Research Paper

Article history : Received: 10.05.2013 Revised: 27.08.2013 Accepted: 11.09.2013

Members of the Research Forum

Associated Authors: ¹Horticulture Research Station (U.H.S), BIJAPUR (KARNATAKA) INDIA

Effect of planting geometry and organic sources of nutrients on keeping quality of onion (Allium cepa L.) CV. BELLARY RED

R.S. JAWADAGI, N. BASAVARAJA¹, K.S. KHYADAGI¹ AND P.S. PATTAR¹

ABSTRACT: The results obtained in the experiment revealed that, the minimum PLW and rotting (17.33 and 21.94%, respectively at 120 DAS) was recorded with the application of 50 per cent FYM (12.50 t ha ¹) + 50 per cent VC (2 t ha⁻¹) + biofertilizers (Azospirillum and phosphate solubalizing bacteria @ 5 kg ha⁻¹ ¹ each) with 15 cm x 10 cm spacing and sprouting was less when crop provided with 50 per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) with 15 cm x 10 cm spacing. However, with respect to bulb quality parameters, application of 50 per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) + biofertilizers (Azospirillum and phosphate solubalizing bacteria @ 5 kg ha⁻¹ each) with 15 cm x 10 cm spacing recorded maximum values (13.27, 13.36 and 49.28 % of TSS, dry matter and marketable bulbs at 120 DAS, respectively) followed by the crop nourished with 50 per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) ¹) + biofertilizers (Azospirillum and phosphate solubalizing bacteria @ 5 kg ha⁻¹ each) with 15 cm x 15 cm spacing.

Author for correspondence : **R.S. JAWADAGI** Horticulture Research Station (U.H.S), BIJAPUR (KARNATAKA) INDIA

Email : rsjawadagi.gmail.com

KEY WORDS : PSB, FYM, PLW, TSS, Azospirillum, Geometry, Onion

HOW TO CITE THIS ARTICLE : Jawadagi, R.S., Basavaraja, N., Khyadagi, K.S. and Pattar, P.S. (2013). Effect of planting geometry and organic sources of nutrients on keeping quality of onion (Allium cepa L.) cv. BELLARY RED. Asian J. Hort., 8(2): 418-425.

nion (Allium cepa L.) is the oldest known and most important commercial vegetable and spice crop grown in India. At present in India, it is grown in an area of 8.34 lakh hectares with an annual production of 135.65 lakh tonnes (Anonymous, 2010). India ranks second in the world after China by contributing 12.30 per cent to the world production. It is estimated that over 30 to 50 per cent of the onion produced in India valued at more than Rs.600 crores is lost annually during transportation and storage. The farmers knowledge about curing and other postharvest management practices is very poor. Post-harvest handling has its own impact on keeping quality of onion. There are more chances of rotting, sprouting, physiological loss of weight and loss of chemical constituents when the bulbs are stored in high temperature and humidity. The most appropriate causes for this heavy losses are due to improper nutrient management practices and maintenance of plant population. In view of increased awareness about organic farming, residue free food production and sustainable production, investigation on these aspects were under taken during Rabi season to assess their effect on quality and post harvest storage life of onion.

RESEARCH METHODS

A field experiment was carried out at Agricultural Research Station, Hagari (University Agricultural Sciences, Dharwad) during Rabi 2006-07 to study the influence of different sources of nutrients and planting geometry on shelf life of onion cv. BELLARY RED. The experiment was laid out in a Factorial Randomized Block Design with three replications. The treatments comprised of two organic nutrient sources and six different spacings viz., organic nutrient sources - O, - 50 per cent FYM (12.50 t ha⁻¹) + 50 per cent vermicompost (2 t ha^{-1}) and O₂ - 50 per cent FYM $(12.50 \text{ t ha}^{-1}) + 50 \text{ per}$ cent vermicompst (2 t ha-1) + biofertilizers (Azospirillum and PSB each @ 5 kg ha⁻¹) with different spacings viz., S_1 -20 cm x 15 cm, S_2 - 20 cm x 10 cm, S_3 - 20 cm x 7.5 cm, S_4 - 15 cm x 15 cm, S_5 - 15 cm x 10 cm, S_6 - 15 cm x 7.5 cm.

After harvest of the crop, cured onion bulbs were sorted out and five kg healthy bulbs from each treatment were selected and stored in well ventilated room for shelf life studies. Observations like physiological loss of weight, sprouting, rotting, dry matter, TSS, moisture, phosphorus and sulphur content and marketable bulbs were recorded at 15 days interval up to 4 months. The data were analyzed statistically and results were interpreted by using methods suggested by

0 110

Panse and Sukhatme (1967).

RESEARCH FINDINGS AND DISCUSSION

Physiological loss of weight and rotting of the bulbs in the storage are important parameters which decide the shelf life of onion. In the present study, the bulb showed gradual increase in physiological loss of weight and rotting with the advancement of storage period in all the treatments. Among

	PLW (%)									
Treatments		Days after storage (DAS)								
	15	30	45	60	75	90	105	120		
Factor 1 : Organic nutrient sources										
$O_1 - 50\% FYM + 50\% VC$	2.13	4.52	7.48	10.63	14.09	17.26	21.33	24.07		
O_2 - 50% FYM + 50% VC + Biofertilizers	1.95	3.97	6.26	9.37	12.15	15.37	19.53	21.43		
S.E. <u>+</u>	0.043	0.075	0.083	0.109	0.133	0.159	0.142	0.165		
C.D. (P=0.05)	0.127	0.219	0.202	0.321	0.390	0.467	0.417	0.484		
Factor 2 : Planting geometry										
S ₁ (20 cm x 15 cm)	1.96	4.34	6.67	9.89	13.02	16.39	20.62	23.54		
S ₂ (20 cm x 10 cm)	2.08	4.46	7.01	9.95	13.35	16.89	20.89	24.08		
S ₃ (20 cm x 7.5 cm)	1.69	3.64	6.07	9.41	12.37	15.36	19.68	21.78		
S ₄ (15 cm x 15 cm)	1.77	3.27	6.05	8.86	11.80	14.06	17.94	19.77		
S ₅ (15 cm x 10 cm)	1.64	3.21	5.28	8.14	11.03	14.05	17.92	19.11		
S ₆ (15 cm x 7.5 cm)	3.08	6.55	10.10	13.78	17.15	21.13	25.53	28.21		
S.E. <u>+</u>	0.075	0.129	0.143	0.189	0.230	0.276	0.246	0.286		
C.D. (P=0.05)	0.22	0.379	0.420	0.555	0.675	0.809	0.722	0.839		
Interaction										
O_1S_1	2.13	5.04	7.07	10.40	13.80	17.04	21.86	24.68		
O_1S_2	2.11	4.66	7.40	10.23	13.80	17.21	21.38	24.94		
O_1S_3	1.73	3.84	6.71	10.25	13.65	16.55	20.64	23.91		
O_1S_4	1.79	3.29	6.47	9.12	12.47	14.67	18.37	20.84		
O_1S_5	1.68	3.35	6.14	9.06	12.49	16.04	19.36	20.89		
O_1S_6	3.32	6.96	11.11	14.75	18.33	22.02	26.37	29.13		
O_2S_1	1.80	3.63	6.26	9.38	12.25	15.74	19.38	22.41		
O_2S_2	2.05	4.26	6.63	9.66	12.89	16.56	20.40	23.21		
O ₂ S ₃	1.65	3.45	5.41	8.57	11.10	14.17	18.72	19.65		
O_2S_4	1.74	3.13	5.66	8.60	11.14	13.43	17.52	18.71		
O ₂ S ₅	1.61	3.19	4.42	7.22	9.57	12.08	16.48	17.33		
O_2S_6	2.84	6.13	9.09	12.80	15.96	20.24	24.69	27.28		
Mean	2.04	4.24	6.86	10.00	13.12	16.31	20.43	22.75		
S.E. <u>+</u>	0.106	0.183	0.242	0.268	0.326	0.390	0.348	0.405		
C.D. (P=0.05)	NS	0.535	0.594	0.785	0.955	1.145	1.021	1.187		

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC - Vermicompost (50% VC-2 t ha⁻¹),

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each, NS - Non significant

the treatments, $O_2S_5 - 50$ per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) + biofertilizers with 15 cm x 10 cm (17.33 and 21.94 % PLW and rotting, respectively at the end of storage period) noted lowest PLW and rotting followed by $O_2S_4 - 50$ per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) + biofertilizers with 15 cm x 15 cm (Table 1 and 2). Whereas, the values with regard to PLW and rotting of the stored bulbs were maximum (24.94 and 28.31% PLW and rotting, respectively at the end of storage period) in O_1S_5 . The minimum PLW and rotting in O_2S_5 treatment was due to higher uptake of nutrients which has lead to maximum accumulation of dry matter and TSS in the bulbs. This might be due to reduced respiration and transpiration rates because of medium bulb size. Singh *et al.* (2002) also opined that the planting of onion with 15 cm x10 cm spacing has resulted in obtaining minimum PLW and rotting as compared to the bulbs obtained from wider spacing. Katung *et al.* (2005) reported lowest PLW and rotting in onion during five month storage

Table 2 : Effect of different organic sources of n during <i>Rabi</i> season	utrients and p	olanting geom	etry on rottin	g (%) of onio	n bulbs stored	l under ambie	nt conditions			
	Rotting (%)									
Treatments	30	Days after storage (DAS) 30 45 60 75 90 105								
Factor 1 : Organic nutrient sources		U				105	120			
$O_1 - 50\%$ FYM + 50% VC	2.45	4.54	7.87	11.31	16.47	20.91	27.40			
$O_2 - 50\%$ FYM + 50% VC + Biofertilizers	2.14	4.10	7.17	10.37	15.45	19.78	25.92			
S.E. <u>+</u>	0.046	0.078	0.067	0.107	0.090	0.111	0.141			
C.D. (P=0.05)	0.136	0.228	0.198	0.313	0.264	0.325	0.415			
Factor 2 : Planting geometry										
S ₁ (20 cm x 15 cm)	2.45	4.50	7.75	10.90	16.87	20.96	27.75			
S ₂ (20 cm x 10 cm)	2.11	4.10	7.22	9.84	15.86	19.24	27.16			
S ₃ (20 cm x 7.5 cm)	2.67	4.62	8.08	11.36	17.26	21.83	27.95			
S ₄ (15 cm x 15 cm)	1.80	3.64	6.66	9.88	14.70	18.62	24.50			
S ₅ (15 cm x 10 cm)	1.62	3.38	6.14	9.12	12.22	18.24	23.36			
S ₆ (15 cm x 7.5 cm)	3.15	5.68	9.28	13.95	18.85	23.18	29.24			
S.E. <u>+</u>	0.080	0.135	0.117	0.185	0.156	0.192	0.245			
C.D. (P=0.05)	0.235	0.395	0.342	0.542	0.458	0.536	0.719			
Interaction										
O_1S_1	2.63	4.66	8.10	11.54	17.38	21.81	28.15			
O_1S_2	2.13	4.16	7.25	9.95	16.00	19.36	28.31			
O_1S_3	2.82	4.92	8.44	12.26	17.79	22.21	28.60			
O_1S_4	1.89	3.82	6.87	10.17	15.03	19.35	25.22			
O_1S_5	1.84	3.71	6.74	9.25	13.19	19.19	24.78			
O_1S_6	3.42	5.96	9.86	14.69	19.46	23.51	29.35			
O_2S_1	2.27	4.33	7.39	10.25	16.37	20.10	27.34			
O_2S_2	2.08	4.04	7.18	9.72	15.72	19.13	26.00			
O ₂ S ₃	2.51	4.31	7.73	10.46	16.73	21.45	27.30			
O_2S_4	1.70	3.47	6.45	9.59	14.37	17.88	23.79			
O ₂ S ₅	1.40	3.04	5.55	8.98	11.25	17.30	21.94			
O_2S_6	2.87	5.39	8.69	13.20	18.24	22.84	29.12			
Mean	2.30	4.32	7.52	10.84	15.96	20.34	26.66			
S.E. <u>+</u>	0.113	0.190	0.165	0.261	0.221	0.272	0.347			
C.D. (P=0.05)	NS	NS	0.484	0.766	0.648	0.797	1.016			

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC - Vermicompost (50% VC-2 t ha⁻¹)

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each. NS =Non-significant

by the application of poultry manure.

The onion bulbs are subject to sprout in the storage whenever favourable climatic condition exists because they are metabolically active even after harvest. The treatment comprising of 50 per cent FYM (12.50 t ha⁻¹) + 50 per cent VC (2 t ha⁻¹) along with 15 cm x 10 cm spacing (O_1S_5) recorded lowest sprouting (2.52, 3.73, 7.00 and 9.90 per cent, respectively at 75, 90, 105 and 120 DAS) while the sprouting was maximum in O_2S_1 - 50 per cent FYM (12.50 t ha⁻¹) + 50

per cent VC (2 t ha⁻¹) + Biofertilizers with 20 cm x 15 cm spacing (5.32, 9.93, 12.20, and 16.41 per cent, respectively at 75, 90, 105 and 120 DAS) (Table 3). Singh *et al.* (2002) also observed maximum sprouting of the bulbs in wider spacing. This is because of bigger sized bulbs obtained in the wider spacing due to their high moisture content and rich nutritional content favoured sprouting (Singh and Singh, 1973).

The treatments differed significantly throughout the

Table 3 : Effect of different organic sources of conditions during <i>Rabi</i> season	nutrients and plant	ing geometry on	sprouting (%) of	f onion bulbs stor	ed under ambient				
continuous during nuor scuson	Sprouting (%)								
Treatments			Days after storage (DAS)	120				
	60		90	105	120				
Factor 1 : Organic nutrient sources									
O ₁ - 50% FYM + 50% VC	1.78	3.34	6.50	9.24	12.86				
O ₂ - 50% FYM + 50% VC+ Biofertilizers	2.02	3.85	7.43	10.21	13.49				
S.E ±	0.052	0.063	0.092	0.096	0.111				
C.D. (P=0.05)	0.152	0.185	0.269	0.283	0.327				
Factor 2 : Planting geometry									
S ₁ (20 cm x 15 cm)	2.67	5.05	9.61	11.88	16.10				
S ₂ (20 cm x 10 cm)	1.89	3.80	7.79	9.97	14.12				
S ₃ (20 cm x 7.5 cm)	2.10	4.01	8.18	10.60	14.90				
S ₄ (15 cm x 15 cm)	1.49	2.79	5.22	8.10	11.09				
S ₅ (15 cm x 10 cm)	1.47	2.72	4.62	7.73	10.16				
S ₆ (15 cm x 7.5 cm)	1.79	3.20	6.35	10.10	12.68				
S.E <u>+</u>	0.090	0.109	0.159	0.167	0.193				
C.D. (P=0.05)	0.264	0.321	0.465	0.490	0.566				
Interaction									
O ₁ S ₁	2.44	4.78	9.28	11.55	15.79				
O_1S_2	1.85	3.43	7.31	9.67	13.47				
O_1S_3	1.89	3.47	7.68	10.15	14.30				
O_1S_4	1.42	2.69	4.70	7.89	10.43				
O ₁ S ₅	1.36	2.52	3.73	7.00	9.90				
O_1S_6	1.75	3.15	6.27	9.19	12.45				
O_2S_1	2.90	5.32	9.93	12.20	16.41				
O_2S_2	1.93	4.16	8.28	10.26	14.76				
O_2S_3	2.32	4.54	8.69	11.05	15.49				
O_2S_4	1.52	2.89	5.74	8.31	10.73				
O_2S_5	1.62	2.92	5.50	8.46	11.45				
O_2S_6	1.83	3.24	6.43	11.00	12.91				
Mean	1.90	3.59	6.96	9.73	13.17				
S.E. <u>+</u>	0.127	0.155	0.224	0.236	0.273				
C.D. (P=0.05)	NS	0.454	0.658	0.693	0.800				

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC – Vermicompost (50% VC-2 t ha⁻¹),

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each, NS=Non-significant

storage period for TSS and dry matter accumulation in the bulbs and the content increased gradually with the advancement of storage period (Table 4 and 5). This is in conformity with the results obtained by Kukanoor (2005) and Patil and Kale (1998) in onion. Among the treatments, maximum TSS (13.27%) and dry matter content (13.36%) was observed in the bulbs provided with 50% FYM (12.50 t ha^{-1}) + 50% VC (2 t ha^{-1}) + biofertilizers with 15 cm x 10 cm

Table 4 : Effect of different organic sources conditions during Rabi season	s of nutrien	ts and planti	ng geometry	on total solu	ble solids (%	6) of onion b	ulbs stored ur	der ambient	
	TSS (%)								
Treatments	15	30	45	Days after 60	storage (DAS 75	<u>5)</u> 90	105	120	
Factor 1 : Organic nutrient sources									
O ₁ - 50% FYM + 50% VC	9.85	10.04	10.22	10.45	10.73	10.83	11.06	11.26	
O ₂ - 50% FYM + 50% VC + Biofertilizers	10.19	10.37	10.66	10.85	11.02	11.27	11.46	11.78	
S.E. <u>+</u>	0.100	0.082	0.060	0.097	0.080	0.109	0.090	0.080	
C.D. (P=0.05)	0.293	0.241	0.177	0.284	0.235	0.320	0.265	0.233	
Factor 2 : Planting geometry									
S ₁ (20 cm x 15 cm)	9.90	10.09	10.22	10.53	10.75	10.93	11.19	11.42	
S ₂ (20 cm x 10 cm)	10.17	10.44	10.64	10.91	11.10	11.28	11.20	11.78	
S ₃ (20 cm x 7.5 cm)	9.69	9.82	10.00	10.15	10.38	10.50	10.73	10.92	
S ₄ (15 cm x 15 cm)	10.45	10.64	11.00	11.10	11.36	11.57	11.86	12.04	
S ₅ (15 cm x 10 cm)	10.72	10.92	11.35	11.60	11.79	12.00	12.33	12.59	
S ₆ (15 cm x 7.5 cm)	9.21	9.35	9.44	9.62	9.85	10.04	10.25	10.39	
S.E. <u>+</u>	0.173	0.142	0.105	0.168	0.139	0.189	0.156	0.138	
C.D. (P=0.05)	0.508	0.417	0.307	0.492	0.408	0.554	0.459	0.404	
Interaction									
O_1S_1	9.72	9.96	10.01	10.38	10.61	10.79	11.01	11.26	
O_1S_2	10.06	10.36	10.55	10.85	11.04	11.21	11.45	11.72	
O_1S_3	9.53	9.62	9.78	9.93	10.58	10.30	10.51	10.74	
O_1S_4	10.39	10.54	10.72	10.96	11.14	11.41	11.53	11.72	
O ₁ S ₅	10.41	10.62	11.03	11.14	11.33	11.44	11.72	11.90	
O_1S_6	9.00	9.14	9.27	9.42	9.68	9.86	10.11	10.24	
O_2S_1	10.07	10.21	10.44	10.67	10.89	11.07	11.37	11.58	
O_2S_2	10.27	10.51	10.73	10.96	11.16	11.34	10.94	11.84	
O_2S_3	9.84	10.02	10.21	10.37	10.18	10.71	10.94	11.10	
O_2S_4	10.51	10.74	11.28	11.24	11.58	11.72	12.18	12.36	
O ₂ S ₅	11.03	11.21	11.67	12.05	12.25	12.57	12.93	13.27	
O_2S_6	9.41	9.55	9.62	9.83	10.03	10.22	10.38	10.54	
Mean	10.02	10.21	10.44	10.65	10.87	11.05	11.26	11.52	
S.E. <u>+</u>	0.245	0.201	0.148	0.237	0.197	0.267	0.221	0.195	
C.D. (P=0.05)	NS	NS	NS	NS	NS	NS	0.648	0.571	

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC – Vermicompost (50% VC-2 t ha⁻¹),

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each, NS - Non significant.

 (O_2S_5) followed by O_2S_4 - 50% FYM (12.50 t ha⁻¹) + 50% VC (2 t ha⁻¹) + biofertilizers with 15 cm $^{-1}$ 15 cm (12.36 and 12.90% TSS and dry matter, respectively) at the end of storage period. This was attributed to the fact that there was

better accumulation of phosphorous and sulphur in the bulbs which might be due to metabolic process and enzymatic activities in presence of *Azospirillum*, PSB and vermicompost. Increased accumulation of TSS and dry matter

Table 5 : Effect of different organic source conditions during Rabi season	es of nutrients	and plantin	g geometry o	n dry matter	(%) content	t of onion bu	lbs stored un	der ambient	
continions during <i>Kabi</i> scason	Dry matter (%)								
Treatments	15	30	45	Days after s	storage (DAS 75	<u>)</u> 90	105	120	
Factor 1 : Organic nutrient sources								·	
O ₁ - 50% FYM + 50% VC	10.43	10.64	10.80	11.04	11.31	11.59	11.78	11.93	
O2 - 50% FYM+50% VC+Biofertilizers	10.66	11.00	11.15	11.37	11.64	11.94	12.14	12.31	
S.E. <u>+</u>	0.067	0.043	0.056	0.053	0.058	0.042	0.048	0.04	
C.D. (P=0.05)	0.197	0.127	0.165	0.155	0.171	0.124	0.141	0.11	
Factor 2 : Planting geometry									
S ₁ (20 cm x 15 cm)	10.22	10.37	10.46	10.71	10.98	11.29	11.47	11.58	
S ₂ (20 cm x 10 cm)	10.10	10.49	10.64	10.84	11.11	11.39	11.61	11.78	
S ₃ (20 cm x 7.5 cm)	10.43	10.64	10.70	10.95	11.22	11.50	11.72	11.85	
S ₄ (15 cm x 15 cm)	10.96	11.20	11.46	11.71	11.98	12.27	12.49	12.68	
S ₅ (15 cm x 10 cm)	11.13	11.66	11.84	12.04	12.31	12.57	12.74	12.94	
S ₆ (15 cm x 7.5 cm)	10.44	10.57	10.75	10.97	11.24	11.55	11.72	11.90	
S.E. <u>+</u>	0.116	0.075	0.098	0.092	0.101	0.073	0.084	0.066	
C.D. (P=0.05)	0.342	0.220	0.286	0.269	0.296	0.214	0.245	0.194	
Interaction									
O_1S_1	10.17	10.25	10.36	10.61	10.88	11.19	11.31	11.43	
O_1S_2	10.03	10.47	10.62	10.76	11.03	11.30	11.52	11.66	
O_1S_3	10.39	10.55	10.61	10.86	11.13	11.37	11.59	11.66	
O_1S_4	10.72	10.96	11.22	11.47	11.74	12.05	12.27	12.45	
O_1S_5	10.87	11.13	11.31	11.56	11.83	12.08	12.30	12.53	
O_1S_6	10.42	10.51	10.70	10.95	11.22	11.54	11.65	11.83	
O_2S_1	10.26	10.49	10.56	10.81	11.08	11.40	11.62	11.73	
O_2S_2	10.18	10.50	10.66	10.91	11.18	11.48	11.70	11.90	
O_2S_3	10.47	10.72	10.79	11.04	11.31	11.63	11.85	12.03	
O_2S_4	11.20	11.44	11.70	11.95	12.22	12.50	12.72	12.90	
O_2S_5	11.38	12.19	12.36	12.52	12.79	13.06	13.18	13.36	
O_2S_6	10.46	10.64	10.80	10.98	11.25	11.56	11.78	11.96	
Mean	10.55	10.82	10.98	11.20	11.47	11.76	11.96	12.12	
S.E. <u>+</u>	0.165	0.106	0.138	0.130	0.143	0.103	0.118	0.094	
C.D. (P=0.05)	NS	0.312	0.405	0.381	0.419	0.303	0.346	0.275	

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC - Vermicompost (50% VC-2 t ha⁻¹),

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each, NS - Non significant.

EFFECT OF PLANTING GEOMETRY & ORGANIC SOURCES OF NUTRIENTS ON KEEPING QUALITY OF ONION

Table 6 : Effect of different organic source conditions during Rabi season	s of nutrients	and plantin	g geometry o	on marketabl	e bulbs (%)	of onion bu	lbs stored un	der ambient		
conditions during hubb bulbon	Marketable bulbs (%)									
Treatments	Days after storage (DAS)									
	15	30	45	60	75	90	105	120		
Factor 1 : Organic nutrient sources										
$O_1 - 50\% FYM + 50\% VC$	97.87	93.02	87.98	79.76	71.26	59.78	48.52	35.67		
O2 - 50% FYM +50% VC+Biofertilizers	98.05	93.89	89.66	81.40	73.63	61.75	50.47	39.17		
S.E. <u>+</u>	0.030	0.092	0.124	0.151	0.192	0.228	0.168	0.231		
C.D. (P=0.05)	0.089	0.269	0.364	0.443	0.563	0.667	0.494	0.678		
Factor 2 : Planting geometry										
S ₁ (20 cm x 15 cm)	98.04	93.22	88.84	79.71	71.03	57.13	46.55	32.61		
S ₂ (20 cm x 10 cm)	97.92	93.43	88.89	80.95	73.02	59.46	49.90	34.66		
S ₃ (20 cm x 7.5 cm)	98.31	93.69	89.33	80.41	72.26	59.20	47.89	35.37		
S ₄ (15 cm x 15 cm)	98.24	95.00	90.29	83.00	75.60	66.03	55.71	45.56		
S ₅ (15 cm x 10 cm)	98.36	95.11	91.34	84.14	77.07	69.10	55.74	46.44		
S ₆ (15 cm x 7.5 cm)	96.92	90.31	84.22	75.29	65.71	53.67	41.20	29.88		
S.E. <u>+</u>	0.053	0.159	0.215	0.261	0.333	0.394	0.292	0.400		
C.D. (P=0.05)	0.155	0.466	0.630	0.766	0.976	1.156	0.855	1.174		
Interaction										
O_1S_1	97.87	92.34	88.27	79.11	69.88	56.30	44.78	31.38		
O_1S_2	97.89	93.21	88.44	80.67	72.81	59.47	49.59	33.28		
O ₁ S ₃	98.27	93.34	88.37	79.43	70.62	57.98	47.00	33.18		
O_1S_4	98.21	94.82	89.71	82.67	74.84	65.60	55.28	43.52		
O ₁ S ₅	98.32	94.81	90.14	82.78	75.57	67.04	53.56	43.59		
O_1S_6	96.68	89.62	82.92	73.90	63.83	52.26	40.92	29.07		
O_2S_1	98.20	94.10	89.41	80.32	72.18	57.96	48.31	33.84		
O_2S_2	97.95	93.66	89.33	81.23	73.23	59.44	50.21	36.03		
O ₂ S ₃	98.35	94.04	90.28	81.38	73.89	60.42	48.78	37.56		
O_2S_4	98.26	95.17	90.87	83.32	76.35	66.45	56.14	47.60		
O ₂ S ₅	98.39	95.41	92.54	85.50	78.56	71.16	57.92	49.28		
O_2S_6	97.16	90.99	85.52	76.67	67.59	55.09	41.47	30.69		
Mean	97.96	93.46	88.82	80.58	72.45	60.76	49.50	37.42		
S.E. <u>+</u>	0.075	0.225	0.304	0.370	0.471	0.557	0.412	0.566		
C.D. (P=0.05)	0.219	0.659	0.891	1.084	1.380	1.635	1.210	1.660		

FYM - Farm Yard Manure (50% FYM-12.50 t ha⁻¹), VC - Vermicompost (50% VC-2 t ha⁻¹),

Bio fertilizers - Azospirillum and PSB @ 5 kg ha⁻¹each.

was also due to closer spacing, wherein bulbs are small and possibly minimum transpiration and respiration activities in the storage resulting in better quality bulbs. Similar findings were also reported by Shanti and Balakrishnan (1989) in onion and Balasubramani (2006) in tomato.

Among the different treatments studied $O_2S_5 - 50\%$ FYM (12.50 t ha⁻¹) + 50% VC (2 t ha⁻¹) + biofertilizers with 15 cm x 10 cm recorded highest marketable bulbs (98.39, 95.41, 92.54, 85.50, 78.56, 71.16, 57.92 and 49.28 per cent, respectively at 15, 30, 45, 60, 75, 90, 105 and 120 DAS) throughout the storage period (Table 6). The reason is due to better quality parameters like TSS and dry matter content in the bulbs as well as least rotting and sprouting losses in the storage. Srivastava *et al.* (1995) also observed highest marketable bulbs with closer spacing (10 cm x 10 cm) in onion.

REFERENCES

Balasubramani, P. (2006). Studies on effect of different organic sources of plant nutrients on growth, yield and shelf life of tomato (*Lycopersicon esculentum* Mill.) cv. CO 3. Ph. D. Thesis, Tamil Nadu Agriculture University, Coimbatore, T.N. (INDIA).

Katung, M.D., Hassbini, I.M. and Olarewaju, J.D. (2005). Yield and storability of onion (*Allium cepa* L.) as influenced by organic fertilizers and inorganic fertilizer in the Sudan Savanna region of Nigeria. *Nigerian J. Hort. Sci.*, **10** (1) : 82-86. Kukanoor, L. (2005). Post-harvest studies in onion cv. N 53, Ph. D. Thesis, University of Agricultural Sciences, Dharwad, KARNATAKA (INDIA).

Panse, V.G. and Sukhatme, P.V. (1967). *Statistical methods for agricultural workers*, Indian Council of Agricultural Research Publication, New Delhi, pp.152-174.

Patil, J.D. and Kale, P.N. (1998). Storage studies in onion. J. Maharashtra Agric. Univ., 12 : 114-115.

Shanti, K. and Balakrishnan, R. (1989). Effect of nitrogen, spacing and maleic hydrazide on yield, nutrient uptake, quality and storage of

MDU-1 onion. Indian J. Hort., 16: 490-494.

Singh, K. and Singh, D. (1973). Effects of various methods of storage on the keeping quality of onion bulbs. *Haryana J. Hort. Sci.*, **2** (3-4) : 116-122.

Singh, L., Bhonde, S.R. and Prasad, J. (2002). Effect of plant spacing and different sources of nutrients on yield and quality of onion. *Newslett. National Hort. Res. Devp. Foundn*, Nasik, **23** (4) : 2-4.

Srivastava, R.K., Dwivedi, S.K., Srivastava, S.K. and Verma, B.K., (1995). Effect of row spacing on leaf chlorophyll content and sulphur per cent in bulb of onion (*Allium cepa* L.) varieties. *Veg. Sci.*, 22 (1): 59-61.

8 Stear ★★★★★ of Excellence★★★★