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Ohmic heating is not a new concept of heating at
lab scale, but at industrial level it is little difficult
due to some of its disadvantages. There are many

applications of ohmic heating for horticultural products
for blanching, peeling, sterilization, etc. Conventional
heating methods are heat transfer by conduction,
convection and sometimes by radiation. Conventional
heating has a major disadvantage of non-uniform heating
Castro et al. (2004) and Darvishi et al. (2011). Ohmic
heating is directly proportional to the electric conductivity
of the food material under electric field Palanippan and
Sastry (1991) and Zhu et al. (2010). Hence, uniform
heating can be easily achieved. Ohmic heating is time
and energy saving method of heating as heating
efficiency is high. Such heating efficiency is dependent
on the system’s performance hence, it is also known as
system performance co-efficient (SPC).

Tomato is major horticultural produce used as
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ABSTRACT : In this study the tomato juice was heated in a laboratory scale ohmic heater. This
tomato juice passed through applying voltage gradient in the range of 100-200V and their properties
were compared with the untreated raw tomato juice. The linear temperature dependent electrical
conductivity relationship was obtained. System performance co-efficient was in the range of
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canning product worldwide. There are different products
of tomato available in the market such as tomato paste,
tomato puree, tomato soup, tomato ketchup and many
more. Tomato has large nutritional benefits. It is a low
calorie fruit. It is rich in lycopene and zeaxanthin,
flavonoid antioxidants and good source of vitamin A,
vitamin C, potassium, moderate source of vitamin B
complex Santos-Sánchez et al. (2012). The objective of
this study is to get the electrical conductivity of tomato
juice in ohmic heating and study it under different voltage
gradients. System performance and physico-chemical
properties of after ohmically heated tomatoes is studied.
To achieve these objectives, on-line control techniques
are required. Food processes are highly nonlinear which
complicates food process automation. However, recent
developments in advanced control tools, such as artificial
neural network (ANN) to food processing have opened
up novel possibilities for processing industries. A number
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of researchers worked on ANN as a modelling tool in
food technology. It has been successfully used in several
food applications like model for prediction of drying rates,
physical properties of dried carrot, prediction of dryer
performance, extrusion processing of wheat and wheat-
black soybean, energy requirements for size reduction
of wheat, grain drying process, dough rheological
properties among others Duan et al. (2011); Assiry et
al. (2010); Icier and Ilicali (2005b) ; Zhu et al. (2010);
Darvishi et al. (2011) and Sarang et al. (2008). This
study has been undertaken to develop ANN model for
prediction of electrical conductivity for process
optimization during ohmic heating.

 METHODOLOGY
Experimental setup :

A picture of experimental setup is shown in Fig. A.
Ohmic heater of a lab scale assembly consists of a 3
phase AC power supply with voltage regulator. Two
electrodes of stainless steel 316 (16% chromium, 10%
nickel, 2% molybdenum) at both the sides are fitted in a
glass chamber. Teflon caps were used to close both the
ends of chamber. The distance between the electrodes
is about 20cm and diameter of electrode is 6.5 cm. There
was a provision of holes for thermal sensors, inlet, outlet
of products and removal of vapours during boiling at
different location. Chromel-Alumel (K type) thermocouple
was installed at the geometric centre of the glass chamber
for continuous temperature measurement. Ohmic heater
was operated at six different voltages gradient like 100,
120, 140, 160, 180, and 200V at 50Hz frequency.

Sample preparation :
Tomatoes were procured form the local market in

Anand, Gujarat, India. The sample tomatoes were
washed, crushed and the filtered with muslin cloths. The
viscous tomato juice was obtained with high moisture
content. The clarified tomato juice was poured through
the port at the top of the glass chamber. Different
voltages were applied to the electrodes to heat the tomato
juice. Each experiment was replicated three times.

Electrical conductivity :
Electrical conductivity of the tomato juice was

estimated by measuring the electrical resistance offered
by it and the chamber parameter (Icier and Ilicali, 2004
and Icier and Ilicali, 2005).

VxA
IxLσ                                                         ....(1)

where,  is electrical conductivity in s/m, I is the
current in ampere (A), V is voltage gradient in volt (V),
L is the distance between two electrodes in meter (m)
and A is the cross-section area of sample in heating (m2).
L/A is the chamber or cell constant of the heating unit
viz., 69.3 m-1.

System performance :
System performance was measured by the system

performance co-efficient (SPC). It is numerically:
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 where, E
supply

is the electrical energy supplied to
the heating system in joule (J), E

utilised
is the heat energy

taken by the tomato juice to increase its temperature in
joule (J), c

p
 is the specific heat of tomato juice (3980J/

kgk), t is heating time in second(s), T
f
 and T

i
 are the

final and initial temperature of the tomato juice,
respectively.

For ideal system, energy utilised is equal to energy
supplied. But it is not possible as such, there are some
heat losses. Hence,

Esupply= Eutilised + energy  losses

The possible energy loss can be heat energy utilised
to heatup the glass chamber, electrodes and some may
be escaped to surrounding Amiali et al. (2006).

ANN description of the process :
Neural network model will be consisted of an input,Fig. A : Ohmic heating assembly
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a hidden and an output layer. The input layer has four
nodes which correspond with processing conditions or
independent variables: temperature, time, voltage and
current of sample. The output layer consists of dependent
variable as electrical conductivity.

Training and testing algorithms :
MATLAB-10 software was used for artificial

neural networks (ANN) modelling. The networks were
simulated based on a multilayer feed forward neural
network. This type of network is very powerful in function
optimization modelling Kerdpiboon et al. (2006). The
input layer, hidden layers, and output layer structures are
arranged in such a way to give best optimization. ANN
modelling was performed with back propagation, algorithm
for minimization of error - Levenberg-Marquardt, the
network training - Different size of epochs, goal -
Minimum error and the transfer functions - Hyperbolic
tangent, sigmoid transfer function and linear transfer
function.

A back-propagation algorithm was used to
implement supervised training of the network. During
training, weighting functions for the inputs to each ANN
were automatically adjusted such that the predicted
output best matched with the actual output from the data
set. Weights were randomly assigned at the beginning
of the training phase according to the back-propagation
algorithm. A hyperbolic tangent was selected as the
transfer function in each hidden layer and a linear
transfer function for the output layer. Minimization of
error was accomplished using the Levenberg –
Marquardt (LM) algorithm. This algorithm trains a
neural network 10 to 100 times faster than the usual
gradient descent back propagation method. It will
always compute the approximate Hessian matrix which
had dimensions n-by-n. Training was finished when
the mean square error (MSE) converged and was less
than 0.001. If the MSE did not go below 0.001, training
was completed after 10000 epochs, where an epoch
represents one complete sweep through all the data
in the training set Ruan et al. (1995). The networks
were simulated with the learning rate equal to 0.05.
For training, test ing and validation of ANN
configuration different ratio of data sets were
examined. It was found that 70 per cent of data set
was used for training, 15 per cent for testing and other
15 per cent for validation to predict the best output.

Optimization of ANN configuration :
The optimal configurations from training, testing and

validation for each neuron were selected based on neural
network predictive performance which gave the minimum
error from training process. Mean squared error (MSE)
is the average squared difference between outputs and
targets, lower values are better and zero means no error.
Regression (R) values measure the correlation between
outputs and targets.

 RESULTS AND DISCUSSION
The changes in electrical conductivity of tomato juice

with temperature during ohmic heating at six different
voltage gradients are given in Fig. 1, which shows the
linear relationship of electrical conductivity with
temperature. Electrical conductivity increased as the
temperature increased during ohmic heating. The linear
relation is due to presence of high amount of water in
the tomato juice and also when biological tissue is heated,
its electrical conductivity increases due to increase in
the ionic mobility Assiry et al. (2010) and Chen et al.
(2010). This phenomenon occurs because of structural
changes in the tissue like cell wall protopectin breakdown,
expulsion of non-conductive gas bubbles and softening.
Bubbling of juice is observed at temperatures above 80°C
at lower voltages but as voltages increases the bubbling
temperature raises to above 85°C. There was a
separation phenomenon observed. The separation of
phases starts at the temperature of 72°C at lower voltages
but as voltage increases the separation temperature rises
to 85°C. The suspected reason for this phenomenon is,
on applying the juice to the voltages, the pH decreases.
This brings the ionic compounds to its isoelectric point.

Fig. 1 : Relation of electrical conductivity with temperature
at different voltage gradients
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With proper homogenization of tomato juice, the
separation of layers delays significantly. One way
analysis of variance were used for statistical analysis
and showed that voltage gradient had a significant effect
(p<0.05) on the electrical conductivity of tomato juice.

Fig. 2 shows the relation of holding time and voltage
gradients. As voltage gradient increases the holding time
decreases. This can be explained by joule’s law. High
voltage leads to high current by ohm’s law, therefore,
heat generation is high, hence holding time decreases to
achieve desired temperature i.e. 96°C.

Table 3 :  Parameters of linear model of tomato juice during ohmic heating
Voltage gradient (V/cm) Z C R2

100 0.210 -0.454 0.99

120 0.040 - 1.052 0.98

140 0.053 -1.250 0.99

160 0.061 -1.444 0.98

180 0.075 -1.521 0.98

200 0.082 -1.978 0.98

Fig. 2 : Relationship between holding time and voltage
gradients
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Table 1: Electrical conductivity of tomato juice and SPCs at
different voltages in ohmic heating

Voltage (V)
Average electrical
conductivity (S/m)

SPC

100 0.7394 0.9887

120 0.7707 0.9878

140 0.7876 0.9859

160 0.8759 0.9835

180 0.8801 0.9558

200 0.8912 0.9057

Table 2 : Properties of tomato juice used in calculations
Property Value

Density (kg/m3) 1079.36

Specific heat (J/kg0C) 3719

Average electrical conductivities of the tomato juice
and SPCs at different voltages are shown in Table 1.
SPC is the ratio of E

u
 and E

s,
both are strongly voltage

dependent. The electrical energy is decreasing with
increasing voltage gradient. One reason might be that
the heating time is longer under lower voltage gradient
and result in the increase of electrical energy. Same
results were also achieved by Vikram et al. (2005) and
Zell et al. (2009). For the tomato juice  samples the SPCs
increased from 0.9057 to 0.9887 as the voltage gradient
decreased, which indicated that 1.13 -9.43 per cent of
the electrical energy given to the system was not used

in heating up the test sample.
Since the experimental electrical conductivity results

for the tomato juice samples given in Fig. 1, showed a
linear trend with increasing temperature, a linear equation
shown in equation 3 was used to fit the experimental
data. The properties of tomato juice are tabulated in Table
2. The constants and the linear regression co-efficients
are given in Table 3.

CZTσ                                                             ....(3)
The ANN optimization process was performed

usinga trial and error technique. Temperature, time,
voltage and current of sample were used as input in the
artificial neural network structure. The data set of inputs
and outputs used to train the ANN. Each data set was
divided into three groups, consisting 70 per cent for
training, 15 per cent for testing and other 15 per cent for
validation Shrivastav and Kumbhar (2009); Srivastava
and Kumbhar (2011 and 2014). As far as above selection
of data is concerned, author tested different combinations
of data set like 70%20%~10%, 30%~30%~40%,70%~
10% ~20% and found that the best result was with
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70%~15%~15% data set. The MSE for training, testing
and validation were 1.114e-17, 2.218e-5 and 4.057e-8.
The system equations representing the ANN for
predicting electrical conductivity are also shown below.
The system equations show the input, transfer function
and relative weights of each nodes. The equation can be
used in computer program to predict the electrical
conductivity for any given set of conditions Srivastava
and Kumbhar (2011).

System equations :
X = Voltage
W = Current
X

1
 = tanh [ (-0.0233)*X + (-0.1041)*W +(10.2816)]

X
2
 = tanh [ (-0.3271)*X + (1.2529)*W + (-0.0695)]

X
3
 = tanh [(0.0124)*X + (-0.2476)*W + (7.8621)]

X
4
 = tanh [(-0.0182)*X + (-0.1961)*W + (8.4308)]

X
5
 = tanh [(0.005)*X + (-0.2789)*W + (13.1905)]

X
6
=tanh [(0.0716)*X

1
+(0.1841)*X

2
+(0.7023)*

        X
3
+ (1.1286)*X

4
+ (0.9809)*X

5
+ [(0.8936)*

       X
6
+ (-0.2146)* X

7
+ (-0.096)* X

8
+ (-0.3852)*

X
9
+ (-1.7976 )]

X
7
=tanh [(-0.4246)*X

1
+(-2.1702)*X

2
+ (0.3959)*

       X
3
+(0.7386)* X

4
+(-0.7758)*X

5
+[(-0.0696)*

X
6
+(-0.8621)*X

7
+(0.9432)*X

8
+(0.0476)*

X
9
 +(1.4224 )]

X
8
 = tanh[(-0.669)* X

1
+(1.8015)* X

2
+(0.2982)*

X
3
+(-0.2019)*X

4
+(-0.6159)*X

5
+[(-0.8185)*

X
6
+(0.7864)*X

7
+(-0.311)*X

8
+(0.5863)*

X
9
 +(0.6479 )]

X
9
= purelin [(1.027)*X

1
+(-0.5584)*X

2
+(-1.2743)*

        X
3
+(-1.0635)*X

4
0.3642)*X

5
+(0.4652)] = ((0.51)*

X
9
 +(0.12))

Plots of experimentally determined electrical
conductivity versus ANN predicted values for all
combined data are shown in Fig. 3. The correlation co-
efficient was greater than 0.98 in all the cases. This
shows that the ability of ANN to predict electrical
conductivity was very good.

Conclusion :
The product was heated upto 96°C. Electrical

conductivity of tomato juice varied from 0.27 S/m to 1.28
S/m. It increased as the voltage increased. System
performance co-efficient was in the range of 0.9057 to
0.9887. System performance co-efficient decreased with
an increase in voltage. Bubbling temperature of the

tomato juice was above 80°C at lower voltages and 85°C
at higher voltages. Separation of layers of tomato juice
occurs at temperatures about 72°C if the juice is raw
and unhomogenized and if not, the separation temperature
increases. The results showed that the linear model was
found to be the most suitable model for describing the
electrical conductivity curve of the ohmic heating process
of tomato juice. ANN can be used to predict the electrical
conductivity of tomato juice. The optimal models for
combined data can predict the electrical conductivity with
R2 value greater than 0.98.
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