# Yields and economics of wheat (*Triticum aestivum* L.) influenced by SWI techniques with varying nitrogen levels

P.K. SURYAWANSHI\*, J.B. PATEL<sup>1</sup> AND N.M. KUMBHAR Department of Agronomy, B. A. College of Agriculture, (A A.U.), ANAND (GUJARAT) INDIA

**Abstract :** A field experiment was conducted during the *Rabi* season of the year 2009-10 to study the yields and economics of wheat (*Triticum aestivum* L.) influenced by SWI techniques with varying nitrogen levels . Effect of four spacings ( $S_1$ : 10 x 20 cm,  $S_2$ : 15 x 20 cm,  $S_3$ : 20 x 20 cm and  $S_4$ : 22.5 cm line sowing were) studied on three levels of nitrogen ( $N_1$ : 100 kg N ha<sup>-1</sup>,  $N_2$ : 125 kg N ha<sup>-1</sup> and  $N_3$ : 150 kg N ha<sup>-1</sup>). The higher grain yield (4,205 kg ha<sup>-1</sup>), straw yield (6,111 kg ha<sup>-1</sup>), the highest gross realization (Rs. 53,509 ha<sup>-1</sup>), net realization (Rs. 35,373 ha<sup>-1</sup>) with CBR (2.95) were obtained from 20 x 20 cm cross sowing technique. Different levels of nitrogen significantly influenced yields, gross realization, net realization with CBR. Higher grain yield (4,126 kg ha<sup>-1</sup>), straw yield (6,135 kg ha<sup>-1</sup>) and gross realization (Rs. 52,577. ha<sup>-1</sup>), net realization (Rs. 33,791 ha<sup>-1</sup>) with CBR (2.80) were obtained from 150 kg N ha<sup>-1</sup>. Treatment combination  $S_3N_3$  gave maximum straw yield, gross return, net return with CBR.

Key Words : Nitrogen levels, Wheat, SWI

View Point Article: Suryawanshi, P.K., Patel, J.B. and Kumbhar, N.M. (2013). Yields and economics of wheat (*Triticum aestivum* L.) influenced by SWI techniques with varying nitrogen levels . *Internat. J. agric. Sci.*, 9(1): 305-308.

Article History : Received : 27.09.2012; Revised : 18.11.2012; Accepted : 20.12.2012

## INTRODUCTION

Wheat (*Triticum aestivum*) is an important cereal crop for a large number of countries in the world. It provides about 20 per cent of total food calories for the human diet. It can be grown on a variety of soils but clay loam soil is most suitable (Hossain Md. *et al.*, 2006). In India, wheat stands second next to rice in area and production, but first in productivity among all the cereals.

Method of sowing play very important role providing for the proper space required by plant for efficient utilization of air, water, solar energy and nutrients, therefore, the crop yield and quality of the produce may be improved to great extent (Makwana and Tank, 2008).

System of wheat intensification (SWI) popularly known Sri Vidhi Gehun is different methodology for wheat cultivation. Its root goes in SRI principle being practiced in paddy. All agronomic principles are put into practices and integrated with package of practices in wheat crop.Nitrogen is the key element for plant growth and development, as it is a constituent of chlorophyll.

# **MATERIALS AND METHODS**

A field experiment was carried out at the Regional Research Station, Anand Agricultural University. Anand, Gujarat during the *Rabi* season of the year 2009-10. Physical and chemical properties of the soil of experimental site are given in (Table A).

The experiment was laid out in Factorial Randomized Block Design having four replications. Twelve treatment combinations comprised of four spacings *viz.*,  $S_1$ : 10 x 20 cm,  $S_2$ : 15 x 20 cm,  $S_3$ : 20 x 20 cm and  $S_4$ : 22.5 cm line sowing and three levels of nitrogen *viz.*,  $N_1$  100,  $N_2$  125,  $N_3$  150 kg N ha<sup>-1</sup> were studied.

Certified seed of wheat variety 'GW - 496' was soaked in

<sup>\*</sup> Author for correspondence

<sup>&</sup>lt;sup>1</sup>Regional Research Station, B. A. College of Agriculture (A.A.U.), ANAND (GUJARAT) INDIA

#### P. K. SURYAWANSHI, J. B. PATEL AND N. M. KUMBHAR

| Table A: Physical and chemical properties of the soil of the experimental site |            |  |  |
|--------------------------------------------------------------------------------|------------|--|--|
| Properties                                                                     | Values     |  |  |
| Mechanical composition                                                         |            |  |  |
| Coarse sand (%)                                                                | 1.04       |  |  |
| Fine sand (%)                                                                  | 82.90      |  |  |
| silt (%)                                                                       | 9.81       |  |  |
| Clay (%)                                                                       | 5.36       |  |  |
| Textural class of soil                                                         | Loamy sand |  |  |
| Chemical composition                                                           |            |  |  |
| EC (dsm <sup>-1</sup> )                                                        | 0.23       |  |  |
| Soil pH                                                                        | 7.5        |  |  |
| Organic carbon (%)                                                             | 0.39       |  |  |
| Total N                                                                        | 0.032      |  |  |
| Available N (kg ha <sup>-1</sup> )                                             | 110.20     |  |  |
| Available P <sub>2</sub> O <sub>5</sub> (kg ha <sup>-1</sup> )                 | 42.70      |  |  |
| Available $K_2O$ (kg ha <sup>-1</sup> )                                        | 346        |  |  |

| Table B : Seed treatment for SWI method in spacing treatments $S_{1},S_{2}andS_{3}$ |                                         |
|-------------------------------------------------------------------------------------|-----------------------------------------|
| Item                                                                                | Quantity                                |
| Hot water (boiled at 60 degree celsius)                                             | 50 lit.ha <sup>-1</sup>                 |
| Vermicompost                                                                        | 12.5 kg ha <sup>-1</sup>                |
| Wheat seeds                                                                         | $S_1: 50 \text{ kg ha}^{-1}$            |
|                                                                                     | S <sub>2</sub> : 33 kg ha <sup>-1</sup> |
|                                                                                     | S <sub>3</sub> : 25 kg ha <sup>-1</sup> |
| Cow urine                                                                           | 15 lit.ha <sup>-1</sup>                 |
| Jaggery                                                                             | 5 kg ha <sup>-1</sup>                   |
| Bavistine (Fungicide)                                                               | $@ 5 g kg^{-1} of seeds$                |

boiled water to separate lighter seeds and ensure use of good quality heavy and healthy seeds. It was mixed with vermicompost, cow urine and jaggery for 6-8 hours. After 6-8 hours, it was filtered so that solid material along with seeds and liquid got separated. These seeds were then treated with the fungicide bavistin @ 5 g kg<sup>-1</sup> seeds and the treated seeds were wrapped in bundle of jute for 6-8 hours for sprouting of the seeds. These sprouted seeds were used for sowing purpose in treatment  $S_1, S_2, S_3$  only during the month of November, and the crop was harvested during the second week of March. The seed treatment was adopted as per the procedure given in the literature of SWI technique of wheat (Anonymous, 2008).Gap filling was done with the appropriate seeds at 12 days after sowing to maintain uniformity of plant population. Requirement for the seed treatment given in (Table B).

The nitrogen fertilizer was applied as per treatment through urea and phosphorus @ 60 kg ha<sup>-1</sup> was applied in the form of SSP as basal dose to all treatments. The remaining half dose of nitrogen was top dressed in two equal splits each at CRI and grain filling stages. The experimental field was free from weeds throughout the crop season. Therefore, two hand weedings were carried out at 20, 40 days after sowing. Seven irrigations were given throughout crop life period. Remaining all agronomic practices were followed as per recommendations for the crop.

## **RESULTS AND DISCUSSION**

The results obtained from the present investigation have been presented under following heads: (Table 1).

#### Effect of spacings :

The crop sown under spacing  $S_3$  (20 x 20 cm) showed significantly higher grain (4,204 kg ha<sup>-1</sup>), straw yield (6,111 kg ha<sup>-1</sup>) due to better utilization of moisture and nutrients as well as solar radiation due to better orientation of the leaves resulting greater amount of photosynthesis leading to increased values of growth and yield parameters then thereby grain and straw yield. Plant spacing of 20 x 20 cm gave the highest gross realization Rs. 53,509 ha<sup>-1</sup> and net realization of Rs. 35,373 ha<sup>-1</sup> with CBR value of 2.95.

The next best treatment was  $S_2$  (15 x 20 cm) which recorded the gross realization Rs. 51,719 ha<sup>-1</sup> and net return of

Rs. 33,734 ha<sup>-1</sup> with the CBR value of 2.87. Treatments S<sub>1</sub> (10 x 20 cm) and line sowing at 22.5 cm (S<sub>4</sub>) recorded the least net income of Rs. 30,593 and 26,961 ha<sup>-1</sup> with 2.67 and 2.39 Cost benefit ratio, respectively. These results are in close agreement

with those reported by Jain et al. (1987).

#### Effect of nitrogen levels :

The various levels of nitrogen significantly influenced

| Table 1 : Effect of spacings and nitrogen levels on yields and economics of wheat |                                      |                                       |                                             |                                                     |                                            |      |
|-----------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------------------|------|
| Treatments                                                                        | Seed yield<br>(kg ha <sup>-1</sup> ) | Straw yield<br>(kg ha <sup>-1</sup> ) | Gross realization<br>(kg ha <sup>-1</sup> ) | Total cost of<br>Production (Rs. ha <sup>-1</sup> ) | Net realization<br>(Rs. ha <sup>-1</sup> ) | CBR  |
| Spacing (S)                                                                       |                                      |                                       |                                             |                                                     |                                            |      |
| S <sub>1</sub> (10 x 20)                                                          | 3843                                 | 5493                                  | 48863                                       | 18270                                               | 30593                                      | 2.67 |
| S <sub>2</sub> (15 x 20)                                                          | 4065                                 | 5883                                  | 51719                                       | 17985                                               | 33734                                      | 2.87 |
| S <sub>3</sub> (20 x 20)                                                          | 4205                                 | 6111                                  | 53509                                       | 18135                                               | 35373                                      | 2.95 |
| S <sub>3</sub> (22.5)                                                             | 3639                                 | 5385                                  | 46358                                       | 19397                                               | 26961                                      | 2.39 |
| C.D. (P=0.05%)                                                                    | 220                                  | 250                                   | -                                           | -                                                   | -                                          | -    |
| Nitrogen level (N) kg l                                                           | na <sup>-1</sup>                     |                                       |                                             |                                                     |                                            |      |
| N <sub>1</sub> (100)                                                              | 3718                                 | 5460                                  | 47346                                       | 18116                                               | 29230                                      | 2.62 |
| N <sub>2</sub> (125)                                                              | 3970                                 | 5559                                  | 50414                                       | 18438                                               | 31976                                      | 2.74 |
| N <sub>3</sub> (150)                                                              | 4126                                 | 6135                                  | 52577                                       | 18786                                               | 33791                                      | 2.80 |
| C.D. (P=0.05%)                                                                    | 191                                  | 217                                   | -                                           | -                                                   | -                                          | -    |
| S X N Interaction                                                                 | NS                                   | Sig.                                  | -                                           | -                                                   | -                                          | -    |
| C.V. (%)                                                                          | 6.73                                 | 7.27                                  |                                             |                                                     | -                                          | -    |
| (Sig.: Significant) (NS:                                                          | Non-significant)                     |                                       |                                             |                                                     |                                            |      |

#### Table 2 : Straw yield as influenced by S x N interaction

| Spacing (S)              | Inorganic fertilizer |                      |                      |  |  |
|--------------------------|----------------------|----------------------|----------------------|--|--|
| Spacing (S)              | N <sub>1</sub> (100) | N <sub>2</sub> (125) | N <sub>3</sub> (150) |  |  |
| S <sub>1</sub> (10 x 20) | 5245                 | 5601                 | 5633                 |  |  |
| S <sub>2</sub> (15 x 20) | 5485                 | 5729                 | 6433                 |  |  |
| S <sub>3</sub> (20 x 20) | 5861                 | 5708                 | 6765                 |  |  |
| S <sub>4</sub> (22.5)    | 5250                 | 5198                 | 5708                 |  |  |
| S.E.±                    |                      | 196                  |                      |  |  |
| C.D. (P=0.05)            |                      | 434                  |                      |  |  |

### Table 3: Economics as influenced by different treatment combinations of spacings and nitrogen levels

| Treatments | Seed yield<br>(kg ha <sup>-1</sup> ) | Straw yield<br>(kg ha <sup>-1</sup> ) | Gross realization<br>(Rs. ha <sup>-1</sup> ) | Total cost of production<br>(Rs. ha <sup>-1</sup> ) | Net realization<br>(Rs. ha <sup>-1</sup> ) | CBR  |
|------------|--------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------------------|--------------------------------------------|------|
| $S_1N_1$   | 3715                                 | 5245                                  | 47202                                        | 17939                                               | 29263                                      | 2.63 |
| $S_2N_1$   | 3823                                 | 5485                                  | 48617                                        | 17655                                               | 30963                                      | 2.75 |
| $S_3N_1$   | 3921                                 | 5861                                  | 49981                                        | 17805                                               | 32176                                      | 2.81 |
| $S_4N_1$   | 3413                                 | 5250                                  | 43582                                        | 19066                                               | 24516                                      | 2.29 |
| $S_1N_2$   | 3968                                 | 5601                                  | 49215                                        | 18261                                               | 30954                                      | 2.70 |
| $S_2N_2$   | 4163                                 | 5729                                  | 52824                                        | 17977                                               | 34848                                      | 2.94 |
| $S_3N_2$   | 4239                                 | 5708                                  | 53726                                        | 18127                                               | 35600                                      | 2.96 |
| $S_4N_2$   | 3607                                 | 5198                                  | 45889                                        | 19388                                               | 26501                                      | 2.37 |
| $S_1N_3$   | 3946                                 | 5633                                  | 50171                                        | 18609                                               | 31563                                      | 2.70 |
| $S_2N_3$   | 4208                                 | 6433                                  | 53714                                        | 18324                                               | 35390                                      | 2.93 |
| $S_3N_3$   | 4453                                 | 6765                                  | 56820                                        | 18475                                               | 38345                                      | 3.08 |
| $S_4N_3$   | 3896                                 | 5708                                  | 49601                                        | 19736                                               | 29866                                      | 2.51 |

Note : Selling price of grain @ Rs.12 kg<sup>-1</sup>, Selling price of straw @ Rs. 0.50 kg<sup>-1</sup>

Internat. J. agric. Sci. | Jan., 2013 | Vol. 9 | Issue 1 | 305-308 Hind Agricultural Research and Training Institute

the yields and economical component Table 1. Significantly higher grain yield (4,126 kg ha<sup>-1</sup>) and straw yield (6,135 kg ha<sup>-1</sup>) were recorded under  $N_3$  150 kg N ha<sup>-1</sup> over  $N_1$ , which was found at par with  $N_2$ .

The higher grain and straw yields under higher level of nitrogen might be due to application of higher nitrogen dose, enhanced higher photosynthetic activity of the plant and might have increased vegetative growth, such as spike length and ultimately resulted into higher number of grains earhead-<sup>1</sup> which increases grain and straw yields. Hossain Md. *et al.* (2006) also recorded same results.

The highest gross return (Rs. 52,577 ha<sup>-1</sup>) and net return was recorded under treatment N<sub>3</sub> (Rs. 33,791 ha<sup>-1</sup>) with the cost benefit ratio of 2.80 followed by treatment N<sub>2</sub> wich recorded the gross return (Rs. 50,414 ha<sup>-1</sup>) and net return of Rs. 31,976 ha<sup>-1</sup> with 2.74 CBR. Treatment N<sub>1</sub> registered lower gross return (Rs. 47,346 ha<sup>-1</sup>) and net return (Rs. 29,230 ha<sup>-1</sup>) with 2.62 CBR. These results obtained in the present investigation are in accordance with those reported by Sharma and Mishra (1986).

#### Interaction effect :

Straw yield of wheat was found to be significant due to interaction effect between spacings and nitrogen levels (S x N). Interaction data are given in Table 2 indicated that treatment combination  $S_3N_3$  (20 x 20 cm spacing with 150 kg N ha<sup>-1</sup>) recorded significantly higher straw yield (6,765 kg ha<sup>-1</sup>) as compared to the rest of the treatment combinations, however, it was found to be at par with the treatment combinations $S_3N_3$  (15 x 20 cm spacing with 150 kg N ha<sup>-1</sup>). The

lowest straw yield (5,198 kg ha<sup>-1</sup>) was recorded under the treatment combination  $S_4N_2$  (22.5 cm line sowing with 125 kg N ha<sup>-1</sup>). With respect to various treatment combinations of spacings and nitrogen levels, treatment combination  $S_3N_3$  (20 x 20 cm with 150 kg N ha<sup>-1</sup>) recorded the highest net return by Rs. 38,345 and CBR value (3.08) (Table 3). These results were due to the facts of higher yield in the said treatment combination as compared to others. The lowest net realization (Rs. 24,516 ha<sup>-1</sup>) with CBR value of 2.29 was observed under treatment  $S_4N_1$ .

## REFERENCES

**Anonymous (2008).** Report on assessment, refinement and validation of technology through system of wheat intensification. (Pradan, Nalanda).

Hossain Md., I., Islam Md., K., Sufian Md., A., Meisner, C.A. and Islam Md., S. (2006). Effect of planting methods and nitrogen levels on yield and yield attributes of wheat. *J. Bio Sci.*, 14: 127-130.

Jain, N.K., Nigam, K.B., Jamley, N.R. and Khandkar U.R. (1987). Effect of method sowing on yield of dwarf wheat. *Indian J. Agron.*, 33(1): 106-107. 631-632.

Makwana, C.F. and Tank, D.A. (2008). Effect of methods of sowing and seed rate on yield and quality of irrigated durum wheat (*Triticum durum Desf.*) Variety GW- 1139. *Res. Crops.*, **9** (2): 494-497.

Sharma, M.L. and Mishra, V.K. (1986). Effect of inoculation and levels of nitrogen on growth yield and quality of wheat (Narmada-4). *Madras Agric. J.*, **73** (2): 96-100.

