kuzyakov et al. (2000) suggested that the activation of soil

micro-organisms by the addition of the easily available organic

C, increased enzyme synthesis with higher degradation of

soil organic carbon.
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other treatments, but decline was much noticeable in

November and January. The month of November showed

detrimental effect on the PGPR population in all the treatments.

Result indicates that the total PGPR population was much

stabilized under different treatments in comparison to total

fungal and bacterial populations. This might be due to the

ability of the PGPR to get easily stabilized in soil ecosystem,

as they are known to possess several activities like growth

promotion, nutrient recycling as well as reducing the plant

pathogen’s population through releasing antimicrobial

substances. Renella et al. (2005) reported that different root

exudates were mineralised to different extents and had different

stimulatory effect on microbial growth and on hydrolase

activities, mostly localised in the rhizosphere zone. The rapid

increase in the alkaline phosphatase activity could be

considered as an indirect evidence of the important role of

rhizobacteria in the synthesis of this enzyme in the rhizosphere

(Tarafdar and Jungk, 1987).

Dominant mycoflora:

Fig. 4 shows that the most frequent genera isolated from

pigeonpea rhizosphere were Aspergillus, Cladosporium,

Fusarium, Geotrichum, Penicillium and Trichoderma. The

genera of Aspergillus was isolated 29 per cent in the soil

samples of Rhizobium + PGPR (L) + PSB (L), but its frequency

increased up to 37 per cent in control. Frequency of

Aspergillus was almost identical (33 per cent) in Rhizobium +

PSB (E) and Rhizobium + PGPR (E) + PSB (E) treatments. The

second most frequently isolated genus was Penicillium, with

isolation frequency of 12 to 22 per cent under different

treatments. Lowest frequency of 12 per cent and 13 per cent

was observed in Rhizobium + PGPR (L) + PSB (L) and

Rhizobium + PGPR (E) + PSB (E), respectively, whereas highest

(22 per cent) in Rhizobium + PSB (L). The genus Cladosporium

showed an isolation frequency between 2 to 6 per cent. The

Fusarium genus was isolated in low (3 to8 per cent) frequency.

Similarly, Trichoderma genus was not much affected by

It is evident from the Fig. 4 that more combinations of

biological agents had suppressed the Penicillium and

Cladosporium population than those of individual

combinations. Though, the population of Aspergillus

remained higher in all the treatments but was suppressive in

different bioagents combinations to control. Possibly, higher

interactions of enzymatically active genera of Aspergillus,

Penicillium and Cladosporium with Pseudomonas spp. in

soil may subject to decrease in their population. Naseby and

Lynch (1998) observed that the genetically modified strain of

Pseudomonas fluorescens increased the urease and

chitobiosidase activity of rhizospheric soil and decrease

alkaline phosphatase, which was attributed to a displacement

of the rhizospheric community producing enzyme. However,

exotically incorporated biogents did not influence much the

population of Trichoderma as their distributions was at par

with control, which signifies that Trichoderma genus has

higher adaptability and get least affected by external

disturbance, as they secrete various toxins. Harman et al.(2004)

reviewed that the Trichoderma spp. are free-living fungi that

are highly interactive in root and soil ecosystem, as they

produce various antibiotic compounds and also compete with

other soil organisms for space and nutrition. Effect of native

biogents on Geotrichum population was negligible as their

values were almost identical to those of untreated soil whereas,

it was differential in treatments with exotic bioagents. It might

be due to the differential enzyme and antifungal compounds

secreted by the native and exotic bioagent. P. fluorescens
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different treatment combinations as its isolation percentage

remained identical (4 per cent) in control along with Rhizobium

+ PGPR (E) + PSB (E) and Rhizobium + PGPR (E). Frequency

of Geotrichum genus was lowest (3 per cent) in Rhizobium +

PGPR (E) + PSB (E) while highest (9 per cent) in Rhizobium +

PGPR (E). The fungi imperfecti are the major group of fungi

found in soil due to their ability to produce dormant structure

like conidia, clamydospore, sclerotia etc. The genera isolated

in this work were similar to an isolation pattern found in pre-

harvest maize ecosystem (Nesci et al.,2006).
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F113, which normally produce antifungal 2,4-

diacetylphloroglucinol (DAPG), increased alkaline

phosphatase, phosphodiesterase and arylsulfatase activities

of pea rhizosphere whereas the other inocula reduced enzyme

activities compared to the control (without bacterial

inoculation) ( Naseby and Lynch, 1998).
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