Diameter-age growth curve modelling for different multipurpose tree species in dryland of North Karnataka

S.B. DEVARANAVADGI*, PRADEEP RATHOD, S.L. MADIWALAR AND S.Y. WALI College of Agriculture, BIJAPUR (KARNATAKA) INDIA (Email : dnavadgi@rediffmail.com)

Abstract : Among 12 multipurpose tree species tested for predicting diameter at breast height (DBH) and age relationship under agroforestry systems of northern dry zone of Karnataka, Gomptertz model showed best fit for 9 species *viz.*, *Acacia nilotica*, ($R^2 = 0.9938$), *Bahunia purpurea* ($R^2 = 0.9950$), *Dalbergia sissoo* ($R^2 = 0.9944$), *Eucalyptus citriodara* ($R^2 = 0.9983$), *Eucalyptus hybrid* ($R^2 = 0.9988$), *Hardwickia binata* ($R^2 = 0.9969$), *Inga dulce* ($R^2 = 0.9931$), *Syzygium cumini* ($R^2 = 0.9976$) and *Tamarindus indica* ($R^2 = 0.9953$), where as, Exponential model for 2 species and only one species showed its fitness to Weibull model. Hence, Gompertz model can be best adopted while predicting diameter and age growth of native species grown under dry land situation.

Key Words : DBH, Age, Model, Species, Growth

View Point Article : Devaranavadgi, S.B., Rathod, Pradeep, Madiwalar, S.L. and Wali, S.Y. (2012). Diameter-age growth curve modelling for different multipurpose tree species in dryland of North Karnataka. *Internat. J. agric. Sci.*, **8**(2): 445-451.

Article History : Received : 24.01.2012; Revised : 17.04.2012; Accepted : 18.05.2012

INTRODUCTION

Tree height and diameter relationship is an important component in yield estimation, stand description, and damage appraisals (Parresol, 1992). Many height and diameter equations have been developed for various tree species (Curtis, 1967; Wykoff *et al.*, 1982; Huang *et al.*, 1992). Among the variety of mathematical equations, sigmoidal or non-linear growth functions are widely used in developing tree height and diameter equations. Foresters often use height-diameter models to predict total tree height (c-I>) based on observed diameter at breast height (DBH) for estimating tree or stand volume and site quality. Therefore, estimations of tree or stand volume and site quality rely heavily on accurate heightdiameter functions. The general diameter/age relationship is represented by the cumulative growth curve (CGC) which is sigmoidal for biological systems.

Growth models assist forest researchers and managers in many ways. Some important uses include the ability to predict future yields and to explore silvicultural options. Models provide an efficient way to prepare resource forecasts, but a more important role may be their ability to explore management options and silvicultural alternatives. For example, foresters may wish to know the long-term effect on both the forest and on future harvests of a particular silvicultural decision, such as changing the cutting limits for harvesting. With a growth model, they can examine the likely outcomes, both with the intended and alternative cutting limits, and can make their decision objectively. The process of developing a growth model may also offer interesting and new insights into the forestry. Growth models may also have a broader role in forest management and in the formulation of forest policy. The same could be used as an advantage and in conjunction with other resource and environmental data, to make prediction, formulate prescriptions and guide forest policy decisions into stand dynamics. Hence, looking to the importance of growth models in forestry, the present study was carried out to develop growth models for different multipurpose trees under dry land conditions of north Karnataka.

^{*} Author for correspondence.

MATERIALS AND METHODS

The experiment was conducted at Regional Agricultural Research Station, Bijapur of University of Agricultural Sciences, Dharwad, Karnataka from 1990-2000. The soils of the experimental site were analyzed for various physicochemical properties (Sand 25%, Silt 23%, Clay 52%, bulk density 1.43 g/cc, pH- 8.5, EC- 0.34 dSm⁻¹, CaCO, 18.5% and soil depth 30-35 cm). The average rainfall of the site is 594 mm with 39 rainy days. Twelve multipurpose tree species viz., Acacia nilotica, Leucaena leucocephala, Azadirachta indica, Bahunia purpurea, Dalbergia sissoo, Eucalyptus citriodara, Eucalyptus hybrid, Hardwickia binata, Inga dulce, Pongamia pinnata, Syzygium cumini and Tamarindus indica were planted in 1990 in RARS Bijapur and data were collected at one year interval up to 2000. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The trees were planted at a spacing of 2m x 2m and examined for 11 consecutive years for developing growth curves the average diameter (cm) of trees was measured using calipers.

Developing diameter growth curves for 12 different multipurpose tree species was done by selecting five nonlinear models to compare fitness of these models to data (Thornley and France, 2007). The rationality behind the use of these growth models lies in the fact that these models have some important parameters enabling to comment on the growth process.

1. Gompertz model	$Y = a^*exp (-exp(b^-cx))$ where a, b, c are the				
	parameters in the model.				
2. Exponential	Y=a*exp (-b/(x+c)) where a, b and c are the				
model	parameters.				
3. Weibull model	$Y = a(1-b*exp (-c*x^d))$ where a, b, and c are				
	the parameters.				
4. Richards model	$Y=a^{*}(1-exp (b^{*}x))^{c}$ where a, b and c are the				
	parameters in the model y is age and X is				
	diameter.				
5. Korf model	$Y=a^*exp$ (-b*x^-c) where a ,b and c are the				
	parameters in the model				

RESULTS AND DISCUSSION

Among the different models tried in predicting DBH-Age growth relations of multipurpose trees, Gompertz model found better for *Acacia nilotica*, ($R^2 = 0.9938$), likewise in case of *Bahunia purpurea* ($R^2 = 0.9950$), *Dalbergia sissoo* (R^2 = 0.9944), *Eucalyptus citriodara* ($R^2 = 0.9983$), *Eucalyptus hybrid* ($R^2 = 0.9988$), *Hardwickia binata* ($R^2 = 0.9969$), *Inga dulce* ($R^2 = 0.9931$), *Syzygium cumini* ($R^2 = 0.9976$) and

Table 1 : Comparison of the observed values of DBH (cm) with that estimated by best-fit model and coefficient of determination, stand	ard error,
mean prediction error (MPE), standard deviation (SD) with respect to multipurpose tree species under semi-arid region	s of north
Karnataka	

T ₁ . Acacia nilotica				T ₂ . Leucaena leucocephala			
Age (years)	Estimated values	Observed values	Growth model	Age (years)	Estimated values	Observed values	Growth mode
1	1.293	0.890	Gompertz model	1	0.314	0.810	Exponential
2	1.574	1.430		2	0.902	1.210	model
3	1.884	1.890		3	1.722	1.810	
4	2.219	2.350	R ² =0.9938	4	2.664	2.550	
5	2.577	2.660		5	3.649	3.440	
6	2.955	3.010	SE=0.0567	6	4.627	4.490	R ² =0.9958
7	3.347	3.440		7	5.571	5.530	
8	3.750	3.800	MPE =-0.004601	8	6.467	5.990	SE=0.2121
9	4.161	4.200		9	7.309	6.090	
10	4.574	4.610	SD =0.14957	10	8.096	6.340	MPE =-0.4726
11	4.988	4.990		11	8.829	6.690	
15	6.579		Y=12.331*exp (-	15	11.290		SD =0.8567
20	8.283		2.471*exp (-	20	13.550		
25	9.583		0.0193*X))	25	15.206		Y=25.3495*ex
30	10.511			30	16.464		(-13.881/
35	11.144			35	17.448		(2.1612+X))
40	11.565			40	18.238		
45	11.840			45	18.886		
50	12.018			50	19.427		

DIAMETER-AGE GROWTH CURVE MODELLING FOR D	DIFFERENT MULTIPURPOSE TREE SPECIES
---	-------------------------------------

11

15 20

25

30

35

40

45

50

6.967

7.447

7.582

7.605

7.609

7.610

7.610

7.610

7.610

6.830

Contd Table 1 Age (years)	Estimated values	Observed values	Growth model	Age (years)	Estimated values	Observed values
T ₃ - Azadirachta in	dica	T ₅ - Dalbergia si	T5- Dalbergia sissoo			
1	0.361	0.330	Weibull model	1	0.622	0.910
2	0.983	0.780		2	0.966	1.260
3	1.728	1.560		3	1.508	1.710
4	2.529	2.410	R ² =0.9983	4	2.129	2.380
5	3.342	3.290		5	2.780	2.810
6	4.138	4.110	SE=0.11055	6	3.418	3.530
7	4.894	4.760		7	4.011	4.190
8	5.596	5.550	MPE =-0.15801	8	4.540	4.620
9	6.237	6.110		9	4.997	5.090
10	6.812	6.420	SD =0.14015	10	5.382	5.460
11	7.320	6.880		11	5.700	5.780
15	8.752			15	6.466	
20	9.568			20	6.805	
25	9.847		Y=9.954*(1-exp	25	6.902	
30	9.928		(-0.0369*	30	6.929	
35	9.948		X^1.4948))	35	6.937	
40	9.953			40	6.939	
45	9.954			45	6.940	
50	9.954			50	6.940	
Γ ₄ - Bahunia purpu	area			T ₆ - Eucalyptus c	itriodara	
1	0.386	0.510	Gompertz model	1	0.813	0.970
2	0.935	0.880		2	1.604	1.760
3	1.741	1.550		3	2.625	2.530
4	2.697	2.490		4	3.753	3.580
5	3.669	3.560	R ² =0.9950	5	4.864	4.810
6	4.556	4.410		6	5.871	5.890
7	5.305	5.220	SE=0.05654	7	6.729	6.880
8	5.905	5.790		8	7.429	7.340
9	6.366	6.310	MPE =-0.09723	9	7.983	7.990
10	6.712	6.620		10	8.409	8.310
				1		

Table 1 contd...

Growth model

Gompertz model

R²=0.9944

SE=0.04591

MPE =0.15335699

SD =0.093458

Y=7.94*exp (-3.29*exp (-0.256*X))

Gompertz model

R²=0.9983

SE=0.03955

MPE =-0.00771

SD =0.11633

Y=9.65*exp (-

3.41*exp (-

0.321*X))

Internat. J. agric. Sci. | June, 2012| Vol. 8 | Issue 2 | 445-451 [447] Hind Agricultural Research and Training Institute

SD =0.088346

Y=7.61*exp (-

4.24*exp (-

0.352*X))

11

15

20

25

30

35

40

45

50

8.733

9.387

9.597

9.639

9.648

9.650

9.650

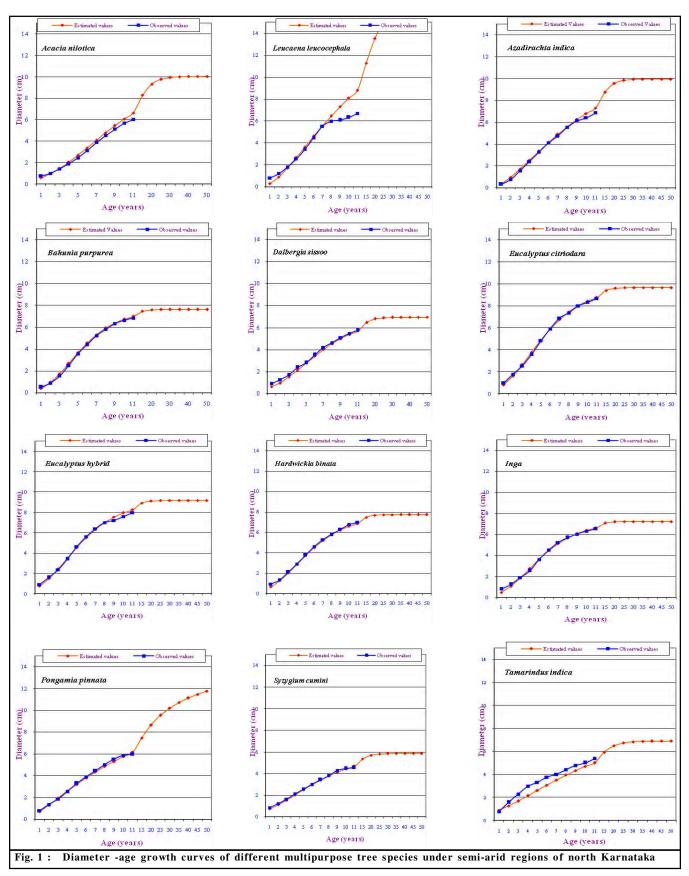
9.650

9.650

8.670

Contd Table 1 Age (years)	Estimated values	Observed values	Growth model	Age (years)	Estimated values	Observed values	Growth model
T7- Eucalyptus hy	brid			T ₉ -Inga dulce			
1	0.755	0.910		1	0.492	0.810	Gompertz model
2	1.490	1.610	Gompertz model	2	1.074	1.260	
3	2.443	2.360		3	1.868	1.910	
4	3.501	3.410		4	2.768	2.550	
5	4.550	4.630	R ² =0.9988	5	3.659	3.620	R ² =0.9931
6	5.507	5.610		6	4.461	4.510	
7	6.328	6.390	SE=0.03191	7	5.134	5.230	SE=0.29147
8	7.001	6.990		8	5.672	5.710	
9	7.536	7.210	MDE 0.05921	9	6.089	6.020	MPE =0.02059
10	7.952	7.580	MPE =-0.05821	10	6.402	6.310	
11	8.268	7.990	SD =0.18594	11	6.635	6.550	SD =0.14686
15	8.914			15	7.081		
20	9.125			20	7.210		
25	9.169			25	7.234		
30	9.178		Y=9.18*exp (-	30	7.238		Y=7.239*exp (-
35	9.180		3.43*exp (-	35	7.239		3.789*exp (-
40	9.180		0.3173*X))	40	7.239		0.3429*X))
45	9.180			45	7.239		
50	9.180			50	7.239		
Γ ₈ - Hardwickia b	inata			T ₁₀ - Pongamia p	vinnata		
1	0.676	0.950	Gompertz model	1	0.737	0.810	Exponential mode
2	1.277	1.360		2	1.321	1.370	
3	2.043	2.120		3	1.958	1.880	
4	2.892	2.910		4	2.600	2.560	
5	3.739	3.780	R ² =0.9969	5	3.221	3.310	R ² =0.9987
6	4.521	4.610		6	3.807	3.910	
7	5.202	5.290	SE=0.1366	7	4.355	4.490	SE=0.7327
8	5.771	5.820		8	4.862	5.010	
9	6.231	6.310	MPE =0.099634	9	5.331	5.540	MPE =-0.56951
10	6.595	6.780		10	5.764	5.880	
11	6.877	6.990	SD =0.07222	11	6.163	6.010	SD =0.10793
15	7.474			15	7.485		
20	7.684			20	8.683		
25	7.731			25	9.555		
30	7.741		Y=7.744*exp (-	30	10.216		N/ 14 00 1*
35	7.743		3.299*exp (-	35	10.732		Y=14.884*exp (-
40	7.744		0.3022*X))	40	11.147		12.477/(3.1516+X)
45	7.744			45	11.486		
50	7.744			50	11.770		

Table 1 contd...


Internat. J. agric. Sci. | June, 2012| Vol. 8 | Issue 2 | 445-451 [448] Hind Agricultural Research and Training Institute

Contd Table 1 Age (years)	Estimated values	Observed values	Growth model	Age (years)	Estimated values	Observed values	Growth model
T ₁₁ - Syzygium cumini				T ₁₂ -Tamarindus indica			
1	0.736	0.830		1	0.893	0.760	Gompertz model
2	1.111	1.210		2	1.262	1.560	
3	1.546	1.620	Gompertz model	3	1.683	2.280	
4	2.014	2.110		4	2.137	2.970	
5	2.491	2.560	R ² =0.9976	5	2.606	3.310	R ² =0.9953
6	2.952	2.990	R ⁻ =0.9976	6	3.073	3.760	
7	3.384	3.420	SE=0.07545	7	3.524	4.010	SE=0.1082
8	3.774	3.810		8	3.949	4.420	
9	4.120	4.280		9	4.341	4.790	MPE =0.46213
10	4.419	4.460	MPE =0.056182	10	4.695	5.010	
11	4.675	4.550	CD 0.7000	11	5.012	5.390	
15	5.342		SD =0.07098	15	5.927		SD=0.25991
20	5.688			20	6.500		
25	5.807			25	6.741		
30	5.847		Y=5.8668*exp (-	30	6.840		Y=6.904*exp (-
35	5.860		2.591*exp	35	6.879		2.46*exp (-
40	5.865		(0.2213*X))	40	6.894		0.185*X))
45	5.866			45	6.900		
50	5.867			50	6.903		

Contd... Table 1

Tamarindus indica ($R^2 = 0.9953$) Gompertz was found to fit better. Where as, Exponential model fit well for *Leucana leucocephala* ($R^2 = 0.9958$) and *Pongamia pinnata* ($R^2 = 0.9987$), followed by Weibull model for *Azadirachta indica* ($R^2 = 0.9983$) (Table 1 and Fig. 1).

Among five growth models tested in diameter and age relationship study, Korf and Richards model showed least fit in almost every tree species. Among other three models Gompertz model showed best fit with highest R² and lest standard error. Among twelve multipurpose tree species, Gomptertz model showed best fit for 9 species among which seven species were native to semiarid conditions. Gompertz model showed faster early growth but slower approach to asymptote with a longer linear period about inflection point (Thornley and France, 2007) and reported to be more accurate than any other models of forest growth (Zhang, 1997). Arid conditions of the experimental site might also impart such slow approach to the asymptote. Weibull model better fitted for 2 species with highest R² and lesser standard error and parameters with asymptote t-values. Exponential model showed best fit for two species i.e. Leucana leucocephala which is introduced fast growing species and Pongamia pinnata a biofuel yielding tree species. Despite considering initial years of growth of all tree species which are characterized by exponential growth period, the exponential model did not show robustness in predicting in all species.. But overall performance of models was better in which all models were showed R² between 0.98 and 0.99 except Korf and Weibull model. Mean prediction error, standard deviation and R² were adopted as criteria for comparing model prediction performance of growth functions. The apparent reason for high R² values associated with linear models is that the data set usually belongs to the second phase of tree growth and which is linear in nature (Srivastava and Ajit, 2002). In this, Gompertz function showed superiority over other models for 9 species in DBH – age relationship.

Internat. J. agric. Sci. | June, 2012| Vol. 8 | Issue 2 | 445-451 [450] Hind Agricultural Research and Training Institute

REFERENCES

Curtis, R.O. (1967). Height-diameter and height and diameter-age equations for second-growth *Douglas fir. For. Sci.*, **13** : 365-375.

Huang, S., Titus, S.J. and Wiens, D. P. (1992). Comparison of nonlinear height and diameter functions for major Alberta tree species. *Canadian J. For. Res.*, 22 : 1297-1304.

Parresol, B.R. (1992). Baldcypress height and diameter equations and their prediction confidence intervals. *Canadian J. For. Res.*, **22** : 1429-1434.

Srivastava, P.N and Ajit (2002). Illogical estimation intricacies associated with tree growth modelling and their alternative solutions. In abstracts of fifth annual conference of the International Academy of Physical Sciences on "Interdisciplinary trends in Physical Sciences" and symposia on "The Role of Information Technology and its Implications" held at Bundelkhand University, Jhansi , U.P. (India) during 7-9th April, 2002. pp. 31-32.

Thornley, J.H.M. and France, J. (2007). Mathematical models in agriculture: quantitative methods plant, animal and ecological sciences (2nd edition). CAB International Publishing, UK. pp. 136-169.

Wykoff, W.R, Crookston, N.L. and Stage, A.R. (1982). User's guide to the stand prognosis model. USDA Forest Service General Technique Report INT-133.

Zhang, L. (1997). Cross-validation of non-linear growth functions for modelling tree height-diameter relationships. *Ann. Bot.*, **79** : 251-257.

*_*_*_*_*