INTERNATIONAL JOURNAL OF PLANT PROTECTION VOLUME 9 | ISSUE 2 | OCTOBER, 2016 | 639-643

RESEARCH NOTE

DOI: 10.15740/HAS/IJPP/9.2/639-643

Biological control of rose powdery mildew (*Podosphaera pannosa* (Wallr.: Fr.) de Bary

■ VIJAY KUMAR*, SUNITA CHANDEL AND NEELAM KUMARI

Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, SOLAN (H.P.) INDIA

ARITCLE INFO

pannosa, Rose

*Corresponding author:

vnarwal257@gmail.com

Email : vnarwal777@yahoo.com;

Received : 14.05.2016 **Accepted** : 24.09.2016

KEY WORDS : Antagonists, Biological control, Bioproducts, Botanicals, *Podosphaera* ABSTRACT

Powdery mildew, caused by Podosphaera pannosa (Wallr.: Fr.) de Bary (Syn. Sphaerotheca pannosa var rosae (Wallr.: Ex Fr.) Lev.), is one of the most important fungal diseases in roses. These are obligate parasites and considered as one of the most distributed and destructive groups of plant pathogens. The symptoms appear on leaves, shoots, buds, thorns, peduncles and flowers as powdery, whitish growth (mycelium, conidiophores and spores) of the mildew fungus. Plants can be severely stunted if they are heavily infected early in the growing season. The disease has been managed mainly by chemical fungicides but increasing public concern over the use of fungicides has made the development of biological control for powdery mildew highly desirable. Recent reports have highlighted the potential of biological control as an alternative strategy for disease management. Several biological control methods such as use of microbial antagonists (fungi, bacterial, yeast and yeast like organisms), botanicals and bioproducts have been found effective against rose powdery mildew fungi. The main objective of this review paper is to summarize the data on the microbial antagonists, bioproducts (anhydrous milk products, oils and compost extracts) and botanicals which have been reported effective for the better management of this plant pathogen.

How to view point the article : Kumar, Vijay, Chandel, Sunita and Kumari, Neelam (2016). Biological control of rose powdery mildew (*Podosphaera pannosa* (Wallr.: Fr.) de Bary. *Internat. J. Plant Protec.*, **9**(2): 639-643, **DOI : 10.15740/HAS/IJPP/9.2/639-643**.

The beauty, fragrance and multiple uses of roses as cut flowers or landscape plants have made roses an appreciated crop since ancient times. From an economical standpoint, roses are the most important plants in ornamental horticulture (Hummer and Janick, 2009). Rose belongs to the subfamily Rosideae within the family Rosaceae, most of which are woody perennial shrubs with a basic chromosome number of seven and ploidy levels ranging from 2x to 8x (Wissemann, 2006 and Debener and Linde, 2009).

Rose powdery mildew caused by *Podosphaera* pannosa is the most occurring disease on roses worldwide. It attacks garden roses as well as roses in greenhouses meant for cut flower production. Except

chemicals. Moreover, in some countries a number of

fungicides effective against powdery mildew are no

longer registered for greenhouse production due to

restriction in pesticide usage. Scanning of literature

for roses, few data exist on the host range of this

pathogen. Powdery mildew appears as a whitish powder covering foliage, stems and buds (Rose Magazine Inc.,

2011). The fungus is most commonly observed on the

upper side of the leaves, but it also affects the underside

of leaves and other plant parts including young shoots,

stems, buds, flowers and young fruits (Braun, 1995;

Horst, 1983 and Gleason, 2014). They seldom kill their

hosts but utilize their nutrients, reduce photosynthesis,

increase respiration and transpiration, impair plant

could not distinguish the anamorphs of *Sphaerotheca* and *Podosphaera* by observing conidial surfaces with

scanning electron microscopy. ITS data (Takamatsu et

al., 1998) and the combination of morphological data

with ITS sequencing (Saenz and Taylor, 1999) supported

the theory that both genera are congeneric. It was

the evolutionary history of Erysiphaceae tribe

Cystotheceae, ITS sequences were investigated by

Takarnatsu et al. (2000). The authors suggest that the

Cystotheceae were originally arbor-parasitic and transition to herb-parasitism may have occurred on at

least two independent occasions. This transition is

available in crop production are repeated application of fungicides and the use of cultivars resistant or tolerant

to powdery mildews. However, both methods have their

own limitations. Public attitude and environmental

The two main methods for disease control currently

believed to have occurred in the Rosaceae.

concluded that all Sphaerotheca species belong to the
Podosphaera genus. The fungus previously identified
as S. Pannosa (Wallr.: Ex Fr.) Lev. is now called
Podosphaera pannosa (Wallr.: Fr.) de Bary (fam.
Erysiphaceae, tribe Cystotheceae) (Braun and
Takamatsu, 2000 and Braun et al., 2002). To investigatemycoparasites
selected envi
Ampelomycesconcluded that all Sphaerotheca species belong to the
Podosphaera genus. The fungus previously identified
as S. Pannosa (Wallr.: Ex Fr.) Lev. is now called
Podosphaera pannosa (Wallr.: Fr.) de Bary (fam.
Iceanii were tes
i.e. 100, 90, 80

growth and reduce the yield causing losses between 20 to 40 per cent depending upon the congenial environment for powdery mildew fungus (Agrios, 2005). In Mexico, Gleason (2014) studied rose powdery mildew and identified the pathogen as *Podosphaera pannosa (Syn. Biological control :*
 The efficacy of microbial antagonists and use of non-fungicide products such as bioproducts and botanicals have extensively been studied, especially in greenhouse production (Table 1).

roses.

Antagonists:

The potential of mycoparasites to control powdery mildew depends on their intrinsic properties and environmental conditions (Toppo and Tiwari, 2015). Verhaar et al. (1999a) studied the effectiveness of mycoparasites to control rose powdery mildew under selected environmental conditions. Isolate of Ampelomyces quisqualis, Aphanocladium album, Sporothrix rugulosa, Tilletiopsis minor and Veriticillium lecanii were tested at four relative humidities (RH) levels i.e. 100, 90, 80 and 70 per cent. Most mycoparasites lost their effectiveness rapidly below 100 per cent RH, but one isolate of V. lecanii achieved over 80 per cent mildew control at 90 per cent RH. The fungi can thrive under dry conditions, whereas most biocontrol agents require relative humidity above at least 70 per cent (Hajlaoui and Belanger, 1991). Mycoparasitism of powdery mildews by Ampelomyces spp. is one of the best known mechanisms of fungal antagonism. Hyphae of Ampelomyces penetrate the hyphae of powdery mildews, continue their growth internally and produce their pycnidia in the cells of the hyphae, conidiophores and immature cleistothecia of their fungal hosts (Kiss, 2003). An isolate of Ampelomyces quisqualis selected in the Hebrew University of Jerusalem (Sztejnberg et al., 1989) has been formulated as water dispersible granules and commercialized by Ecogen Inc. under the trade name of AQ10. Four commercially formulated biological control products, containing Gliocladium catenulatum (Prestop WP), Trichoderma harzianum

revealed that the pathogen host interaction (PM/rose) causes huge amount of pesticides volume upto 40 per

cent applied to rose crop to combat this disease (Tjosvold

and Koike, 2001). All these constrain associated with

the use of fungicides and resistant cultivars have lead to

the search of alternative methods to control powdery

mildews. Biological control, a phenomenon based on the

antagonism between micro-organisms, is considered as

an alternative to prevent or suppress powdery mildew in

VIJAY KUMAR, SUNITA CHANDEL AND NEELAM KUMARI

640 *Internat. J. Plant Protec.*, **9**(2) Oct., 2016 : 639-643 HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

(Plant Shield) and *Bacillus subtilis* [Serenade (wettable powder) and Rhapsody (liquid)] were evaluated for control of rose powdery mildew (*Podosphaera pannosa*). Both *G. catenulatum* and *B. subtilis* provided significant control of rose powdery mildew (Janice *et al.*, 2011). Another antagonist of rose powdery mildew is *Aphanocladium album*, but this fungus has received little attention so far (Verhaar *et al.*, 1999b).

Yeast and yeast-like fungal antagonists such *Pseudomyza flocculosa* (syn. *Sporothrix flocculosa*), *Pseudomyza rugulosa* (syn. *Sporothrix rugulosa*) and *Tilletiopsis pallescens* has been described against rose powdery mildew. *Pseudomyza flocculosa* showed more rapid colonization of powdery mildew colonies than *P. rugulosa* and was less affected by unfavourable climatic conditions (Hajlaoui and Belanger, 1991). *P. flocculosa* showed better management of rose powdery mildew due to the production of antibiotics (Hajlaoui *et al.*, 1994). The yeast like fungus *Pseudomyza flocculosa* gave better control of powdery mildew in rose cultivars "Samantha" and "Preference" than fungicides (Belanger *et al.*, 1994).

Tilletiopsis spp. are common phyllosphere yeasts belonging to the Sporobolomycetaceae (Elad *et al.*, 1996). *Tilletiopsis* spp. do not seem to penetrate the powdery mildew fungus, antibiosis appears to be the primary mechanism (Urquhart and Punja, 1997). Spore suspension of *T. pallescens* reduces 78-94 per cent conidia formation of rose powdery mildew on treated plants and was used as a potential biological control agent against rose powdery mildew (Ng et al., 1997).

V. lecanii showed better control of rose powdery mildew than *Ampelomyces quisqualis*, *Aphanocladium album*, *Pseudomyza rugulosa* and *Tilletiopsis minor* (Verhaar *et al.*, 1999b). *Verticillium lecanii* act by the mechanism of the hyperparasitism, but recent studies showed that antibiosis also plays an important role in this interaction (Kiss, 2003).

Bioproducts and botanicals:

Different bioproducts such as anhydrous milk fat (AMF) and soybean oil (SBO) emulsions were effective and could be used as alternative methods for managing the powdery mildew of rose (Chee *et al.*, 2011). Foliar application of compost tea showed better control of rose powdery mildew compared with the fungicides (Seddigh *et al.*, 2014). The extract of grape fruit was applied as spray to rose plants in concentrations from 0.017 to 0.099 per cent. Grapefruit extract at concentration 0.066 per cent was as effective as triforine (standard) applied at 0.027 per cent against rose powdery mildew (Wojdyla, 2001).

Conclusion :

Excess use of the chemical fungicides for the management of powdery mildew is hazardous to the environment as well as to the human health. The intensive use of chemical fungicides leads to the development of new resistant strains of pathogens and

Table 1 : Biocontrol agents, bioproducts and botanicals used effectively against rose powdery mildew	
Methods	References
Biocontrol agents	
Ampelomyces quisqualis	Kiss, 2003 and Verhaar et al., 1999b
Aphanocladium album	Verhaar et al., 1999b
Pseudomyza flocculosa	Belanger et al., 1994; Hajlaoui and Belanger, 1991 and Hajlaoui et al., 1992
Pseudomyza rugulosa	Hajlaoui and Bélanger, 1991 and Verhaar et al., 1999b
Tilletiopsis minor	Verhaar et al., 1999b
Tilletiopsis pallescens	Ng et al., 1997
Tilletiopsis washingtonensis	Hajlaoui and Belanger, 1991
Verticillium lecanii (Zimm.) Viegas	Verhaar et al., 1999 and Kiss, 2003
Gliocladium catenulatum	Janice et al., 2011
Trichoderma harzianum	Janice et al., 2011
Bacillus subtilis	Janice et al., 2011
Bioproducts and plant extract	
Anhydrous milk fat (AMF)	Chee <i>et al.</i> , 2011
Soybean oil (SBO)	Chee <i>et al.</i> , 2011
Extract of grape fruit	Wojdyła, 2001 and Waghmare et al., 2011

enhances the danger of epiphytotic situations worldwide. Therefore, alternative control measures for powdery mildew need to be developed in order to reduce the dependency on these fungicides. Among these alternatives are those referred to as biological control. A variety of biological controls are available for use, but further development and effective adoption will require a greater understanding of the complex interactions among plants, people and the environment.

REFERENCES

Agrios, G.N. (2005). *Plant pathology*, Elsevier Academic Press, Amsterdam. 922p.

Belanger, R.R., Labbe, C. and Jarvis, W.R. (1994). Commercial scale control of rose powdery mildew with a fungal antagonist. *Plant Disease*, **78** :420-424.

Braun, U. (1995). The powdery mildews (Erysiphales) of Europe. *Nordic J. Bot.*, 16(2): 144.

Braun, U., Cook, R.T.A., Inman, A.J. and Shin, H.D. (2002). The taxonomy of the powdery mildew fungi. In: Belanger R R, Bushnell W R, Dik A J, Carver T L W (Ed), The Powdery Mildews: *A Comprehensive Treatise*, St. Paul, M N, USA, APS Press, pp.13-55.

Braun, U. and Takamatsu, S. (2000). Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, *Podosphaera, sphaerotheca* (Cystotheceae) inferred from rDNA ITS sequences some taxonomic consequences. *Schlechtendalia,* **4**: 1-33.

Chee, A.A., Wurms, K.V. and George, M. (2011). Control of powdery mildew (*Sphaerotheca pannosa* var. *rosae*) on rose (*Rosa* sp.) using anhydrous milk fat and soybean oil emulsions. *New Zealand Pl. Protec.*, **64** : 195-200.

Cook, R.T.A., Inman, A.J. and Billings, C. (1997). Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. *Mycopathological Res.*, **101** : 975-1002.

Debener, T. and Linde, M. (2009). Exploring complex ornamental genomes: The rose as a model plant. *Plant Sci.*, **28** : 267–280.

Elad, Y., Malathrakis, N.E. and Dik, A.J. (1996). Biological control of *Botrytis* incited diseases and powdery mildews in greenhouse crops. *Crop Protec.*, 15 : 229-240.

Gleason, M.L. (2014). First report of powdery mildew (*Podosphaera pannosa*) of roses in Sinaloa, Mexico. *Plant Disease*, **98**(10): 1442.

Hajlaoui, M.R. and Belanger, R.R. (1991). Comparative effects

Hajlaoui, M.R., Traquair, J.A., Jarvis, W.R. and Belanger, R.R. (1994). Antifungal activity of extracellular metabolites produced by *Sporothrix flocculosa*. *Biocontrol Sci. Technol.*, 4 : 229-237.

Horst, K. (1983). Compendium of rose diseases. *Plant Disease*, 2:50.

Hummer, K.E. and Janick, J. (2009). Rosaceae: taxonomy, economic importance, genomics. In: *Genetics and genomics of Rosaceae*. Folta and Gardiner S E (eds). *Springer Sci. Business Media*, pp. 1-17.

Janice, F.E., Haselhan, C. and Punja, Z.K. (2011). Evaluation of biological control agents for control of botrytis blight of geranium and powdery mildew of rose. *Canadian J. Plant Pathol.*, **33** : 499-505.

Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. *Pest Management Sci.*, **59** : 475-483.

Ng, K.K., MacDonald, L. and Punja, Z.K. (1997). Biological control of rose powdery mildew with the antagonist yeast *Tilletiopsis pallescens*. *Hort. Sci.*, **2** (2) : 262-266.

Saenz, G.S. and Taylor, J.W. (1999). Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. *Canadian J. Bot.*, 77 : 150-168.

Seddigh, S., Kiani, L., Tafaghodinia, B. and Hashemi, B. (2014). Using aerated compost tea in comparison with a chemical pesticide for controlling rose powdery mildew. *Arch. Phytopathol. & Plant Prote.*, **47** (6) : 658-664.

Sztejnberg, S., Galper, S., Mazar, S. and Lisker, N. (1989). *Ampelomyces quisqualis* for biological and integrated control of powdery mildew in Israel. *J. Phytopathol.*, **124** : 285-295.

Takamatsu, S., Hirata, T. and Sato, Y. (1998). Phylogenetic analysis and predicted secondary structures of the rDNA internal transcribed spacers of the powdery mildew fungi (Erysiphaceae). *Mycoscience*, **39** : 441-453.

Takarnatsu, S., Hirata, T. and Sato, Y. (2000). A parasitic transition from trees to herbs occurred at least twice in tribe Cystotheceae (Erysiphaceae): Evidence from nuclear ribosomal DNA. *Mycopathological Res.*, **104**: 1304-1311.

Tjosvold, S.A. and Koike, S.T. (2001). Evaluation of reduced risk and other biorational fungicides on the control of powdery mildew on greenhouse roses. *Acta Hort.*, **547** : 59-67.

Toppo, S.R. and Tiwari, P. (2015). Biocontrol potentialities of

of temperature and humidity on activity of three potential antagonists of rose powdery mildew. *Netherland J. Plant Pathol.*, **97** : 203-220.

native *Pseudomonas* isolates against plant pathogenic fungi *Rhizoctonia* spp., *Fusarium* spp. and *Colletotricum* spp. in tomato rhizosphere under green house condition. *Bioscan*, **10** (1): 373-377

Urquhart, E.J. and Punja, Z.K. (1997). Epiphytic growth and survival of *Tilletiopsis pallescens*, a potential biological control agent of *Sphaerotheca fuliginea*, on cucumber leaves. *Canadian J. Bot.*, **75** : 892-901.

Verhaar, M.A., Hijwegen, T. and Zadoks, J.C. (1999a). Improvement of the efficacy of *Verticillium lecanii* used in biocontrol of *Sphaerotheca fuliginea* by addition of oil formulations. *Biological Control*, **44** : 73-87.

Verhaar, M.A., Kerssies, A. and Hijwegen, T. (1999b). Effect of relative humidity on mycoparasitism of rose powdery mildew with and without treatments with mycoparasites. *J.* *Plant Diseases Prote.*, **106** : 158-165.

Waghmare, M.B., Waghmare, R.M. and Kamble, S.S. (2011). Bioefficacy of plant extracts on growth of *Botrytis Cinerea* causing leaf blight of rose. *Bioscan,* **6** (4) : 643-645.

Wissemann, V. (2006). Beauty and the bastards, intensive hybridization controls the evolution of wild roses. *Futura*, **21** : 158-163.

Wojdyla, A.T. (2001). Grapefruit extract activity in the control of rose powdery mildew and black spot. *Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol. Wet.*, **66** (2) : 167-177.

WEBLIOGRAPHY

Rose Magazine Inc. (2011). Mildew. http://www. rosemagazine.com/articles02/pages/mildew. asp .

