
Thermal conductivity of the food material is one of
the important thermal properties. It is mainly used
to calculate the rate of heat transfer through

conduction in the field of freezing, sterilization, drying,
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SUMMARY :

Thermal conductivity is one of the important thermal properties of food materials. It is essential
during the calculation of heat transfer process through conduction. The setup was constructed by
installing a single operational amplifier LM741, precision centigrade temperature sensors LM35,
series 3-terminal negative regulators LM7915C, series voltage regulators LM7815C and LM7805C.
LM741. The input to the setup was AC mains supplies 220V, 50 Hz which is transformed to 24V by
step-down transformer. LM35 were used as a temperature sensor which gives output of 10mV/oC. To
convert mV into V inverting amplifier LM741 has been used. The required voltage values can be read
from digital multi-meter by connecting the positive and negative terminal. After successful
development, calibration and testing of the setup, it has been utilized to calculate the thermal
conductivity of wheat, sorghum and rice. The initial moisture content of all three different grains was
found 7.88, 10.33 and 14 per cent wet basis, respectively. Thermal conductivity of wheat, sorghum
and rice was found in the range of 0.199-0.115W/mK, 0.202-0.139 W/m K and 0.53-0.48 W/m K,
respectively at the temperature range from 40 to 600C. The performance of the optimal neural network
with 15 hidden layers and 20 neurons in each hiiden layer was done by using a different data set. It
was found that the sorghum grain gives the minimum M.S.E 1.791×10-12 with R2 value is 0.999.
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cooking, frying etc (Maroulis et al., 2002 and Nahor et
al., 2001). There are many factors like composition of
food, its structure and sometimes processing conditions,
which affects the thermal conductivity (Rahman 1992;
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Rahman et al., 1997 and Ramesh, 2000). Water content
plays a significant role due to relative magnitude of
conductivities of water (Cuevas and Cheryan, 1978;
Denys and Hendrickx, 1999). Due to this, in most of the
cases thermal properties are not immediately known,
therefore, usually computed or by simplified assumptions
(Singh, 1982).  In the line heat source probe method the
construction of probe and the short utility time is the major
problem. In most of the conditions, the classical
characterization methods are very complex and take more
time caused expensive instrumentation. In addition, the
volume and the complexity of acquired data need precise
control on instrumentation are required. There have been
many attempts made to develop different measuring
instrument for thermal properties of foods but literature
still lacking on many of the foods which are consumed
day to day life. The development of this alternative
instrument will facilitate the experimental process
relatively simple, less costly, good precision and user
friendly under unsteady state conditions would be the great
benefit to the scientific and engineering communities. The
objectives of the modeling are to have process control
and produce high quality product with minimal cost. All
we know that food processes are highly nonlinear which
complicates food process automation. To achieve these
objectives, on-line control techniques are required. The
recent developments in advanced control tools, such as
artificial neural network (ANN) to food processing have
opened up novel possibilities for processing industries. A
number of researchers have worked on ANN as a
modeling tool in food technology (Kerdpiboonet al., 2006
and Shrivastav and Kumbhar, 2009, 2011 and 2014). It
has been successfully used in several food applications
like model for prediction of drying rates, physical
properties of dried carrot, prediction of dryer performance,
extrusion processing of wheat and wheat-black soybean,
energy requirements for size reduction of wheat, grain
drying process, dough rheological properties among others
(Luo et al., 1999; Mittal and Bhang, 2003; Popescu et
al., 2001; Ruan et al., 1995 and Shihani et al., 2004).
This study has been undertaken to develop ANN model
for prediction of thermal conductivity.

EXPERIMENTALMETHODS
Experimental setup :

The setup is constructed by installing a single
operational amplifier LM741, precision centigrade

temperature sensors LM35, series 3-terminal negative
regulators LM7915C, series voltage regulators LM7815C
and LM7805C. LM741 is intended for a wide range of
analog applications. The high gain and wide range of
operating voltage provide superior performance in
integrator, summing amplifier and general feedback
applications. The LM35 series are precision integrated-
circuit temperature sensors, whose output voltage is
linearly proportional to the centigrade temperature. The
LM35 thus, has an advantage over linear temperature
sensors calibrated in Kelvin, as the user is not required to
subtract a large constant voltage from its output to obtain
convenient centigrade scaling. The LM7915 is capable
of supplying 1.5A of output current. These regulators
employ internal current limiting safe area protection and
thermal shutdown for protection against virtually all
overload conditions. The LM7815C is available with
several fixed output voltages making them useful in a
wide range of applications. LM7805C is not available
with several fixed output voltages making necessary to
bypass the output. The LM35 can be applied easily in the
same way as other integrated-circuit temperature sensors.
It can be glued or cemented to a surface and its
temperature will be within about 0.01oC of the surface
temperature. This presumes that the ambient air
temperature is almost the same as the surface
temperature; if the air temperature were much higher or
lower than the surface temperature, the actual
temperature of the LM35 die would be at an intermediate
temperature between the surface temperature and the

Fig. A : Schematic representation of thermal conductivity
measurement set-up
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air temperature.Fig. A shows the schematic representation
of thermal conductivity measurement set-up.

Design of equipment :
The experimental circuit was made on analog digital

trainer to obtain the respective voltage values at a given
temperature. After the success of the trial circuit on
analogue digital trainer, final circuit was made. The circuit
shown below is the schematic representation of the final
thermal conductivity measurement set-up. The input to
the setup is AC mains supplies 220V, 50 Hz which is
transformed to 24V by step-down transformer. Voltage
passes through the full-wave rectifier to convert AC
voltage into DC voltage. LM7815C supplies +15V and
LM7915C supplies -15V to the amplifier LM741.
Whereas LM7805C supplies 5V to LM35. Finally as
LM35 is the temperature sensor which gives output of
10mV/oC. To convert mV into V inverting amplifier
LM741 has been used. The required voltage values can
be read from digital multi-meter by connecting the positive
and negative terminal. After successful development,
calibration and testing, it has been utilized to calculate
the thermal conductivity of different food grains. The
equation used for the calculation of thermal conductivity
is (Sablani et al., 2002a).
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where,
 = Thermal conductivity of sample (W/mK)
q = Generated heat per unit length of sample/time
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  = Initial and final time (s)

T = Temperature (K).

Sample preparation :
Wheat, sorghum and rice grains were procured from

local market. All grains were cleaned manually to remove
stones, dirt, unmatured grains and other foreign materials.
The initial moisture content of all the grains was found
out with hot air oven methods, which were 7.88, 10.33
and 14 per cent wet basis, respectively. Cleaned samples
were ready to load to find out thermal conductivity. All
experiments were run in triplicate.

ANN description of the process :
The neural network model consisted of an input, a

hidden and an output layer was designed. The input layer
has two nodes which correspond with processing
conditions or independent variables: time of heating,
corresponding change in temperature. The output layer
consists of one neurons or dependent variables,
representing the thermal conductivity. The nodes and the
neurons were connected to each other by weighted links,
W

ij
, over which signals can pass. The arriving signals

multiplied by the connection weights are first summed
(activation function) and then passed through the sigmoid
function (transfer function) to produce the corresponding
output that may be passed on to other Neurons.

Training and testing algorithms :
MATLAB-10 software was used for Artificial

Neural Networks (ANN) modeling. A multi-layer feed
forward network structure with input, output and hidden
layer (s) was used in this study. Several ANN models
were trained using the thermal conductivity data. The
back-propagation algorithm was utilized in training of
ANN models. A hyperbolic-tangent transfer function was
used in all cases. The back-propagation algorithm uses
the supervised training technique where the network
weights and biases are initialized randomly at the beginning
of the training phase. For a given set of inputs to the
network, the response to each neuron in the output layer
was calculated and compared with the corresponding
desired output response (Shrivastav and Kumbhar, 2009,
2011 and 2014). The errors associated with desired output
response are adjusted in the way that reduces these errors
in each neuron from the output to the input layer. The
error minimization process is achieved using gradient
descent rule. To avoid the potential problem of over-fitting
or memorization while employing the back-propagation
algorithm, the option of saving the best configuration was
selected where the network with the best result is saved
during the selected long number of training cycles of
200,000. The save best option allows running train/test
cycles and saving the network with the best result during
the run. One of the problems that can occur with the
back propagation and associated network is the problem
of over-fitting. The symptom of this is when the network
is performing well on the training data, but poorly on
independent validation data. Save best is one of a number
of ways to deal with this. The input layer consisted of
four neurons which corresponded to initial and final
temperature and time at that temperature. There were
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fifteen hidden layers with twenty neurons in each hidden
layer. The output layer had one neuron representing
thermal conductivity. The number of hidden layers and
neurons within each hidden layer can be varied on the
complexity of the problem and data set.

Optimization of ANN configuration:
The optimized configurations from training and testing

of ANN were obtained by the performance of the
network. The performance of output is judged by mean
square error (MSE) and was less than 0.001. The
networks were simulated with the learning rate equal to
0.05. For training, validation and testing different set of
data were examined. It was concluded that 70 per cent
training, 15 per cent validation and 15 per cent testing
predicts the best output.

EXPERIMENTAL FINDINGS AND ANALYSIS

The sample was kept in water bath inside a test
tube to maintain the temperature. LM35 sensor was kept
inside the grain to find the change in temperature at
different time interval. After getting the different set of
experimental data, thermal conductivity was calculated.
Thermal conductivity of wheat, sorghum and rice was
found in the range of 0.199-0.115W/m K, 0.202-0.139
W/m K and 0.53-0.48 W/m K, respectively at the
temperature range from 40 to 600C. It is seen from
the observation values that the thermal conductivity
of grains decreases with increase in temperature
because increase in temperature leads to the
evaporation of moisture due to which air gets trapped
inside the void. As air is bad conductor of heat thermal
conductivity decreases with increase in temperature.
The result was supported by Sablani et al. (2002b).
Thermal conductivity of wheat, sorghum and rice is
shown in Fig. 1 at different temperature. The
performance of the optimal neural network with 15
hidden layers and 20 neurons in each hiiden layer was
done by using a different data set. The network
predicted thermal conductivity values of different
grains with minimum Mean Square Error and R2 valus.
Correlation of experimental versus neural network
values of thermal conductivity with training, validation,
testing and combine data set using the optimal network
is shown below. To reveal the credibility of prediction
(with the training data set and validation) from the optimal

Fig. 1 : Thermal conductivity of grains at different temperature
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Fig. 3 : Best validation performance for ANN analysis of sorghum
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Fig. 2 : Training performance graph for ann analysis of sorghum
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ANN, predicted values of thermal conductivity are plotted
against the desired/targeted values of thermal conductivity
as shown in Fig. 2. Figures showed straight line curves,
demonstrating correlation between the predicted and
targeted thermal conductivities when the points are joined
together (best fit points). Fig. 3 shows the best validation
performance for ANN analysis of sorghum grain only.
For other grains the same can be performed. The results
demonstrate a very good agreement between the predicted
and the desired values of thermal conductivity. The MSE
versus Epochs graph was generated. It combined the
data of all four graphs; training, validation, testing and
best. From the graph, the conclusion can be made that
with the increase in epochs, mean square error decreases
and the best validation performance was at 269th epochs
and it was 1.7931e-012. Similar work related to the present
investigation was aslo carried out by Fang et al. (1998);
Hussain and Rahman (1999); Keppeler and Boose (1970)
and Vagenas et al. (1990).

Conclusion :
In this study three different grain samples named

Wheat, Sorghum and Rice grains were selected to predict
the thermal conductivity. Thermal conductivity of wheat,
sorghum and rice was found in the range of 0.199-
0.115W/mK, 0.202-0.139 W/m K and 0.53-0.48 W/m K,
respectively at the temperature range from 40 to 600C.
It is seen from the observation values that the thermal
conductivity of grains decreases with increase in
temperature because increase in temperature leads
to the evaporation of moisture due to which air gets
trapped inside the void. As air is bad conductor of
heat thermal conductivity decreases with increase in
temperature. In this paper, an ANN model was
developed for calculating the thermal conductivity of
a variety of grains under a wide range of temperature,
which show that an artificial neural network model
can predict the thermal conductivity of grains with high
degree of accuracy. The Input values that used in this
model were temperature and time. The optimal model

consisted of with 15 hidden layers and 20 neurons in
each hiiden layer was done by using a different data
set. It was found that the sorghum garin gives the
minimum M.S.E 1.791×10-12 with R2 value is 0.999.
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