

See end of the paper for authors' affiliations

Department of Apparel and

Email: harsaini67@yahoo.com

NAVDEEP KAUR

INDIA

Research Paper

Consumers preferences for developed designs of one piece dresses inspired from architecture and evaluation of constructed designs

■ NAVDEEP KAUR AND HARMINDER KAUR SAINI

Received: 09.08.2014; Revised: 28.09.2014; Accepted: 11.10.2014

■ ABSTRACT : The investigation entitled was carried out in Ludhiana city. An interview schedule was prepared for the purpose of collecting data from 90 college going girls between the age group of 18-22 years selected randomly from three college of Ludhiana city. The results of the study revealed that majority of the respondents were from the age group of 18 to 20 years, in their second year of graduation, belonged to nuclear families, urban background and had family income ranging between Rs. 41, 000 to 80,000. Preferences regarding the developed designs of one piece dresses showed that design A₂, B₂, C₁, D₁, E₂, F₁, G₂, H₁, I₂ and J₁ got the first rank. The preferences of the respondents for ten selected first ranked designs of one piece dresses were constructed. Design A₂ was most preferred design with mean score of 4.7 and design D₁ with mean score of 4.2 was given second rank. Design B₂, J₁ and C₁ were given third, fourth and fifth ranks, respectively. Developed designs of one piece dresses were evaluated by a sub sample of 30 respondents about the design, suitability of colour combination, silhouette and overall appearance of the dress. It was found that design D₁ was given first rank on the basis of design, suitability of colour combination, silhouette and overall appearance of the garment. Whereas design C₁ was given first rank on the basis of comfort.

Textile Science, College of Home

KEY WORDS: Architecture, Dress, Design

Science, Punjab Agricultural University, LUDHIANA (PUNJAB)

■ HOW TO CITE THIS PAPER : Kaur, Navdeep and Saini, Harminder Kaur (2014). Consumers preferences for developed designs of one piece dresses inspired from architecture and evaluation of constructed designs. *Asian J. Home Sci.*, **9** (2) : 442-445.

growing number of avant-garde fashion designers have approached garments as architectonic constructions, while architecture has boldly embraced new forms and materials. These developments are due in part to numerous technological advancements that have revolutionized both the design and construction of buildings and made techniques like pleating, seaming, folding, and draping part of the architectural vocabulary. Garments of increasing conceptual sophistication and structural complexity have been seen on the runways and in the streets, as buildings of unparalleled fluidity and innovation have come to grace major urban centers around the world" (Anonymous, 2007).

Fashion and architecture are more than casual acquaintances. Both disciplines entail filling voids with contours, swoops, and planes on markedly different scales. Sometimes, however, the cross-pollination of concepts is intentional. As fashion terms like "draping," "weaving," and "pleating" propagate throughout the architectural world, and methods of building construction incorporate themselves into garment-making, the relationship between the two grows more intimate by the day (Chua, 2012).

The connection between fashion and architecture harkens back to the crudely stitched animal skins used in both disciplines, as clothing and tents. As both disciplines developed from their humble beginnings, the symbiotic relationship between fashion and architecture still remains. In fashion, architecture has helped to introduce the use of thin, flexible metals and plastics, and light weight glass, while architects have integrated pleating, draping, and tailoring techniques into their built form (Theriault, 2008). Hence, the present study has been planned to study consumer preferences for developed designs of one piece dresses inspired from architecture and evaluation of constructed designs.

■ RESEARCH METHODS

For this, a survey method was used to study the preferences of the respondents regarding developed designs of one piece dresses inspired from architecture. An interview schedule was employed to study the socio- economic profile of the respondents and their preferences for developed designs of one piece dresses. Three colleges from Ludhiana city were selected randomly. Then total sample of 90 college going girls between 18-22 years of age group were selected purposively from the three colleges. Thirty respondents were selected from each college. The data collected through the interview schedule for the research study were coded, tabulated and analyzed. Simple percentages were calculated to obtain the background information. Scoring and ranking was done to get the preferences for designs and design features of highest score was given to the most preferred design/feature and one to the least preferred one. The scores were computed and given ranks.

■ RESEARCH FINDINGS AND DISCUSSION

The results obtained from the present investigation as well as relevant discussion have been summarized under following heads :

Preferences of the respondents for developed designs of one piece dresses :

A survey method was used to study the preferences of the respondents for developed designs of one piece dresses. Preferences of the college going girls regarding the developed designs of one piece dresses have been furnished in Table 1.

The selected ten architectural designs were used to develop two dress designs each and thus total twenty designs were developed. The results elicited that design A_1 and A_2 were developed by taking inspiration from architectural design A. It was found that design A_2 got the first rank with mean score of 4.7 followed by design A_1 with mean score of 1.2. Similarly design B_2 got the first rank with mean score of 3.9 and design B_1 got the second rank with mean score 3.6 which were developed by taking inspiration from the architectural design B.

Dress designs C_1 , C_2 and D_1 , D_2 were developed by taking inspiration from architectural designs C and D, respectively. The data showed that design C_1 and D_1 got the first rank with mean score of 3.4 and 4.2, respectively.

Similarly designs E_2 , F_1 , G_2 , and H_1 got the first rank with mean score of 2.8, 2.9, 3.0 and 3.3, respectively which were developed by taking the inspiration from architectural design E, F, G and H. Design I_2 and J_1 with mean score of 2.7 and 3.8 got the first rank inspired from architectural design I and J, respectively.

Table 1 : Prefe dress	rential choice fo es inspired from a	r developed architectural	designs of designs	one piece (n=90)
Architectural design code	Dress design code	Score	Mean score	Rank
А	A_1	110	1.2	2
	A_2	425	4.7	1
В	B_1	323	3.6	2
	B_2	348	3.9	1
С	C_1	302	3.4	1
	C_2	194	2.2	2
D	D_1	377	4.2	1
	D_2	110	1.2	2
Е	E_1	236	2.6	2
	E_2	253	2.8	1
F	\mathbf{F}_1	257	2.9	1
	F_2	140	1.6	2
G	G_1	198	2.2	2
	G_2	274	3.0	1
Н	H_1	298	3.3	1
	H_2	250	2.8	2
Ι	I_1	232	2.6	2
	I_2	244	2.7	1
J	\mathbf{J}_1	342	3.8	1
	J_2	130	1.4	2

Preferences of the respondents for selected designs of dresses :

The preferences of the respondents for ten selected first ranked designs of one piece dresses were again taken to know the top five ranked designs which would be used for construction. The data presented in Table 2 showed that design A_2 got the first rank with mean score of 4.7 followed by design D_1 which was given second rank with mean score of 4.2. Design B_2 with mean score of 3.9 was given third rank by the respondents. Fourth and fifth ranks were given to design J_1 and C_1 with mean score of 3.8 and 3.4, respectively (Fig. 1).

Evaluation of the developed one piece dress designs :

To evaluate the developed designs of one piece dresses, a sub sample of 30 respondents was selected randomly from

Table 2 : Preferences designs	of the	respondents for ter	n selected dress (n=90)
Dress design codes	Score	Mean score	Rank
A_2	425	4.7	1
B_2	348	3.9	3
C ₁	302	3.4	5
D_1	377	4.2	2
E_2	253	2.8	9
F_1	257	2.9	8
G_2	274	3.0	7
H_1	298	3.3	6
I_2	244	2.7	10
\mathbf{J}_1	342	3.8	4

the already selected respondents. A Performa was prepared to evaluate the dresses on the basis of design, suitability of colour combination, silhouette, comfort and overall appearance of the dress. Evaluation of the dresses on the basis of design.

The preferences of the respondents for the constructed dresses were taken on the basis of design. The data in the Table 3 shows that design D_1 was given first rank with mean score of 3.3 on the basis of design followed by design B_2 and C_1 with second and third ranks and their mean score was 3.2 and 3.1, respectively. Fourth and fifth ranks were given to design A_2 and J_1 with mean score of 3.0 and 2.9, respectively.

Table 3 : Evaluation of the dresses on the basis of design(n=30)							
Design code	Scores	Mean score	Rank				
A_2	89	3.0	4				
D_1	100	3.3	1				
B_2	97	3.2	2				
J_1	87	2.9	5				
C_1	92	3.1	3				

Evaluation of the dresses on the basis of suitability of colour combination :

Data in the Table 4 show that design D_1 was given first rank with mean score of 3.7 on the basis of suitability of colour combination followed by dress design B_2 and C_1 having second and third ranks with mean score of 3.1 and 2.9, respectively. Fourth and fifth ranks were given to design J_1 and A_2 with mean score of 2.8 and 2.7, respectively

Table 4 : Evalua colour	ation of the dres combination	ses on the basis	of suitability of (n=30)
Design code	Scores	Mean score	Rank
A ₂	80	2.7	5
D_1	110	3.7	1
B_2	92	3.1	2
\mathbf{J}_1	82	2.8	4
C ₁	83	2.9	3

Evaluation of the dresses on the basis of silhouettes :

Preferences of the respondents for the constructed dresses were taken on the basis of silhouettes. The data in the Table 5, indicated that design D_1 was given first rank with mean score of 3.7 on the basis of silhouettes followed dress design B_2 and C_1 having second and third ranks with mean score of 3.2 and 2.9, respectively. Fourth and fifth ranks were given to design A_2 and J_1 with mean score of 2.8 and 2.3, respectively.

Evaluation of the dresses on the basis of comfort :

Data in the Table 6 show that design C_1 was given first rank with mean score of 3.9 on the basis of comfort followed by design J_1 and B_2 having second and third ranks with mean

Table 5: Evaluation of the dresses on the basis of silhouettes (n=30) Image: the second s							
Design code	Scores	Mean score	Rank				
A_2	83	2.8	4				
D_1	111	3.7	1				
B_2	97	3.2	2				
\mathbf{J}_1	70	2.3	5				
C ₁	85	2.9	3				

score of 3.1 and 3.0, respectively. Fourth and fifth ranks were given to design A_2 and D_1 with mean score of 2.6 and 2.4, respectively.

Table 6: Evaluation of the dresses on the basis of comfort(n=30)								
Design code	Scores	Mean score	Rank					
A_2	78	2.6	4					
D ₁	73	2.4	5					
B_2	91	3.0	3					
\mathbf{J}_1	92	3.1	2					
C_1	118	3.9	1					

Evaluation of the dresses on the basis of overall appearance :

Dress design D_1 with mean score of 3.4 was given first rank on the basis of overall appearance followed by dress design C_1 and A_2 having second and third ranks with mean score of 3.1 and 2.9, respectively (Table 7). Fourth and fifth ranks were given to design J_1 and B_2 with mean score of 2.7 and 2.5, respectively.

Table 7:	Evaluation	of	the	dresses	on	the	basis	of	overall
	appearance								(n=30)
Design co	ode	Sco	res	M	ean s	core		R	ank
A ₂		88	3		2.9				3
\mathbf{D}_1		11	1	3.7			1		
\mathbf{B}_2		76	5	2.5			5		
J_1		80)	2.7			4		
C_1		93	3	3.1					2

Conclusion:

The preferences of the respondents regarding developed designs showed that design A2, B2, E2, G2 and I2 got the first rank with mean score 4.7, 3.9, 2.8, 3.0 and 2.7, respectively. Similarly designs C_1 , D_1 , F_1 , H_1 and J_1 got the first ranks with mean score of 3.4, 4.2, 2.9, 3.3 and 3.8, respectively. The preferences of the respondents for ten selected first ranked designs of one piece dresses showed that design A₂ was most preferred design with mean score of 4.7 and was given first rank. Design D_1 with mean score of 4.2 was given second rank. Design B_2 , J_1 and C_1 were given third, fourth and fifth rank with mean score of 3.9, 3.8 and 3.4, respectively. Design I₂ with mean score of 2.7 was least preferred by the respondents. Developed designs of one piece dresses were evaluated on the basis of design, suitability of colour combination, silhouette, comfort and overall appearance of the dress. Design D, was given first rank on the basis of design, with mean score of 3.3. Also on the basis of suitability of colour combination, silhouettes and overall appearance, this design with mean score of 3.7 each was most preferred. Design C, was given first rank with mean score of 3.9 on the basis of comfort.

Authors' affiliations:

HARMINDER KAUR SAINI, Department of Apparel and Textile Science, College of Home Science, Punjab Agricultural University, LUDHIANA (PUNJAB) INDIA Email: navdeepfd@gmail.com

■ WEBLIOGRAPHY

Anonymous (2007). *http://wwwartisticcollision.blog.* Most architects and fashion designers agree that technological innovations.

Chua, J.M. (2012). 9 eco- fashionable garments inspired by architecture. *http://www.ecouterre.com\...hionable-garments.... architecure.*

Theriault, C. (2008). The connection between fashion and architecture. *www.arch.mcgill.ca/prof/davies/arch671/winter.*

$$9^{th}_{Year} \\ \star \star \star \star \star \text{ of Excellence } \star \star \star \star \star$$