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INTRODUCTION

Brassica is the most economically important genus in
the Brassicaceae family (syn. Cruciferae). Brassica occupy a
prominent place in world’s agrarian economy as vegetables,
oilseeds, feed and fodder, green manure and condiments. They
also contain a large number of novel photochemical, some of
which are anti-carcinogenic (Steinmetz and Potter, 1996).
The genus Brassica consists of over 150 species of annual or
biennial herbs. Several of these are cultivated as oil seeds or
vegetable crops. These comprise three diploid species, B. nigra
(L.) Koch (2n = 16), B. oleracea L. (2n = 18) and B.
campestris (Rapa) L. (2n = 20). The other three commonly
cultivated species, B. napus L. (2n = 38), B. juncea (L.) Czern
(2n = 36) and B. carinata Braun (2n = 34), are amphidiploids
of the diploid species. B. napus, B. campestris and B. juncea
are extensively cultivated for edible oil (Babbar et al., 2004).
Commercial oilseed varieties of B. napus and B. rapa known
as canola have low erucic acid and low glucosinolate levels.
The crop is grown both in subtropical and tropical countries.

Anther culture is an efficient way of producing doubled
haploid plants in Brassica species. Compared with the
traditional production of genetically stable homozygous lines,
microspore culture dramatically speeds up breeding process

and facilitates the selection of recessive traits (Henderson and
Pauls, 1992). Microspore culture gives less response in B.
rapa (Guo and Pulli, 1996) compared with B. napus (Zhou et
al., 2002; Gu et al., 2004). The frequency of haploid embryos
obtained using microscope culture has made it a suitable and
important tool in selection in Brassica breeding programs
(Palmer et al., 1996), mutagenesis and selection (Polsoni et
al., 1988; Swasnson and Erickson, 1989) and genetic
transformations (Huang, 1992). However, all these
applications largely depend upon the efficient microspore
embryogenesis and embryo development. There are various
factors influencing microspore embryogenesis including donor
plant genotype, donor plant physiology, microspore
development stage, culture conditions, culture environment
and pretreatments (Dunwell, 1996). Among these factors in
Brassica microspore culture, a short heat shock treatment is
basically required to stimulate microspore embryogenesis
although it may be replaced by other stresses such as low
level of gamma radiation, ethanol and colchicines (Pechan
and Keller, 1989; Zhao et al., 1996). When compared to heat
stress, cold pretreatment is less frequently used in Brassica
species inspite of its critical role in cereal microspore culture
(Touraev et al., 1997; Pechan and Smykal, 2001). Effective
results from cold pretreatment of flower buds or inflorescence
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were achieved in promoting microspore embryogenesis in
Brassica napus (Lichter, 1982), Brassica oleracea although
showing genotype dependency (Osolnik et al., 1993), B. rapa
(Sato et al., 2002), and even by very temperature of isolated
microspores in B. napus (Charne et al., 1988). However
negative results were also reported in B. napus (Dunwell et
al., 1985) and B. rapa (Sopory and Munshi, 1996).

In the present paper, different genotypes of Brassica were
used to evaluate the effect of cold pretreatment of flower buds
subjected to liquid medium on embryogenesis.

RESEARCH  METHODOLOGY

Donor plants:
Experimental material comprised of anthers (explant)

got from three varieties of B. juncea (RSPR01, Varuna and
Kranti) and three varieties of B. napus (GSL1, DGS1 and
RSPN 25). All the genotypes were collected from the Division
of Plant Breeding and Genetics at Sher-e-Kashmir University
of Agricultural Sciences and Technology (J), Chatha, Jammu.

Closed flower buds of 2-2.5 mm size of all selected
genotypes, were collected at appropriate stage and time.
Disease free flower buds, mostly from uninucleate to
binucleate stage were collected during morning hours between
8:00 AM to 10:00 AM and evening hours between 4:00 PM
to 6:00 PM. It is this time that the development stage of
microspores would just before the nuclear mitosis stage.

Cold pretreatment:
The flower buds were surface sterilized in sodium

hypochlorite (1%) for 8-10 minutes + fungicide (capt of 0.1%)
+ antibiotic cefatoxin (0.25%) which was followed by
thorough rinsing with sterile distilled water. The flower buds
were then put into test tubes containing a liquid medium with
13 per cent sucrose. The test tubes were placed for 5, 10 and
12 days at 4°C in the dark.

Anther culture:
Twenty to thirty flower buds, for each genotype were cut

on a sterile Petri plate provided with lining of sterilized filter
paper inside, under laminar airflow bench. Individual flower
buds were cut at the base with sharp surgical sterilized scissors
to free anther from the filament. With the help of sterilized
pointed forceps the floret were picked at the apex and tapped
on the rim of test tubes containing MS-medium (3% sucrose,
0.8% agar, pH 5.8) such that anthers fell on the surface of the
medium. About 20-25 anthers per test tube were inoculated
under aseptic conditions in laminar airflow cabinet. Tubes and
flasks after inoculation were plugged with cotton plug and
sealed with parafilm and incubated in dark at 25+2°C.

Callus induction and plant regeneration:
The calli induced were sub-cultured for further

proliferation on the same media in which callus induction
had take place. Large compact pieces of one month old calli
were cut into small pieces (2-3 mm diameter) with sterilized
blade inside laminar air flow cabinet. With the help of pointed
forceps, they were picked and placed inside the test tubes
containing semisolid regeneration media. The culture tubes
were sealed with parafilm and incubated under cool white
florescent light (2500 lux) in dark/light conditions for 16/8
h, respectively at 25+2°C. Observations with regard to number
of plant regenerated were made within 5+1 weeks of
inoculations. Approximately three weeks later, shoots were
developed from calli. The fully formed plantlets were taken
out from culture vessels. The agar was removed from the roots
and plantlets shifted to MS basal medium supplemented with
various concentration of auxin in large size test tube for proper
development of roots and shoot and incubated for 15 days
under light/dark period of 16/8 h, respectively, at 25+2°C.

Observation recorded:
For each genotype, anthers in aseptic cultures were

counted and observations with respect to response of anthers
to callusing were recorded. Data with respect to callus
induction frequency (%) was worked out following Otani et
al. (2005).

Callus induction frequency :

x100
culturedanthersofNo.

inducedcalliofNo.

Data recorded for different parameters were subjected
to Completely Randomized Design (CRD). Statistical analysis
based on mean values per treatment was made using analysis
of variance (ANOVA) technique of CRD.

RESEARCH FINDINGS AND ANALYSIS

The results obtained from the present investigation as
well as relevant discussion have been summarized under the
following heads :

Influence of cold pretreatment on callus induction:
To determine the effect of cold pretreatment of flower

bud on callus induction, three varieties of B. napus (GSL1,
DGS1 and RSPN 25) and three varieties of B. juncea
(RSPR01, Varuna and Kranti) were given 4°C treatment (cold
treatment) for different time duration. From the result (Table
1) it is evident that buds of different genotypes differed
significantly in their capability for callus induction. It was
seen that explants of DGS1 showed higher response to callus
induction (38.56 %) followed by GSL1 (36.85 %). Remaining
genotypes showed relatively lower percentage of callus
induction capacity.
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Influence of cold treatment duration on callus induction:
To determine the proper cold treatment duration of

flower buds for callus induction frequency, each genotype from
Brassica napus and Brassica juncea was tested for treatments
of 5, 10 and 12 days in the experiment. All flower buds from
late uninuleate to early binucleate stage were selected from
donor plants and were distributed randomly for each
temperature duration. Maximum percentage of callus
induction frequency (44.17%) was observed when the anthers
were given chilling treatment for 10 days. All other showed
relatively lower per cent of callus induction frequency.
Maximum percentage of callus induction frequency was
observed in DGS1 (50.52%) when buds were given 4°C
treatment for 10 days.

In Brassica genotypes, 10 days of cold pretreatment
increased callus induction frequency significantly. The highest
callus induction frequency (44.17) was obtained from 10 days
cold pretreatment. There was a reduction in anther culture
frequency by longer duration of cold pretreatment, suggesting
a negative effect on callus induction if longer cold
pretreatments than 10 days.

The switch of cultured microspore from gametophytic
to sporophytic mode of development has been induced by
various applied stresses (reviewed by Touraev et al., 1997).
To date four stresses widely used for the induction of
microspore embryogenesis are cold (Sunderland and Xu,
1982; Gaillard et al., 1991, Gustafson et al., 1995; Gu et al.,
2004), heat (Duijs et al., 1992; Custers et al., 1994; Touraev
et al., 1996a, b), carbon starvatation ( Kyo and Harada, 1986)
and colchicine (Zhao et al., 1996). Some other stresses, such
as ethanol and gamma irradiation (Pechan and Keller, 1989),
have not been applied widely.

Cold pretreatment has known to improve microspore
embryogenesis in barley (Davies and Mortan, 1988; Kasha
et al., 2001), wheat (Indrianto et al., 1999), maize (Gaillard
et al., 1991), and other important crops. In those cases, cold
pretreatment were used alone or in combination with mannitol
or starvation. With Brassica, inconsistent results for the effects

of cold pretreatment on microspore embryogenesis have been
reported. Cold pretreatments improved microspore
embryogenesis in B. napus (Lichter, 1982; Gu et al., 2004),
B. juncea (George and Rao, 1982), and B. rapa (Sato et al.,
2002). However, cold pretreatment of the buds inhibited
microspore embryogenesis in Brassica napus (Dunwell et al.,
1985) and Brassica rapa (Sopory and Munshi, 1996). In
previous studies, flower buds inflorescence or isolated
microspore were treated by a piece of wet cotton (Osolnik et
al., 1993) or in a liquid medium (Charne et al., 1988; Sato et
al., 2002) held at cold temperature before or after microspore
isolation. In this study, using a short period of cold
pretreatment, sterilized flower buds were treated in a liquid
culture medium containing 13 per cent sucrose.

The present study was an attempt to evaluate the effect
of cold pretreatment on callus induction in B. juncea and
B. napus. A distinct enhancement of embryogenesis by
cold pretreatment of flower buds was confirmed in B.
juncea  and B. napus  under present  experimental
conditions. This promoting effect of cold pretreatment is
in agreement with studies in B. napus (Lichter, 1982),
B.oleracea (Osolnik et al., 1993) and the B.rapa (Sato et
al., 2002, Gu et al., 2004). Maximum embryogenic callus
was obtained when flowers buds were cold pre-treated at
4°C for about 10 days, similar response was reported
earlier by Zhou et al., 2002 and Zheng et al., 2006. In B.
rapa as well as in other cold pre treated crops (Sopory
and Munshi, 1996; Sato et al., 2002), increased percentage
of bicellular stage microspores with two equal nuclei which
was supposed to be necessary developmental stage for
embryogenesis induction. In present study, anther
pretreatment on callus induction appeared to be genotype
dependent, as maximum callus was observed in the
genotypes of B. napus than B. juncea. Similar response
on callogenesis as reported by Natalija et al. (2004) is in
conformity with present finding. With its positive potential
to Brassica microspore culture, the cold pretreatment method
will probably have its wide utilization for efficient doubled

Table 1 : Effect of cold pretreatment on anthers callus induction frequency in different Brassica genotypes
5 Days 10 Days 12 Days

Sr. No. Explant genotypes
AC AR ACF (%) AC AR AC (%) AC AR ACF (%) Mean

1. GSL1 289 83 28.72 243 121 49.79 281 90 35.03 36.85

2. DGS1 188 56 29.79 289 146 50.52 181 64 35.36 38.56

3. B.napus RSPN25 281 77 27.40 188 86 45.74 289 82 28.37 33.84

4. Kranti 241 57 23.65 181 73 40.33 291 56 19.24 27.74

5. Varuna 181 45 24.86 281 117 41.63 243 56 23.04 29.84

6. B.juncea RSPR01 281 61 21.71 289 107 37.02 189 33 17.46 25.40

Mean 26.02 44.17 26.41

C.D. (P=0.05) 2.75 2.89 2.86

S.E. ± 0.92 0.96 0.96
AC: No of anthers culture AR: No of anthers showing response to callusing ACF: Anther culture frequency
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